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Definitions (matching preclusion)

• Only interested in regular even graphs, say, r -regular with
r ≥ 3.

• The matching preclusion number of a graph G, denoted by
mp(G), is the minimum number of edges whose deletion
leaves the resulting graph without a perfect matching.

• It is bounded above by r as one can trivially delete edges
to isolate a vertex.

• If mp(G) = r , then G is maximally matched.
• A graph G is super matched if mp(G) = r and every

optimal matching preclusion set is trivial.
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Definitions (conditional matching preclusion)
• The conditional matching preclusion number of a graph G,

denoted by mp1(G), is the minimum number of edges
whose deletion leaves the resulting graph with no isolated
vertices and without a perfect matching.

• A trivial feasible solution is pick a path u − v − w in the
original graph and delete all the edges incident to either u
or w but not v .

• νe(G) is the minimum size of such trivial solutions. (It is
either 2r − 2 or 2r − 3.)

• If mp1(G) = νe(G), then G is conditionally maximally
matched.

• A graph G is conditionally super matched if
mp1(G) = νe(G) and every optimal conditional matching
preclusion set is trivial.
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Why Interconnection networks?

• Use in computer systems and communication switches.
(How processors are linked?)

• Parallel computing.
• The interconnection network between processors and

memory largely determines the memory latency, memory
bandwidth, etc.
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exponential or even factorial wrt the degree.)
• Fast distributed routing algorithm.
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Cayley graph generated by (transposition) trees

• Slater 78, Tchuente 82, popularize as interconnection
networks by Araki 06.

• T is a tree with labels 1,2, . . . ,n. It generates a graph G
where the vertices are the n! permutations on {1,2, . . . ,n}.
Two vertices are adjacent if one permutation (label of a
vertex) can be obtained from another by switching the
symbols in the i th and j th positions where (i , j) is an edge
of T .

• It is (n − 1)-regular, bipartite, girth is 4 unless T is a star.
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Ex: n = 4 generated by K1,3 with 1 as center
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A 2-tree
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Cayley graph generated by 2-trees

• T is a 2-tree with labels 1,2, . . . ,n. It generates a graph G
where the vertices are the n!/2 even permutations on
{1,2, . . . ,n}. Two vertices are adjacent if one permutation
(label of a vertex) can be obtained from another by rotating
symbols in the i th, j th and k th positions (either forward
rotation or reverse rotation) where i , j , k form a K3 in T .

• It is (2n − 4)-regular, nonbipartite.
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Ex: n = 4, only one graph
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Hyperstars

• Introduced by Lee, Kim, Oh and Lim 02.
• An hyperstar HS(n,k ) with 1 ≤ k ≤ n − 1 is defined as

follows: its vertex-set is the set of {0,1}-strings of length n
with exactly k 1’s, and two vertices are adjacent if and only
if one can be obtained from the other by exchanging the
first symbol with a different symbol (1 with 0, or 0 with 1) in
another position.

• Only interested in the regular subclass HS(2k , k)
• Isomorphic to the middle cubes. (The middle two layers of

an odd cube.)
• bipartite.
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Goals

• Find the matching preclusion and conditional matching
preclusion numbers for these graphs and classify the
corresponding optimal solutions. (Want to show that they
are maximally matched, super matched, conditionally
maximally matched and conditionally super matched
except for small/boundary cases.)

• Freebie: Cayley graphs generated by transposition trees
and HS(2k , k) are maximally matched since they are
bipartite.

• For other classes of graphs whose results are known, the
proofs typically involve a very strong Hamiltonian
properties enjoy by such classes: If many vertices/edges
are deleted, the resulting graph is Hamiltonian
connected/laceable.
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• Forget about this approach for the HS(2k , k). (A long
standing conjecture states that the middle cubes are
Hamiltonian.)

• Find general sufficient conditions for a regular graph to be
maximally matched, super matched, conditionally
maximally matched and conditionally super matched.
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Plesník’s Theorem

Theorem: If G is a r -regular (r − 1)-edge-connected graph with
an even number of vertices, then G − F has a perfect matching
for every F ⊆ E with |F | ≤ r − 1.

This immediately tells us that G is maximally matched, that is,
mp(G) = r for r -regular (r − 1)-edge connected even graphs.
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Replacing the condition (r − 1)-edge-connected

Strengthen the (r − 1)-edge-connected condition to get super
matched.

r -edge-connected is not enough.
r -connected is not enough.
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Beyond connectivity

Assume G is r -regular
• G is maximally connected means G has connectivity r .
• G is loosely super connected means G is m.c. and every

optimal disconnected set is induced by a vertex.
• G is tightly super connected means G is m.c. and deleting

an optimal disconnected set will disconnect the graph into
two components, one of which is a singleton. (Other terms
for the same concept: vosperian property,
hyper-connectivity, r 1

2 -connected.)
• tightly > loosely. Example: K3,3

• Can define maximally edge-connectedness and super
edge-connectedness. (Here no distinction between loosely
and tightly.)
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Q: tightly super connected implies tightly
super-edge-connected?

• No. Example: 5-cycle.
• Yes if the graph is not small.
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Beyond superconnectedness

Assume G is r regular
• G is super m-connected of order q if with at most m

vertices deleted, the resulting graph is either connected or
it has a big component and a number of small components
with at most q vertices in total.

• super r -connected of order 1 means tightly super
connected.

• Can define super m-edge-connected of order q.
• Super m-connected of order q implies super

m-edge-connected of order q if the graph has enough
vertices.
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Sufficient conditions for bipartite graphs

• Theorem: Let G be a r -regular bipartite graph that is
super edge-connected. Then G is super matched.

• Theorem: Let G be a r -regular bipartite graph that is
super (3r − 6)-edge-connected of order 2. Then G is
conditionally maximally matched, that is, mp1(G) = 2r − 2.

• Theorem: Let G be a r -regular bipartite graph with
mp1(G) = 2r − 2. If G is super (3r − 4)-edge-connected of
order 3, then it is conditionally super matched.
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Remarks

• The results are in the spirit of Plesník’s Theorem.
• All proofs use Hall’s Theorem.
• Each proof requires tighter analysis than the previous one.
• The theorems can be strengthened slightly.
• How to use them?
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Known structural results

Suppose G is Cayley graph generated by a transposition tree
on n vertices.
• Theorem [EC and Lipták 06]: Let n ≥ 4. Then G is super
(2n − 5)-connected of order 1. (Tight result)

• Theorem [EC and Lipták 06]: Let n ≥ 4. Then G is super
(3n − 9)-connected of order 2. (Tight result)

• Theorem [EC and Lipták 07]: Suppose G is Cayley graph
generated by a transposition tree on n vertices where
n ≥ 4. Let 1 ≤ k ≤ n − 2. Then G is super
(kn − (k + k(k+1)

2 )-connected of order k − 1.
(Asymptotically tight)
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Cayley graphs generated by transposition trees

• Theorem: Let G be a Cayley graph obtained from a
transposition generating tree on {1,2, . . . ,n} with n ≥ 3.
Then mp = δ(G) = n − 1. Moreover, if n ≥ 4, then G is
super matched.

• Theorem: Let G be a Cayley graph obtained from a
transposition generating tree on {1,2, . . . ,n} with n ≥ 4.
Then mp1(G) = 2n − 4, and G is conditionally super
matched if n ≥ 7.
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Remarks

• Proofs use the structural theorem plus the fact that “vertex”
version in the structural theorem is stronger than the
“edge” version in the sufficient condition if the graph is
large enough.

• Letting k = 4 in the asymptotic result gives super
(4n − 14)-connected of order 3. We want
4n − 14 ≥ 3(n − 1)− 4.

• The n ≥ 7 condition can be improved (with additional work)
to n ≥ 4 except for the following graph.
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Hyperstars

• Use known structural results plus other improvements
• Theorem: HS(2k , k) is super matched for k ≥ 2.
• Theorem: HS(2k , k) is conditionally maximally matched

for k ≥ 2.
• Theorem: HS(2k , k) is conditionally super matched for

k ≥ 6.
• Did not look at small cases k = 2,3,4,5.
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Are the sufficient conditions true for non-bipartite
graphs?

The answer is no. Below is a counterexample.
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Find a stronger condition for a graph to be super
matched

• Can we strengthened the condition super edge-connected
in a “natural” way?

• Are we forced to add an “unrelated” condition?
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Sufficient condition for a graph being super matched

Theorem: Let G = (V ,E) be a r -regular graph with an even
number of vertices where r ≥ 3. Suppose that G is super
edge-connected and α(G) < |V |−2

2 where α(G) is the stability
number of G. Then G is super matched.

The proof uses Tutte’s Theorem.
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Proof

• Let F be a matching preclusion set, |F | = r . Let W be the
Tutte set in G − F .

• F = δG(X1,X2, . . . ,Xp) where the Xi ’s are the odd
components in G − F .

• p = |W |+ 2 and W is an independent set in G
• There are no even components in G − F .
• W 6= ∅ gives contradiction. (Forces every Xi to be a

singleton as G is super edge-connected.) This violates the
stability number condition.)

• W = ∅ and there are two odd components in G − F , one of
which is a singleton since G is super edge-connected.
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Sufficient condition for a graph being conditionally
maximally matched

• Need extra conditions.
• Let

ζ(G,p,q) = min{α(H})

where the minimum is take over all induced subgraphs of
G with p vertices and at most q edges.

• Let γG(X ) to be the set of edges with both ends in X .
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Theorem: Suppose that G is triangle-free, G is an r -edge
connected even graph and G is super (3r − 6)-edge-connected
of order 2. Moreover suppose an additional technical
assumption holds. Then G is conditionally maximally matched,
that is, mp1(G) = 2r − 2.

Technical assumption:
Either |γG(X )| > 2r − 3 for every X ⊆ V and |X | = |V |+2

2 , or
α(G) < ζ(G, |V |−2

2 ,2r − 6).
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Theorem: Suppose that G contains a 3-cycle, G is an
r -edge-connected even graph and G is super
(3r − 8)-edge-connected of order 2. Moreover suppose an
additional technical assumption holds. If r = 3, we require,
additionally, that G be super (3r − 7)-edge-connected of order
2. Then G is conditionally maximally matched, that is,
mp1(G) = 2r − 3.

Technical assumption:
Either |γG(X )| > 2r − 4 for every X ⊆ V of size |X | = |V |+2

2 , or
α(G) < ζ(G, |V |−2

2 ,2k − r).
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Sufficient condition for a graph being conditionally
super matched

Theorem: Suppose that G is triangle-free, mp1(G) = 2r − 2, G
is super edge-connected and G is super
(3r − 4)-edge-connected of order 3. Moreover suppose an
additional technical assumption holds. Then G is conditionally
super matched.

Technical assumption:
Either |γG(X )| > 2r − 2 for every X ⊆ V and |X | = |V |+2

2 , or
α(G) < ζ(G, |V |−2

2 ,2r − 4).
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Theorem: Let G = (V ,E) be a r -regular even graph. Suppose
that G has a 3-cycle, mp1(G) = 2r − 3, |V | ≥ 8, G is super
edge-connected, G is super (3r − 6)-edge-connected of order 3
and α(G) < |V |−4

2 . Moreover suppose an additional technical
assumption holds. Then G is conditionally super matched.

Technical assumption:
Either |γG(X )| > 2r − 3 for every X ⊆ V of size |X | = |V |+2

2 , or
α(G) < ζ(G, |V |−2

2 ,2k − 6).
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Structural theorem for Cayley graph generated by a
2-tree

Suppose G is Cayley graph generated by a 2-tree on n vertices.
Theorem [EC, Lipták and Sala 09]
• Let n ≥ 5. Then G is tightly super connected.
• Let n ≥ 5. Then G is super (4n− 12)-connected of order 1.

The bound is sharp.
• Let n ≥ 5. Then G is super (6n− 20)-connected of order 2.

The bound is sharp.
• Let n ≥ 4. Then G is super
(k(2n − 4)− 2k(k − 1)− 1)-connected of order k − 1.
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Cayley graph generated by a 2-tree

Theorem:
Suppose G is Cayley graph generated by a 2-tree on n ≥ 4
vertices. Then G is maximally matched, that is,
mp(G) = 2n − 4 and G is super matched. If n ≥ 5, then G is
conditionally maximally matched, that is, mp1(G) = 4n − 11. If
n ≥ 12, then G is conditionally super matched.

Can be strengthened to include n ≤ 11.
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Cartesian Product: G�Ck

• Theorem: Let G be a r -regular even graph with r ≥ 2 and
k ≥ 3. If G is maximally matched, then G�Ck is maximally
matched and super matched.

• Theorem: Let G be triangle-free r -regular even graph with
r ≥ 3 and k ≥ 4. Suppose G is super matched and
mp1(G) ≥ 2r − 3. Then G�Ck is conditionally super
matched unless k is odd and G is either Kr ,r or Kr+1,r+1
minus a perfect matching.
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