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Unimodular triangulations

Unimodular triangulations

Unimodular
triangulation

A unimodular triangulation T of a polygon P with
integer vertices is a partition of P into unimodular

triangles. Equivalently, into triangles with integer
vertices and area one-half.
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Unimodular triangulations

Unimodular triangulations of rectangles

Perfect
matchings

An interesting special case is when the polygon is a
rectangle. In this case, the weak dual of any
unimodular triangulation has a perfect matching.
Simply choose the right colour!

Francisco Zaragoza (UAM Azcapotzalco) From Perfect Matchings to the Four Colour Theorem MME 2012 3 / 20



Unimodular triangulations

Unimodular triangulations of rectangles

Perfect
matchings

An interesting special case is when the polygon is a
rectangle. In this case, the weak dual of any
unimodular triangulation has a perfect matching.
Simply choose the right colour!

Francisco Zaragoza (UAM Azcapotzalco) From Perfect Matchings to the Four Colour Theorem MME 2012 4 / 20



Unimodular triangulations

Open questions

Maximum
matching

Given a polygon with integer vertices, what is the
maximum size of a matching of the weak dual among
all of its unimodular triangulations?

Characterization Is there a nice characterization of the graphs that are
weak duals of unimodular triangulations of polygons?
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Primitive drawings and embeddings

Primitive segments

Primitive
segments

Let p = (a, b) and q = (c , d) be two points with
integer coordinates. The segment pq is primitive if it
does not contain another point with integer
coordinates. Equivalently, if gcd(a− c , b − d) = 1.
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Primitive drawings and embeddings

Primitive drawings and embeddings

Primitive
drawing

A drawing of a graph is primitive if all its vertices are
different and all its edges are primitive segments.

Primitive
embedding

An embedding of a graph is primitive if all its vertices
are different and all its edges are primitive segments.

Three drawings of K4.
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Primitive drawings and embeddings

Characterization of primitive drawings

Theorem
(Flores, Z, ’09)

A graph G has a primitive drawing iff χ(G ) ≤ 4.

Proof sketch (⇒) Assume that G has a primitive drawing. Consider
the vertex colouring of G given by

f (a, b) = (a mod 2, b mod 2).

Assume that the ends of the edge pq (with p = (a, b)
and q = (c , d)) receive the same colour. Then a+ c

and b + d are even, and hence the midpoint

r =

(

a+ c

2
,
b + d

2

)

has integer coordinates, a contradiction.
(Kára, Pór, Wood, ’05)
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Primitive drawings and embeddings

Construction of primitive drawings

Proof sketch (⇐) The graph Kn,n,n,n can be primitively drawn with
the vertex set given by P0 = {(6i , 0) : i ∈ [n]},
P1 = {(2i −1, 1) : i ∈ [n]}, P2 = {(2i −1, 2) : i ∈ [n]},
and P3 = {(ai , 3) : i ∈ [n]}, where {a1, ..., an} is the
set of the smallest n even numbers not divisible by 3.
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Primitive embeddings

Primitive embeddings

Primitive embeddings are:

Plane graphs.

Primitive drawings.

4-chromatic.

Question Which planar graphs have primitive embeddings?
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Primitive embeddings

Outerplanar graphs

Outerplanar
embeddings
(Aguilar, Z,

’10)

Recursive construction. (Nakamoto and Negami, ’10).
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Primitive embeddings

Small triangulations

Pérez, Z, ’11 Every planar triangulation with n ≤ 13 has a primitive
embedding in a square of side n − 1.

Triangulation
with 11 vertices
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Primitive embeddings

Main result

Theorem
(Santos, Flores,

Z, ’12)

Every planar graph has a primitive embedding.1

Equivalently Planar graphs have primitive embeddings iff 4CT.

1This result was obtained independently by

Martin Balko and presented in EuroCG 2012.
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Primitive embeddings

Proof sketch: Four Colour Theorem

Rectilinear
embedding

Let G be a planar, 4-coloured graph and consider any
of its rectilinear embeddings.

1

2

3

4

5

6

Francisco Zaragoza (UAM Azcapotzalco) From Perfect Matchings to the Four Colour Theorem MME 2012 14 / 20



Primitive embeddings

Proof sketch: Enlarging the embedding

Multiply the coordinates of the embedding by a
sufficiently large integer.
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Primitive embeddings

Proof sketch: Perturbing the embedding

Technical
Same row

Same column
Colour class

(2a, 6i)
(2c , 2d + 1)
(2e + 1, 2f )

(2g +1, 6j +1)

Move vertices slightly in order to satisfy some
constraints (without changing the embedding).
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Primitive embeddings

Proof sketch: Enlarging again

Horizontal
expansion

Assume the embedding has height m. Then multiply
all horizontal coordinates by M = m! and adjust them
slightly as follows:

1 (2a, 6i) goes to (2aM, 6i).

2 (2c , 2d + 1) goes to (2cM + 2, 2d + 1).

3 (2e + 1, 2f ) goes to ((2e + 1)M + 1, 2f ).

4 (2g + 1, 6j + 1) goes to ((2g + 1)M + 3, 6j + 1).

End of the
proof

Now we can verify that all edges are primitive
segments.

Francisco Zaragoza (UAM Azcapotzalco) From Perfect Matchings to the Four Colour Theorem MME 2012 17 / 20



Primitive embeddings

Size of the embedding

First If we start with Schnyder’s embedding (on a square of
side n − 1), then m ∈ O(n2) and the embedding fits
on a rectangle of

m ×m ·m! ≈ m2m logm
.

Second In the last part of the proof it is enough to multiply by
mcm(1, 2, . . . ,m). Using the prime number theorem
(π(x) ≈ x

ln x ) we can see that the rectangle is

m ×m2m.
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Primitive embeddings

Further work

Trees They fit on a square of side O(n) and need Ω(
√
n).

What is the right size?

Outerplanar
graphs

They fit on a square of side O(2n) and need Ω(
√
n).

What is the right size? What if we require the outer
face to be convex? Ω(n

√
n).

Planar Is there a polynomial size embedding? For n ≤ 13 the
side is ≤ n − 1.

Algorithms How fast can we find good embeddings?
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Primitive embeddings

Thanks!

¡Gracias! ¡Felicidades Bill!
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