From Perfect Matchings to the Four Colour Theorem

Aguilar (Cinvestav), Flores (UNAM), Pérez (HP), Santos (Cantabria), Zaragoza (UAM-A)

Universidad Autónoma Metropolitana Unidad Azcapotzalco Departamento de Sistemas

June 11-13, 2012, Waterloo, Canada

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-19-0) MME 2012 1/20

Unimodular triangulations

Unimodular triangulation A unimodular triangulation T of a polygon P with integer vertices is a partition of P into unimodular triangles. Equivalently, into triangles with integer vertices and area one-half.

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 2/20

Unimodular triangulations of rectangles

Perfect matchings

An interesting special case is when the polygon is a rectangle. In this case, the weak dual of any unimodular triangulation has a perfect matching. Simply choose the right colour!

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 3 / 20

Unimodular triangulations of rectangles

Perfect matchings

An interesting special case is when the polygon is a rectangle. In this case, the weak dual of any unimodular triangulation has a perfect matching. Simply choose the right colour!

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 4 / 20

Open questions

Maximum matching

Given a polygon with integer vertices, what is the maximum size of a matching of the weak dual among all of its unimodular triangulations?

Characterization Is there a nice characterization of the graphs that are weak duals of unimodular triangulations of polygons?

∢ ロ ≯ - ∢ 何 ≯ - ∢ ヨ ▶

Primitive drawings and embeddings

Primitive segments

Primitive segments

Let $p = (a, b)$ and $q = (c, d)$ be two points with integer coordinates. The segment pq is primitive if it does not contain another point with integer coordinates. Equivalently, if $gcd(a - c, b - d) = 1$.

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 6 / 20

Casa abierta al tiempo **AZCADOIZAICO**

Primitive drawings and embeddings

Primitive drawings and embeddings

Primitive drawing **Primitive** embedding

A drawing of a graph is primitive if all its vertices are different and all its edges are primitive segments.

An embedding of a graph is primitive if all its vertices are different and all its edges are primitive segments.

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 7 / 20

Theorem (Flores, Z, '09)

Characterization of primitive drawings

A graph G has a primitive drawing iff $\chi(G) \leq 4$.

Proof sketch (\Rightarrow) Assume that G has a primitive drawing. Consider the vertex colouring of G given by

 $f(a, b) = (a \mod 2, b \mod 2).$

Assume that the ends of the edge pq (with $p = (a, b)$) and $q = (c, d)$ receive the same colour. Then $a + c$ and $b + d$ are even, and hence the midpoint

$$
r = \left(\frac{a+c}{2}, \frac{b+d}{2}\right)
$$

has integer coordinates, a contradiction. (Kára, Pór, Wood, '05) $($ \Box \rightarrow $($ \overline{P} \rightarrow $($ \overline{E} \rightarrow $($ \overline{E}

Construction of primitive drawings

Proof sketch (\Leftarrow) The graph $K_{n,n,n,n}$ can be primitively drawn with the vertex set given by $P_0 = \{(6i, 0) : i \in [n]\},\$ $P_1 = \{(2i-1, 1): i \in [n]\}, P_2 = \{(2i-1, 2): i \in [n]\},$ and $P_3 = \{(a_i, 3) : i \in [n]\}$, where $\{a_1, ..., a_n\}$ is the set of the smallest n even numbers not divisible by 3.

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 9 / 20

Primitive embeddings are:

- Plane graphs.
- Primitive drawings.
- 4-chromatic.

Question Which planar graphs have primitive embeddings?

K ロ ト K 何 ト K ヨ ト K

Outerplanar graphs

Recursive construction. (Nakamoto and Negami, '10).

Outerplanar embeddings (Aguilar, Z, '10)

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 11 / 20

Small triangulations

Triangulation with 11 vertices

Pérez, Z, '11 Every planar triangulation with $n \leq 13$ has a primitive embedding in a square of side $n - 1$.

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 12 / 20

Main result

Theorem (Santos, Flores, Z, '12) Every planar graph has a primitive embedding.¹ Equivalently Planar graphs have primitive embeddings iff 4CT.

> 1 This result was obtained independently by Martin Balko and presented in E[uro](#page-11-0)[CG](#page-13-0) [2](#page-11-0)[01](#page-12-0)[2](#page-13-0)[.](#page-8-0)

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 13 / 20

Proof sketch: Four Colour Theorem

Rectilinear embedding

Let G be a planar, 4-coloured graph and consider any of its rectilinear embeddings.

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 14 / 20

Proof sketch: Enlarging the embedding

Multiply the coordinates of the embedding by a sufficiently large integer.

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 15 / 20

Proof sketch: Perturbing the embedding

Move vertices slightly in order to satisfy some constraints (without changing the embedding).

Technical Same row Same column Colour class $(2a, 6i)$ $(2c, 2d + 1)$ $(2 \varrho + 1, 6 \overline{i} + 1)$

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 16 / 20

Proof sketch: Enlarging again

Horizontal expansion Assume the embedding has height m. Then multiply all horizontal coordinates by $M = m!$ and adjust them slightly as follows:

- 1 $(2a, 6i)$ goes to $(2aM, 6i)$.
- 2 $(2c, 2d + 1)$ goes to $(2cM + 2, 2d + 1)$.
- 3 $(2e+1, 2f)$ goes to $((2e+1)M+1, 2f)$.
- 4 $(2g+1, 6j+1)$ goes to $((2g+1)M+3, 6j+1)$.

serta al tiernoo **AZCADOLZAICO**

イロト イ母 ト イヨ ト イヨ

End of the proof

Now we can verify that all edges are primitive segments.

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 17 / 20

Size of the embedding

First If we start with Schnyder's embedding (on a square of side $n-1$), then $m \in O(n^2)$ and the embedding fits on a rectangle of

 $m \times m \cdot m! \approx m 2^{m \log m}$.

Second In the last part of the proof it is enough to multiply by mcm $(1, 2, \ldots, m)$. Using the prime number theorem $(\pi(x) \approx \frac{x}{\ln x})$ $\frac{x}{\ln x}$) we can see that the rectangle is

 $m \times m2^m$.

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 18 / 20

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → ⊙ Q @ .

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 19 / 20

Thanks!

¡Gracias! ¡Felicidades Bill!

UNIVERSIDAD AUTÓNOMA Casa abierta al tiempo Azcapotzalco

 2990

Francisco Zaragoza (UAM Azcapotzalco) [From Perfect Matchings to the Four Colour Theorem](#page-0-0) MME 2012 20 / 20

イロト イ部 トイヨ トイヨト