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Definitions

V is a vectorspace

V1,V2, · · · ,Vk < V are called skew subspaces (”independent
subspaces”) if they satisfy r(V1 ∨V2 ∨ · · · ∨Vk) =

∑k
i=1 r(Vi )

e < V is a line if r(e) = 2

V ,E is an instance of linear matroid matching if E is a set
of lines

M ⊆ E is a matching if it consists of skew lines, i.e.
r(sp(M)) = 2|M|
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Linear Matroid Matching

(Unweighted) Linear Matroid Matching Problem

Given: vectorspace V , set of lines E
Find: matching M to maximize |M|

ν(V ,E ) := max{|M| : M a matching }

Weighted Linear Matroid Matching Problem

Given: vectorspace V , set of lines E , weights w : E → R
Find: matching M to maximize w(M)

ν(V ,E ,w) := max{w(M) : M a matching }
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Matroid matching:

definition (Lawler, 1976)

exponential, oracle model (Lovász, 1981; Jensen, Korte, 1982)

NP-hard (Schrijver, 2003)

Arbitrary matroids:

2/3-approximation, unweighted (Fujito, 1993)

PTAS, unweighted (Lee, Sviridenko, Vondrák, 2010)

Linear matroid matching is tractable:

min-max, polytime algorithm (Lovász, 1980)

fastest polytime (Gabow, Stallmann, 1986; Orlin, 2008)

different polytime (Orlin, Vande Vate, 1990)

fastest randomized (Cheung, 2011)
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Applications / special cases:

graph matching (Edmonds, 1965)

matroid intersection (Edmonds, 1970)

Mader’s node-disjoint S-paths (Lovász, 1980; Schrijver, 2000)

maximum genus embedding (Nebesky, 1981; Furst, Gross,
McGeoch, 1988)

matchoid (Lovász, Plummer, 1986)

polymatroid matching

parity-constrained rooted-connected orientation (Frank,
Jordán, Szigeti, 2001; Király, Szabó, 2003)

maximum triangle cactus, graphic matroid matching (Szigeti,
2003)

minimum generically rigid pinning-down in the plane
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Variations:

algebraic matroids (Dress, Lovász, 1987)

pseudomodular matroids (Hochstättler, Kern, 1987)

double circuit property (Björner, Lovász, 1987)

ntcdc-free polymatroid matching (Makai, Pap, Szabó, 2007)

Generalization:

linear delta-matroid parity (Geelen, Iwata, Murota, 1997)

Related:

fractional matroid matching (Vande Vate, 1992)

unweighted algorithm (Vande Vate, Chang, Llewellyn, 2001)

weighted algorithm (Gijswijt, Pap, 2008)
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Weighted matroid matching:

graphic matching, matroid intersection

gammoids (Tong, Lawler, Vazirani, 1984)

linear matroid, randomized pseudopolynomial (Camerini,
Galbiati, Maffioli, 1992)

fractional matching (Gijswijt, Pap, 2008)

PTAS, strongly base orderable (Soto, 2011)

linear matroid, randomized polynomial (Cheung, 2011)

This talk:

Theorem (Iwata 2011 — and independently — P 2011)

Weighted linear matroid matching is solvable in strongly
polynomial time. ∗

∗ (assuming ”nice” linear representation of input lines)

Gyula Pap Weighted linear matroid matching



(Linear) Matroid Intersection

S is the groundset

φi : S → Vi (i = 1, 2), where Vi is a vectorspace

U ⊆ S is a common independent set if φi (U) is independent

FIND max |U|, or max w(U) for some w : S → R
representation: ψ(s) := sp(φ1(s), φ2(s)) ∈ V1 × V2

Claim

U ⊆ S is a common independent set iff ψ(U) is a matching in
V1 × V2
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(Linear) Matroid Intersection

[Edmonds, 1979]

P := conv{χU : U common indep.} =

= {x ∈ RS
+ : x(Z ) ≤ r(φi (Z )) for all Z ⊆ S , i = 1, 2}

P is determined by an LP that is
— integral, TDI, polytime optimization
— 0-1 inequalities (”RANK” inequalities)
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Graph Matching

Let G = (VG ,EG ) be a graph

V :=
⊗
v∈VG

sp(1v ),

where 1v is a unit vector introduced for node v ∈ V

E := {sp({1u, 1v}) : uv ∈ EG}

Claim

MG ⊆ EG is a graph matching iff {sp({1u, 1v}) : uv ∈ MG} is a
linear matroid matching in V ,E
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Graph Matching

[Edmonds, 1968]

P := conv{χM : M matching in G} =

= {x ∈ RE
+ : x(E [Z ]) ≤

⌊
1
2 |Z |

⌋
for all Z ⊆ V , and

x(δv ) ≤ 1 for all v ∈ VG}

P is determined by an LP that is
— integral, TDI, polytime optimization
— 0-1 inequalities (”RANK” inequalities)
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Example for linear matroid matching polytope

a1 = (1, 0, 0, 0, 0, 0, 0)
b1 = (1, 1, 0, 0, 0, 0, 0)

a2 = (1, 0, 1, 0, 0, 0, 0)
b2 = (1, 0, 0, 1, 0, 0, 0)

a3 = (1, 2, 2, 0, 0, 0, 0)
b3 = (1, 0, 0, 0, 1, 0, 0)

a4 = (1, 2, 1, 0, 0, 0, 0)
b4 = (1, 0, 0, 0, 0, 1, 0)

a5 = (1, 1, 2, 0, 0, 0, 0)

b5 = (1, 0, 0, 0, 0, 0, 1)

a1

b1

a5

a4

a2

b2

b3

b5

a3

K

b4

r(K ) = 3

E := {sp(ai , bi ) : i = 1, 2, 3, 4, 5}

Claim

No rank-inequality separates x = (1, 1
3 ,

1
3 ,

1
3 ,

1
3 ) from P.
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Example for linear matroid matching polytope

a1 = (1, 0, 0, 0, 0, 0, 0)
b1 = (1, 1, 0, 0, 0, 0, 0)

a2 = (1, 0, 1, 0, 0, 0, 0)
b2 = (1, 0, 0, 1, 0, 0, 0)

a3 = (1, 2, 2, 0, 0, 0, 0)
b3 = (1, 0, 0, 0, 1, 0, 0)

a4 = (1, 2, 1, 0, 0, 0, 0)
b4 = (1, 0, 0, 0, 0, 1, 0)

a5 = (1, 1, 2, 0, 0, 0, 0)

b5 = (1, 0, 0, 0, 0, 0, 1)

a1

b1

a5

a4

a2

b2

b3

b5

a3

K

b4

r(K ) = 3

E := {sp(ai , bi ) : i = 1, 2, 3, 4, 5}

Claim

2x1 + x2 + x3 + x4 + x5 ≤ 3
for all x ∈ P = conv({χM : M a matching })
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Unweighted matroid matching min-max (Lovász)

Theorem (Lovász, 1980)

ν(V ,E ) = min
K ,π

r(K ) +
∑
i

⌊
1

2
rV /K (Ei )

⌋
where K < V and π = {E1,E2, · · · } is a partition of E .

Necessity follows from:

ν(V ,E ) ≤ ν(V /K ,E ) + r(K ) for any K < V

ν(V ,E ) ≤
∑

i

⌊
1
2 r(Ei )

⌋
for any partition

Gyula Pap Weighted linear matroid matching



Necessity in Lovász’ min-max

For a matching M, define x = xM , y = yM by

x(e) :=

{
1 if e ∈ M

0 otherwise,

and for all K < V and F ⊆ E , let

yK (F ) := r(K ∧ sp(M ∩ F )).

K
M

sp(F )

The following inequalities hold:

(1) x(F )− yK (F ) ≤
⌊

1
2 rV/K (sp(F ))

⌋
, (”Parity Constraint”)

(2)
∑

F∈π yK (F ) ≤ r(K ), (”Partition Constraint”)

Combining these inequalities we get

|M| = x(E ) ≤ r(K ) +
∑
F∈π

⌊
1

2
rV/K (F )

⌋
.
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Necessity in Lovász’ min-max

For a matching M, define x = xM , y = yM by

x(e) :=

{
1 if e ∈ M

0 otherwise,

and for all K < V and F ⊆ E , let

yK (F ) := r(K ∧ sp(M ∩ F )).

K
M

sp(F )

The following inequalities hold:

(1) x(F )− yK (F ) ≤
⌊

1
2 rV/K (sp(F ))

⌋
, (”Parity Constraint”)

(2)
∑

F∈π yK (F ) ≤ r(K ), (”Partition Constraint”)

Combining these inequalities we get

|M| = x(E ) ≤ r(K ) +
∑
F∈π

⌊
1

2
rV/K (F )

⌋
.
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Necessity in Lovász’ min-max

For a matching M, define x = xM , y = yM by

x(e) :=

{
1 if e ∈ M

0 otherwise,

and for all K < V and F ⊆ E , let

yK (F ) := r(K ∧ sp(M ∩ F )).

K
M

sp(F )

The following inequalities hold:

(1) x(F )− yK (F ) ≤
⌊

1
2 rV/K (sp(F ))

⌋
, (”Parity Constraint”)

(2)
∑

F∈π yK (F ) ≤ r(K ), (”Partition Constraint”)

Combining these inequalities we get

|M| = x(E ) ≤ r(K ) +
∑
F∈π

⌊
1

2
rV/K (F )

⌋
.
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The following inequalities hold:

(1) x(F )− yK (F ) ≤
⌊

1
2 rV /K (sp(F ))

⌋
, (”Parity Constraint”)

(2)
∑

F∈π yK (F ) ≤ r(K ), (”Partition Constraint”)

(3) x(E ) ≤ 1
2 (V ),
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Assign dual variables:

(1) x(F )− yK (F ) ≤
⌊

1
2 rV /K (sp(F ))

⌋
, δ(K ,F )

(2)
∑

F∈π yK (F ) ≤ r(K ), γ(K , π)

(3) x(E ) ≤ 1
2 (V ), α
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(1) x(F )− yK (F ) ≤
⌊

1
2 rV /K (sp(F ))

⌋
, δ(K ,F )

(2)
∑

F∈π yK (F ) ≤ r(K ), γ(K , π)

(3) x(E ) ≤ 1
2 (V ), α

STEP 0.

Initially, set

α := wmax

and set all other dual variables 0.
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(1) x(F )− yK (F ) ≤
⌊

1
2 rV /K (sp(F ))

⌋
, δ(K ,F )

(2)
∑

F∈π yK (F ) ≤ r(K ), γ(K , π)

(3) x(E ) ≤ 1
2 (V ), α

STEP 0.

Initially, set

α := wmax

and set all other dual variables 0.

Complementary slackness ⇔ FIND perfect matching in V ,E =
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(1) x(F )− yK (F ) ≤
⌊

1
2 rV /K (sp(F ))

⌋
, δ(K ,F )

(2)
∑

F∈π yK (F ) ≤ r(K ), γ(K , π)

(3) x(E ) ≤ 1
2 (V ), α

STEP 1.
CASE 1. There is a perfect matching M in V ,E =. RETURN M.

CASE 2. Otherwise, take K , π from Lovász’ min-max, and change
dual by
— δ(K ,F ) := ε for all F ∈ π,
— γ(K , π) := ε,
— α := wmax − ε,
taking ε maximal, subject to dual feasibility.
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STEP 2. Complementary slackness conditions equivalent with:

sp(F )/K

sp(F ) ∧ K

K

FIND Mpurple ⊆ Epurple , Bblue , Bred SUCH
THAT
— For all F , either Bblue has a basis of
sp(F )/K and Bred contains one element
from sp(F )∧K , OR Bblue has a near-basis of
sp(F )/K and Bred contains no element from
sp(F ) ∧ K
— Bred is a basis of K
— Bblue ∪ Bred ∪Mpurple spans V /K
— Bblue ∪ Bred ∪Mpurple are skew
This, in turn, is equivalent with an instance
of unweighted linear matroid matching.
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STEP 2. Complementary slackness conditions equivalent with:

sp(F )/K

sp(F ) ∧ K

K

FIND Mpurple ⊆ Epurple , Bblue , Bred

SUCH THAT

— For all F , either Bblue has a basis of
sp(F )/K and Bred contains one element
from sp(F )∧K , OR Bblue has a near-basis of
sp(F )/K and Bred contains no element from
sp(F ) ∧ K

— Bred is a basis of K

— Bblue ∪ Bred ∪Mpurple spans V /K

— Bblue ∪ Bred ∪Mpurple are skew
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Extended Formulation of the Linear Matroid Matching Polytope

For e ∈ E , introduce variable

x(e) ≥ 0.

For subspaces V > K > L and F ⊆ E , introduce variable

yK ,L(F ) ≥ 0.

For a matching M, we put

xM(e) := 1 if e ∈ M, and 0 otherwise,

yM
K ,L(F ) := yM

K (F )−yM
L (F ) = r(K∧sp(M∩F ))−r(L∧sp(M∩F )).
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Extended Formulation of the Linear Matroid Matching Polytope

j∑
i=1

∑
F∈F

yDi−1,Di
(F ) ≤ r(Dj ) ”Partition Constraint”

x(F )−
∑
i∈I2

yDi−1,Di
(F ) ≤

⌊
1
2

∑
i /∈I2 rV/Di−1

(Di ∧ sp(F ))
⌋

”Parity Constraint”

2x(e)−
∑
i≤j

yDi−1,Di
(e) ≤ 0 ”Line Constraint”

where 0 = D0 < D1 < D2 < · · · < Dk = V is a chain of subspaces, F ⊆ E , F a
partition of E , j ≤ k, I2 ⊆ {1, 2, · · · , k}, and e < Dj .
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Necessity in the extended formulation

1. Consider D, j ,F for the degree constraint. Then

j∑
i=1

∑
F∈F

yDi−1,Di
(F ) =

∑
F∈F

r(sp(M ∩ F ) ∧ Dj ) ≤ r(sp(M) ∧ Dj ) ≤ r(Dj )

implying the Partition Constraint.

2. Assume e ∈ M. Then∑
i≤j

yDi−1,Di
(e) =

∑
i≤j

(r(Di−1 ∧ e)− r(Di ∧ e)) = r(Dj ∧ e) = r(e) = 2 = 2x(e)

implying the Line Constraint.
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Necessity in the extended formulation

3. By
yDi−1,Di

(F ) ≤ rV/Di−1
(Di ∧ sp(F ))

we get that

2x(F ) = 2|M ∩ F | =
k∑

i=1

yDi−1,Di
(F ) ≤

∑
i∈I2

yDi−1,Di
(F ) +

∑
i /∈I2

rV/Di−1
(Di ∧ sp(F )).

Claim

For a, b, c ∈ N,

2a ≤ b + c implies a ≤ b +

⌊
1

2
c

⌋
.

Thus

x(F ) ≤
∑
i∈I2

yDi−1,Di
(F ) +

1

2

∑
i /∈I2

rV/Di−1
(Di ∧ sp(F ))

 ,
implying the parity constraint.
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Extended Formulation of the Linear Matroid Matching Polytope

j∑
i=1

∑
F∈F

yDi−1,Di
(F ) ≤ r(Dj ) ”Partition Constraint”

x(F )−
∑
i∈I2

yDi−1,Di
(F ) ≤

⌊
1
2

∑
i /∈I2 rV/Di−1

(Di ∧ sp(F ))
⌋

”Parity Constraint”

2x(e)−
∑
i≤j

yDi−1,Di
(e) ≤ 0 ”Line Constraint”

where 0 = D0 < D1 < D2 < · · · < Dk = V is a chain of subspaces, F ⊆ E , F a
partition of E , j ≤ k, I2 ⊆ {1, 2, · · · , k}, and e < Dj .
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Extended Formulation of the Linear Matroid Matching Polytope

j∑
i=1

∑
F∈L

λ(F )yDi−1,Di
(F ) ≤ κ(L, λ)r(Dj ) ”Laminar Constraint”

x(F )−
∑
i∈I2

yDi−1,Di
(F ) ≤

⌊
1
2

∑
i /∈I2 rV/Di−1

(Di ∧ sp(F ))
⌋

”Parity Constraint”

2x(e)−
∑
i≤j

yDi−1,Di
(e) ≤ 0 ”Line Constraint”

where 0 = D0 < D1 < D2 < · · · < Dk = V is a chain of subspaces, F ⊆ E , L is a
weighted laminar family of subsets of E , with weights λ : L → R+, j ≤ k,
I2 ⊆ {1, 2, · · · , k}, and e < Dj .
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j∑
i=1

∑
F∈L

λ(F )yDi−1,Di
(F ) ≤ κ(L, λ)r(Dj ) ”Laminar Constraint”

x(F )−
∑
i∈I2

yDi−1,Di
(F ) ≤

⌊
1
2

∑
i /∈I2 rV/Di−1

(Di ∧ sp(F ))
⌋

”Parity Constraint”

2x(e)−
∑
i≤j

yDi−1,Di
(e) ≤ 0 ”Line Constraint”

x(E) ≤ r(V )/2

Assign dual variables:

γ(D, j ,L, λ) for Laminar Constraints

δ(D, I ,F ) for Parity Constraints

β(D, j , e) for Line Constraints

α for constraint x(E) ≤ r(V )/2
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Consider α,D,L, δ, λi , IF2 , where

D = {D1,D2, · · · ,Dk} is a chain of subspaces

L is a laminar family of subsets of E

δ : L → R+

λi : F → R+ for i = 1, 2, · · · , k
IF2 ⊆ ID,F ⊆ {1, 2, · · · , k} (such that ID,F − IF2 are laminar) for all F ∈ L

A Laminar Dual Solution is given by

γ(D, i ,L, λi ) := 1 for i = 1, 2, · · · k
δ(D, I ,F ) := δF for F ∈ L
β(D, j , e) maximal – subject to dual feasibility – for e ∈ E

α
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Min-max for weighted linear matroid matching

The maximum weight of a matching is equal to the minimum
value of a laminar dual feasible solution, that is,

ν(V ,E ,w) = minαr(V ) +
k∑

i=1

κ(L, λi )r(Di )+

+
∑

δ(F )
⌊

1
2

∑
i /∈I2 rV /Di−1

(Di ∧ sp(F ))
⌋

where α,D,L, δ, λi , I F2 is a laminar dual solution.
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Algorithm.

We maintain a laminar dual solution.

Start with α = wmax , D = L = ∅.
Given a laminar dual solution α,D,L, δ, λi , IF2 , construct auxiliary unweighted
instance as follows.

Auxiliary unweighted instance is equivalent with complementary slackness
conditions

VD :=
⊗k

i=1(Di/Di−1)

For F ∈ F , let GF be a basis of sp(F ) ∩
⋃

i∈I2 (Di/Di−1), and let HF be a basis

of sp(F ) ∩
⋃

i /∈I2 (Di/Di−1)

Let mF :=
⌊

1
2

∑
i /∈IF2

rV/Di−1
(Di ∧ sp(F ))

⌋
B := {hF : F ∈ Lmax} ∪ {gF ,p : F ∈ Lmax , p = 1, 2, · · · ,mF }
V ′ := VD ⊗

⊗
b∈B 1b

E ′ := E= −
⋃

F∈F F ∪
⋃

F∈L(E [GF , hF ] ∪ E [hF ,BF ] ∪ E [BF ,HF ])
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Algorithm.

SOLVE maximum matching in V ′,E ′

IF ∃ perfect matching M′ in V ′,E ′, expand M′ to M, and RETURN M

OTHERWISE, take K ′, π′ from Lovász’ min-maximal

K ′ is separable, that is, it has the form of

K ′ =
k⊗

i=1

K ′i ⊗
⊗
b∈B′

1b

where K ′i < Di/Di−1 and B′ ⊆ B.
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Algorithm.

DUAL CHANGE using K ′, π′, constructed as follows.

Let D′2i := Di , and D2i−1 := K ′i ⊗ Di−1, and put D′ := {D′i : i = 1, 2, · · · , 2k}.
α′ := α− ε
For F ′ ∈ π′, let F ′′ := (F ′ ∩ E=) ∪

⋃
LF ′ .

Put L′ := L ∪ {F ′′ : F ′ ∈′ pi}
Let L = L+ ∪ L0 ∪ L− based on π.

δ′F :=


δ(F ) if F ∈ L0

δ(F )− ε if F ∈ L−
δ(F ) + ε if F ∈ L+

ε if F = F ′′.

For i = 1, 2, · · · , k, let J i = J i+ ∪ J i0 ∪ J i− based on i and π.

For i = 1, 2, · · · , k, put λ′2i (F ) :=


λ2i (F ) if F ∈ J i0

λ2i (F )− ε if F ∈ J i−

λ2i (F ) + ε if F ∈ J i+

0 otherwise,
while λ′2i−1(F ′′) := ε.
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Running time:

— either deficiency of auxiliary instance decreases, or the rank of
its kernel decreases, thus we obtain a bound of r(V )2 on the
number of dual changes
— we can determine a basis of every subspace Di , if, for example,
V = GF (q)n or Qn in polynomial time
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Conclusion

Theorem (Iwata 2011 — and independently — P 2011)

Weighted linear matroid matching is solvable in strongly
polynomial time.
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Questions:
— weighted linear delta-matroid parity
— bound the coefficients in a facet

Gyula Pap Weighted linear matroid matching



Thank you for your attention!
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