
1000X MIP Tricks
Bob Bixby

12 June 2012, Bill Cunningham’s 65th

Reminiscences on Matroids
A Characterization of Ternary

Matroids

3© 2010 Gurobi Optimization

Outline
 Introduction
◦ Progress in Solving Mixed-Integer Programs

 MIP tricks
◦ Knapsack
◦ Implied integer
◦ Disjoint subtrees
◦ Modular inverse reduction
◦ Markshare

4

A Definition

integerallorsome j

T

x
uxl
bAxtoSubject

xcMinimize

A mixed‐integer program (MIP) is an optimization
problem of the form

5

Computational Progress in
Mixed-Integer Programming:

1991-Present

6

1

10

100

1000

10000

100000

0

1

2

3

4

5

6

7

8

9

10

1.2→2.1 2.1→3 3→4 4→5 5→6 6→6.5 6.5→7.1 7.1→8 8→9 9→10 10→11

C
um

ul
at

iv
e

Sp
ee

du
p

Ve
rs

io
n-

to
-V

er
si

on
 S

pe
ed

up

CPLEX Version-to-Version Pairs

V-V Speedup Cumulative Speedup

Mature Dual
Simplex: 1994

Mined Theoretical
Backlog: 1998 29530x

Speedups 1991‐2007

7

 Public benchmarks showed that CPLEX 11.0
and Gurobi 1.0 were roughly equivalent

 Gurobi: Version-to-version improvements:
◦ Gurobi 1.0 -> 2.0: 2.2X
◦ Gurobi 2.0 -> 3.0: 2.9X (6.4X)
◦ Gurobi 3.0 -> 4.0: 1.3X (8.3X)
◦ Gurobi 4.0 -> 5.0: 1.9X (16.2X)

Gurobi Solver:
Version 1.0 Released May 2009

8

Overall MIP Improvement:
1991-Present

 Algorithmic Improvement
◦ Factor 29530 x 16.2: 475,000x speedup
◦ Like investing $1 at 92% annual interest for 20

years.

 Machine Improvement
◦ Factor 2,000x speedup

 Total Improvement
◦ Factor ~109x speedup

9

CPLEX 6.5 – 1997/98:
The Breakthrough

10

Computational Results III: 78 Models
Before CPLEX 6.5 - not solvable

After CPLEX 6.5 - solvable < 1000 seconds

 Cutting planes 33.3x
 Presolve 7.7x
 Variable selection 2.7x
 Node presolve 1.3x
 Heuristics 1.1x
 Dive probing 1.1x

11

Gurobi MIP Solver

 Branch-and-cut algorithm
 Deterministic shared memory parallel
 Key building blocks
◦ Dual simplex
◦ Cut planes
◦ Heuristics for finding integer-feasible solutions
◦ Presolve
◦ Branch variable selection

 Many tricks

Gurobi MIP Solver

13

 Gomory
 Knapsack cover
 Flow cover
 GUB cover
 MIR
 Clique
 Implied bounds
 Zerohalf
 Mod-k
 Network
 Submip

Cutting Planes

14

 Rounding
 RINS
 Solution improvement
 Feasibility pump
 Diving
 Alternative optimal solutions with less

integer infeasibility
 Etc.

Heuristics

15

 Bound strengthening
 Row “analysis”
 Coefficient reduction
 Aggregation
 Clique generation
 Probing
 Etc.

Presolve

16

 Pseudo costs
 Strong branching
 Reliability branching
 Etc.

Variable Selection Technology

17

MIP Tricks

 P2m2p1m1p0n100
◦ A 0-1 knapsack in MIPLIB 2010 infeasible set
◦ 100 binary variables (if slack isn’t counted)
◦ rhs = 80424

 Solutions times (from Mittelmann)
◦ Gurobi 4.6: 0.06 sec
◦ CPLEX: 12.3: 671 sec, 12.4: 2.36 sec
◦ XPRESS 7.2.1: 1961sec

 Our trick
◦ Run branch-and-cut for some number of nodes
◦ Check whether it is a special MIP model, like knapsack
◦ Use virtual time (deterministic) spent on B&C vs.

estimate time of dynamic programming (here
O(n*rhs))

◦ Use dynamic programming to solve it

Knapsacks

19

 Model b_ball (first version of MIPLIB 2010)
Max x12
S.t. x12 – x1 <= 0

………………….
x12 – x11 <= 0
2 x1 - x13 - x14 - x15 - x16 - x17 - x18 - x19 - x20 = 0
…………………
2 x11 - x93 - x94 - x95 - x96 - x97 - x98 - x99 - x100 = 0
x13 + x21 + x29 + x37 + x45 + x53 + x61 + x69 + x77 + x85 + x93 = 5
………………….
x20 + x28 + x36 + x44 + x52 + x60 + x68 + x76 + x84 + x92 + x100 = 5
x1, …, x12 are continuous
x13, …, x100 are binary

Implied Integer, Example

20

 It is easy to see
◦ 2 x1, …, 2 x11 must take integer values
◦ Hence 2 x12 will take integer values
◦ Obj. gcd is 0.5

 The trick of recognizing obj. gcd =0.5
reduces the solution time from 10000+
seconds to 0.01 second

Implied Integer, Example

21

 The trick can be extended to catch many
more cases

 Recognizing implied integer variables for
cuts, bound strengthening, obj. gcd and
etc. is very useful and has significant
impact on overall performance

Implied Integer

22

 Basic principle of branching:
◦ Feasible regions for child nodes after a branch

should be disjoint
 Not always the case
 Simple example – integer

complementarities:
◦ x ≤ 10 b
◦ y ≤ 10 (1-b)
◦ x, y non-negative ints, x ≤ 10, y ≤ 10, b binary
◦ Branch on b: x=y=0 feasible in both children

Disjoint Subtrees

23

 Problem arises when sole purpose of
branching variable is to bound other
variables
◦ Otherwise, b=0/b=1 split is typically sufficient

to make the subtrees disjoint
 Recognizing overlap:
◦ Constraints involving branching variable must be

redundant after branch
◦ Domains of remaining variables must overlap

Recognizing Subtree Overlap

24

 Simplest way to remove overlap:
◦ Modify variable bound in one subtree

 Integer complementarities example:
◦ x ≤ 10 b
◦ y ≤ 10 (1-b)
◦ Branch on b: x=y=0 feasible in both children

 b=0 child: x = 0, 10 ≥ y ≥ 0
 b=1 child: y = 0, 10 ≥ x ≥ 1

Removing Overlap

25

 Overlap present in several models
◦ 35 out of 510 models in our test set

 Performance impact can be huge
◦ Model neos859080 goes from 10000+ seconds

to 0.01s
◦ Makes it tough to quote mean improvements

over a small set
 Median improvement for affected models

is ~1%

Performance Impact

26

Modular Inverse Reduction

 Consider
◦ a x + b y = c
◦ x, y are integer variables
◦ a, b and c are integers, a > 1
◦ Assume gcd(a,b) = 1
 Otherwise a Euclidean reduction is possible

◦ Observation: Then x(mod b) and y(mod a) are constants.
 Reduction
◦ Substitute y = a z + d, where d can be computed by

modular multiplicative inverse
◦ z has a smaller search space than x and y

 General application
◦ Can easily be extended to general “all integer”

constraints.

27

Modular Inverse Reduction

 Simplex example
◦ Min x + y

s.t. 1913 x + 1867 y = 3618894
x, y ≥ 0, are integral variables

 Reduction
◦ Using modular inverse, you get y = 1913 z + 1009,

with z ≥ 0
◦ So 1913 x + 3571571 z = 1735091, or

x + 1867 z = 907
◦ With the reductions, presolve solves it, while

without the reduction it takes 1942 nodes.

28

 Less than 3% models are affected
 Performance impact can be huge
◦ A model from GAMS goes from 10000+ seconds

to 0.05 seconds
◦ Overall impact is positive, but small

Performance Impact

29

 Models
◦ Less than 100 binary variables
◦ Less than 7 knapsacks
◦ Minimize sum of slacks

 MIPLIB
◦ markshare1 and markshare2 in MIPLIB 2003
◦ markshare_5_0 in MIPLIB 2010

 Cornuejols, Dawande 1998
◦ Use basis reduction to solve
◦ Branch-and-cut fails to solve markshare1 and 2

Markshare Models

30

Minimize
s1 + s2 + s3 + s4 + s5

Subject To
C1_: s1 + 17 x1 + 75 x2 + 9 x3 + 87 x4 + 58 x5 + 79 x6 + 69 x7 + 37 x8 + 88 x9 + 75 x10 + 45 x11
+ 35 x12 + 73 x13 + 26 x14 + 39 x15 + 78 x16 + 85 x17 + 58 x18 + 72 x19 + 8 x20 + 46 x21
+ 11 x22 + 55 x23 + 39 x24 + 57 x25 + 96 x26 + 87 x27 + 16 x28 + 27 x29 + 26 x30 + 93 x31
+ 44 x32 + 79 x33 + 12 x34 + 8 x35 + 95 x36 + 2 x37 + 15 x38 + 38 x39 + 15 x40 = 987

C2_: s2 + 53 x1 + 88 x2 + 43 x3 + 26 x4 + 31 x5 + 77 x6 + 10 x7 + 77 x8 + 71 x9 + 22 x10 + 76 x11
+ 41 x12 + 65 x13 + 93 x14 + 50 x15 + 69 x16 + 44 x17 + 61 x18 + 58 x19 + 63 x20 + 46 x21
+ 63 x22 + 13 x23 + 97 x24 + 14 x25 + 45 x26 + 32 x27 + 96 x28 + 36 x29 + 40 x30 + 10 x31
+ 96 x32 + 99 x33 + 58 x34 + 87 x35 + 15 x36 + 91 x37 + 65 x38 + 6 x39 + 96 x40 = 1111

C3_: s3 + 97 x1 + 79 x2 + 81 x3 + 57 x4 + 28 x5 + 97 x6 + 58 x7 + 44 x8 + 37 x9 + 93 x10 + 2 x11
+ 77 x12 + 73 x13 + 59 x14 + 43 x15 + 64 x16 + 75 x17 + 6 x18 + 5 x19 + 78 x20 + 71 x21
+ 12 x22 + 30 x23 + 7 x24 + 69 x25 + 36 x26 + 73 x27 + 19 x28 + 15 x29 + 16 x30 + 84 x31
+ 55 x32 + 32 x33 + 53 x34 + 43 x35 + 21 x36 + 73 x37 + 59 x39 + 48 x40 = 984

C4_: s4 + 94 x1 + 76 x2 + 12 x3 + x4 + 50 x5 + 85 x6 + 86 x7 + 9 x8 + 86 x9 + 79 x10 + 58 x11
+ 10 x12 + 83 x13 + 75 x14 + 91 x15 + 51 x16 + 89 x17 + 97 x18 + 57 x19 + 47 x20 + 42 x21
+ 65 x22 + 88 x23 + 59 x24 + 22 x25 + 100 x26 + 16 x27 + 70 x28 + 70 x29 + 99 x30 + 65 x31
+ 66 x32 + 85 x33 + 68 x34 + 97 x35 + 33 x36 + 80 x37 + 16 x38 + 87 x39 + 60 x40 = 1262

C5_: s5 + 42 x1 + 99 x2 + 87 x3 + 46 x4 + 24 x5 + 85 x6 + 85 x7 + 74 x8 + 13 x9 + 48 x10 + 79 x11
+ 50 x12 + 57 x13 + 44 x14 + 3 x15 + 33 x16 + 43 x17 + 58 x18 + 8 x19 + 68 x20 + 59 x21
+ 23 x22 + 75 x23 + 96 x24 + 87 x25 + 7 x26 + 54 x27 + 38 x28 + 72 x30 + 5 x31 + 2 x32 + 76 x33
+ 63 x34 + 94 x35 + 55 x36 + 41 x37 + 39 x38 + 19 x39 + 31 x40 = 991

Markshare Model: Markshare_5_0

31

 Simple example
◦ 6 x1 + 7 x2 + 7 x3 +…+7 x29 + 8 x30 + s1 =29

8 x1 + 7 x2 + 7 x3 +…+7 x29 + 6 x30 + s2 =29
◦ Let fk(u) = first i, ∑{1≤j≤i} akj xj = u is feasible
 f1(6) = 1, f1(13) = 2, f1(14) = 3, f1(20) = 3, …, f1(29) =30
 f2(8) = 1, f2(15) = 2, f2(14) = 3, f2(22) = 3, f(29) = 4, …, f2(23) =

inf
◦ Try s1 = 0, s2 = 0
 Backwards, start with x30.
 If x30 = 0, then rhs’s remain 29, but f1(29) =30, so the first

constraint is infeasible
 If x30 = 1, then for the second constraint, rhs – 6 = 23, but

f2(23) =inf, so it is infeasible
 It is infeasible for s1 = 0, s2 = 0

◦ Cost to compute fk(u) is O(rhs*n)

Markshare Model

32

 Dynamic programming plus enumerating
◦ Combine 2 to 3 constraints, say 2, and compute

f(u1, u2) = first i, ∑{1≤j≤i} akj xj = uk is feasible
Operations O(n×b1×b2)

◦ Try ∑sk= 0; ∑sk = 1, sk = 1, k = 0, 1,…
◦ Backward Looping over xj, j = n, …, 1
 At j=i, let

xj = vj, for j = n, …, i
uk = bk - ∑{i≤j≤n} akj vj

 If f(u1, u2) ≥ i, xj = vj, for j = n, …, i, is infeasible, no
need to continue to enumerate xj, for j < i

Markshare Models: Our Trick

33

 Trick is implemented in Gurobi 4.5
 Solution times on i7-920, threads=4

Gurobi 4.0 Gurobi 4.6
Markshare_5_0 1347s 0.74s
Markshare1 >7200s 243s
Markshare2 >7200s 5958s

Markshare Models: Computation

34

 MIP tricks
◦ A lot of them are easy to find by just staring at

models and often are also easy to apply
◦ Many of them are quite effectively on a small

fraction of models
◦ An interesting challenge for combinatorial

mathematicians

 Finding MIP tricks is always fun!

Conclusions

35

Thank You

