
1000X MIP Tricks
Bob Bixby

12 June 2012, Bill Cunningham’s 65th



Reminiscences on Matroids
A Characterization of Ternary 

Matroids



3© 2010 Gurobi Optimization



Outline
 Introduction
◦ Progress in Solving Mixed-Integer Programs

 MIP tricks
◦ Knapsack
◦ Implied integer
◦ Disjoint subtrees
◦ Modular inverse reduction
◦ Markshare
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A mixed‐integer program (MIP) is an optimization 
problem of the form
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Computational Progress in 
Mixed-Integer Programming:

1991-Present
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CPLEX Version-to-Version Pairs

V-V Speedup Cumulative Speedup

Mature Dual 
Simplex: 1994

Mined Theoretical
Backlog: 1998 29530x

Speedups 1991‐2007
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 Public benchmarks showed that CPLEX 11.0 
and Gurobi 1.0 were roughly equivalent

 Gurobi:  Version-to-version improvements:
◦ Gurobi 1.0 -> 2.0: 2.2X
◦ Gurobi 2.0 -> 3.0: 2.9X (6.4X)
◦ Gurobi 3.0 -> 4.0: 1.3X (8.3X)
◦ Gurobi 4.0 -> 5.0: 1.9X (16.2X)

Gurobi Solver:
Version 1.0 Released May 2009

8



Overall MIP Improvement:  
1991-Present

 Algorithmic Improvement
◦ Factor 29530 x 16.2: 475,000x speedup
◦ Like investing $1 at 92% annual interest for 20 

years.

 Machine Improvement
◦ Factor 2,000x speedup

 Total Improvement
◦ Factor ~109x speedup
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CPLEX 6.5 – 1997/98:
The Breakthrough  
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Computational Results III: 78 Models
Before CPLEX 6.5 - not solvable

After CPLEX 6.5 - solvable < 1000 seconds

 Cutting planes          33.3x
 Presolve 7.7x
 Variable selection 2.7x
 Node presolve 1.3x
 Heuristics 1.1x
 Dive probing 1.1x
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Gurobi MIP Solver



 Branch-and-cut algorithm
 Deterministic shared memory parallel
 Key building blocks
◦ Dual simplex
◦ Cut planes
◦ Heuristics for finding integer-feasible solutions
◦ Presolve
◦ Branch variable selection

 Many tricks

Gurobi MIP Solver

13



 Gomory
 Knapsack cover
 Flow cover
 GUB cover
 MIR
 Clique
 Implied bounds
 Zerohalf
 Mod-k 
 Network
 Submip

Cutting Planes
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 Rounding
 RINS
 Solution improvement
 Feasibility pump
 Diving
 Alternative optimal solutions with less 

integer infeasibility
 Etc.

Heuristics
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 Bound strengthening
 Row “analysis”
 Coefficient reduction
 Aggregation
 Clique generation 
 Probing
 Etc.

Presolve
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 Pseudo costs
 Strong branching
 Reliability branching
 Etc.

Variable Selection Technology
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MIP Tricks



 P2m2p1m1p0n100 
◦ A 0-1 knapsack in MIPLIB 2010 infeasible set
◦ 100 binary variables (if slack isn’t counted)
◦ rhs = 80424

 Solutions times (from Mittelmann)
◦ Gurobi 4.6:  0.06 sec
◦ CPLEX: 12.3:  671 sec, 12.4: 2.36 sec
◦ XPRESS 7.2.1:  1961sec

 Our trick
◦ Run branch-and-cut for some number of nodes
◦ Check whether it is a special MIP model, like knapsack
◦ Use virtual time (deterministic) spent on B&C vs. 

estimate time of dynamic programming (here 
O(n*rhs))

◦ Use dynamic programming to solve it

Knapsacks
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 Model b_ball (first version of MIPLIB 2010)
Max   x12
S.t.     x12 – x1 <= 0

………………….
x12 – x11 <= 0
2 x1 - x13 - x14 - x15 - x16 - x17 - x18 - x19 - x20 = 0
…………………
2 x11 - x93 - x94 - x95 - x96 - x97 - x98 - x99 - x100 = 0
x13 + x21 + x29 + x37 + x45 + x53 + x61 + x69 + x77 + x85 + x93 = 5
………………….
x20 + x28 + x36 + x44 + x52 + x60 + x68 + x76 + x84 + x92 + x100 = 5
x1, …, x12 are continuous
x13, …, x100 are binary

Implied Integer, Example
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 It is easy to see
◦ 2 x1, …, 2 x11 must take integer values
◦ Hence 2 x12 will take integer values
◦ Obj. gcd is 0.5

 The trick of recognizing obj. gcd =0.5 
reduces the solution time from 10000+ 
seconds to 0.01 second

Implied Integer, Example
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 The trick can be extended to catch many 
more cases

 Recognizing implied integer variables for 
cuts, bound strengthening, obj. gcd and 
etc. is very useful and has significant 
impact on overall performance

Implied Integer
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 Basic principle of branching:
◦ Feasible regions for child nodes after a branch 

should be disjoint
 Not always the case
 Simple example – integer 

complementarities:
◦ x ≤ 10 b
◦ y ≤ 10 (1-b)
◦ x, y non-negative ints, x ≤ 10, y ≤ 10, b binary
◦ Branch on b: x=y=0 feasible in both children

Disjoint Subtrees
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 Problem arises when sole purpose of 
branching variable is to bound other 
variables
◦ Otherwise, b=0/b=1 split is typically sufficient 

to make the subtrees disjoint
 Recognizing overlap:
◦ Constraints involving branching variable must be 

redundant after branch
◦ Domains of remaining variables must overlap

Recognizing Subtree Overlap
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 Simplest way to remove overlap:
◦ Modify variable bound in one subtree

 Integer complementarities example:
◦ x ≤ 10 b
◦ y ≤ 10 (1-b)
◦ Branch on b: x=y=0 feasible in both children

 b=0 child: x = 0, 10 ≥ y ≥ 0
 b=1 child: y = 0, 10 ≥ x ≥ 1

Removing Overlap
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 Overlap present in several models
◦ 35 out of 510 models in our test set

 Performance impact can be huge
◦ Model neos859080 goes from 10000+ seconds 

to 0.01s
◦ Makes it tough to quote mean improvements 

over a small set
 Median improvement for affected models 

is ~1%

Performance Impact
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Modular Inverse Reduction

 Consider
◦ a x + b y = c
◦ x, y are integer variables
◦ a, b and c are integers, a > 1
◦ Assume gcd(a,b) = 1
 Otherwise a Euclidean reduction is possible

◦ Observation:  Then x(mod b) and y(mod a) are constants.
 Reduction
◦ Substitute y = a z + d, where d can be computed by 

modular multiplicative inverse
◦ z has a smaller search space than x and y

 General application
◦ Can easily be extended to general “all integer” 

constraints.
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Modular Inverse Reduction

 Simplex example
◦ Min x + y

s.t. 1913 x + 1867 y = 3618894
x, y ≥ 0, are integral variables

 Reduction
◦ Using modular inverse, you get y = 1913 z + 1009, 

with z ≥ 0
◦ So 1913 x + 3571571 z = 1735091, or

x +       1867 z =  907
◦ With the reductions, presolve solves it, while 

without the reduction it takes 1942 nodes.
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 Less than 3% models are affected
 Performance impact can be huge
◦ A model from GAMS goes from 10000+ seconds 

to 0.05 seconds
◦ Overall impact is positive, but small

Performance Impact
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 Models
◦ Less than 100 binary variables
◦ Less than 7 knapsacks
◦ Minimize sum of slacks

 MIPLIB
◦ markshare1 and markshare2 in MIPLIB 2003
◦ markshare_5_0 in MIPLIB 2010

 Cornuejols, Dawande 1998
◦ Use basis reduction to solve 
◦ Branch-and-cut fails to solve markshare1 and 2

Markshare Models
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Minimize
s1 + s2 + s3 + s4 + s5

Subject To
C1_: s1 + 17 x1 + 75 x2 + 9 x3 + 87 x4 + 58 x5 + 79 x6 + 69 x7 + 37 x8  + 88 x9 + 75 x10 + 45 x11
+ 35 x12  + 73 x13 + 26 x14 + 39 x15 + 78 x16  + 85 x17 + 58 x18 + 72 x19 + 8 x20 + 46 x21 
+ 11 x22 + 55 x23 + 39 x24  + 57 x25 + 96 x26 + 87 x27 + 16 x28 + 27 x29 + 26 x30 + 93 x31 
+ 44 x32  + 79 x33 + 12 x34 + 8 x35 + 95 x36   + 2 x37 + 15 x38 + 38 x39 + 15 x40   = 987

C2_: s2 + 53 x1 + 88 x2 + 43 x3 + 26 x4 + 31 x5 + 77 x6 + 10 x7 + 77 x8 + 71 x9 + 22 x10 + 76 x11 
+ 41 x12 + 65 x13 + 93 x14 + 50 x15 + 69 x16 + 44 x17 + 61 x18 + 58 x19 + 63 x20 + 46 x21 
+ 63 x22 + 13 x23 + 97 x24 + 14 x25 + 45 x26 + 32 x27 + 96 x28 + 36 x29 + 40 x30 + 10 x31 
+ 96 x32 + 99 x33 + 58 x34 + 87 x35 + 15 x36 + 91 x37 + 65 x38 + 6 x39 + 96 x40   = 1111

C3_: s3 + 97 x1 + 79 x2 + 81 x3 + 57 x4 + 28 x5 + 97 x6 + 58 x7 + 44 x8 + 37 x9 + 93 x10 + 2 x11 
+ 77 x12 + 73 x13 + 59 x14 + 43 x15 + 64 x16 + 75 x17 + 6 x18 + 5 x19 + 78 x20 + 71 x21 
+ 12 x22 + 30 x23 + 7 x24 + 69 x25 + 36 x26 + 73 x27 + 19 x28 + 15 x29 + 16 x30 + 84 x31 
+ 55 x32 + 32 x33 + 53 x34 + 43 x35 + 21 x36 + 73 x37 + 59 x39 + 48 x40 = 984

C4_: s4 + 94 x1 + 76 x2 + 12 x3 + x4 + 50 x5 + 85 x6 + 86 x7 + 9 x8 + 86 x9 + 79 x10 + 58 x11 
+ 10 x12 + 83 x13 + 75 x14 + 91 x15 + 51 x16 + 89 x17 + 97 x18 + 57 x19 + 47 x20 + 42 x21 
+ 65 x22 + 88 x23 + 59 x24 + 22 x25 + 100 x26 + 16 x27 + 70 x28 + 70 x29 + 99 x30 + 65 x31 
+ 66 x32 + 85 x33 + 68 x34 + 97 x35 + 33 x36 + 80 x37 + 16 x38 + 87 x39 + 60 x40   = 1262

C5_: s5 + 42 x1 + 99 x2 + 87 x3 + 46 x4 + 24 x5 + 85 x6 + 85 x7 + 74 x8 + 13 x9 + 48 x10 + 79 x11 
+ 50 x12 + 57 x13 + 44 x14 + 3 x15 + 33 x16 + 43 x17 + 58 x18 + 8 x19 + 68 x20 + 59 x21 
+ 23 x22 + 75 x23 + 96 x24 + 87 x25 + 7 x26 + 54 x27 + 38 x28 + 72 x30 + 5 x31 + 2 x32 + 76 x33 
+ 63 x34 + 94 x35 + 55 x36 + 41 x37 + 39 x38 + 19 x39 + 31 x40 = 991

Markshare Model: Markshare_5_0
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 Simple example
◦ 6 x1 + 7 x2 + 7 x3 +…+7 x29 + 8 x30 + s1 =29 

8 x1 + 7 x2 + 7 x3 +…+7 x29 + 6 x30 + s2 =29
◦ Let fk(u) = first i, ∑{1≤j≤i} akj xj = u is feasible
 f1(6) = 1, f1(13) = 2, f1(14) = 3, f1(20) = 3, …, f1(29) =30
 f2(8) = 1, f2(15) = 2, f2(14) = 3, f2(22) = 3, f(29) = 4, …, f2(23) = 

inf
◦ Try s1 = 0, s2 = 0
 Backwards, start with x30. 
 If x30 = 0, then rhs’s remain 29, but f1(29) =30, so the first 

constraint is infeasible
 If x30 = 1, then for the second constraint, rhs – 6 = 23, but 

f2(23) =inf, so it is infeasible
 It is infeasible for s1 = 0, s2 = 0

◦ Cost to compute fk(u) is O(rhs*n)

Markshare Model
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 Dynamic programming plus enumerating
◦ Combine 2 to 3 constraints, say 2, and compute 

f(u1, u2) = first i, ∑{1≤j≤i} akj xj = uk is feasible
Operations O(n×b1×b2)

◦ Try ∑sk= 0; ∑sk = 1, sk = 1, k = 0, 1,…
◦ Backward Looping over xj, j = n, …, 1
 At j=i, let 

xj = vj, for j = n, …, i
uk = bk - ∑{i≤j≤n} akj vj

 If f(u1, u2) ≥ i, xj = vj, for j = n, …, i, is infeasible, no 
need to continue to enumerate xj, for j < i

Markshare Models: Our Trick
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 Trick is implemented in Gurobi 4.5
 Solution times on i7-920, threads=4

Gurobi 4.0      Gurobi 4.6
Markshare_5_0 1347s 0.74s
Markshare1 >7200s 243s
Markshare2 >7200s 5958s

Markshare Models: Computation
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 MIP tricks
◦ A lot of them are easy to find by just staring at 

models and often are also easy to apply
◦ Many of them are quite effectively on a small 

fraction of models
◦ An interesting challenge for combinatorial 

mathematicians

 Finding MIP tricks is always fun!

Conclusions
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