Pairs of Disjoint Cycles

Sergey Norin McGill

Based on joint work with Hein Van der Holst (Georgia State) Robin Thomas (Georgia Tech)

Conference in Honour of Bill Cunningham's 65th Birthday June 13th, 2012

Two vertex-disjoint cycles

<u>Theorem(Lovasz,1965)</u>: A graph G with minimum degree 3 contains no two vertex-disjoint cycles if and only if

- \circ either G v is a forest for some vertex v, or
- $\circ~$ G is a wheel, or
- \circ G is K₅, or
- \circ G {v,u,w} is edgeless for some triple of vertices v,u,w.

Two vertex-disjoint odd cycles

<u>Theorem(Slilaty, 2003</u>): If a graph G contains no two vertex-disjoint odd cycles then

- \circ either G v is bipartite for some vertex v of G, or
- \circ G is K₅, or
- G can be embedded in a projective plane with all cycles even, or
- $\circ~$ G can be decomposed into graphs belonging to the above three classes.

<u>Theorem(Robertson, Seymour, Thomas, 1995)</u>: A graph G does allow a *linkless embedding* in space if and only if G has no minor isomorphic a member of *the Petersen family*.

Petersen family

Theorem(van der Holst, 2003): There exists a polynomial time algorithm whether a given embedding has two linked cycles.

Let *G* be an undirected graph. Orient its edges arbitrarily. Given an oriented edge *e* we denote by -*e* an edge obtained from *e* by reversing the orientation. Let $\mathcal{E}(G)$ denote a set of linear combinations of oriented edges of *G* with integer coefficients. (It has the structure of a *Z*-module.)

Let Γ be a group and let $F : \mathcal{E}(G) \times \mathcal{E}(G) \to \Gamma$ be a bilinear map. We are interested in an algorithm for testing whether there exist two vertex disjoint cycles C,D in G such that

$$F(C,D) := \sum_{e \in C} \sum_{f \in D} F(e,f) \neq 0.$$

Let *G* be an undirected graph. Orient its edges arbitrarily. Given an oriented edge *e* we denote by *-e* an edge obtained from *e* by reversing the orientation. Let $\mathcal{E}(G)$ denote a set of linear combinations of oriented edges of *G* with integer coefficients. (It has the structure of a *Z*-module.)

Let Γ be a group and let $F: \mathcal{E}(G) \times \mathcal{E}(G) \to \Gamma$ be a bilinear map. We are interested in an algorithm for testing whether there exist two vertex disjoint cycles C,D in G such that

$$F(C,D) := \sum_{e \in C} \sum_{f \in D} F(e,f) \neq 0.$$

Examples:

- 1) $\underline{\Gamma} = \mathbf{Z}, F \equiv \mathbf{1}.$ C and D are disjoint cycles.
- 2) $\underline{\Gamma} = \mathbf{Z}_2, F \equiv 1$. *C* and *D* are disjoint odd cycles.
- 3) $\underline{\Gamma} = \mathbf{Z}, F(s_1t_1, s_2t_2) = 1, F \equiv 0$, otherwise. *C* and *D* correspond to a pair of paths one joining s_1 to t_1 and another s_2 to t_2 .

Let $F: \mathcal{F}(G) \rightarrow \Gamma$ be a linear map.

Question: Does there exist a cycle *C* in *G* such that $F(C) := \sum_{e \in C} F(e) \neq 0$?

Let C(G) denote the cycle space : the span of the characteristic vectors of cycles.

Question': Is $F \equiv 0$ on C(G)?

C(G) is well understood:

- It has dimension |E(G)| |V(G)| + 1 if G is connected.
- One can efficiently find a basis.
- It is determined by constraints:

 $\sum_{e \in \partial(v)} L(e) = 0 \text{ for every } v \in V(G), \text{ where } \partial(v) \text{ denotes the set of edges going out of } v.$

2-circuits and 2-cycles

For cycles C and D we can define a map called 2-circuit

$$X_{C,D} \colon E(G) \times E(G) \to Z$$

by

$$X_{C,D}(e,f) = \begin{cases} 1, e \in C, f \in D, \text{ or } -e \in C, -f \in D \\ -1, -e \in C, f \in D, \text{ or } e \in C, -f \in D \\ 0, \text{ otherwise.} \end{cases}$$

For cycles C and D we can define a map called 2-circuit

$$X_{C,D}: E(G) \times E(G) \to Z$$

by

$$X_{C,D}(e,f) = \begin{cases} 1, e \in C, f \in D, \text{ or } -e \in C, -f \in D \\ -1, -e \in C, f \in D, \text{ or } e \in C, -f \in D \\ 0, \text{ otherwise.} \end{cases}$$

Let $C_2(G)$ denote the span of 2-circuits. (It is a subspace of the space of $E(G) \times E(G)$ matrices.) Our bilinear form F can be considered as a linear map on this matrix space.

$$F(M) := \sum_{e,f \in E(G)} F(e,f)M(e,f). \text{ Then } F(X_{c,d}) = F(C,D).$$

It is enough to test if F is identically zero on $C_2(G)$.

2-circuits and 2-cycles

A bilinear map L: $E(G) \times E(G) \rightarrow Z$ is a 2-cycle if

1) L(e, f) = 0 whenever e and f share a vertex;

2)
$$\sum_{e \in \partial(v)} L(e, f) = 0$$
 for every $v \in V(G), f \in E(G)$,
where $\partial(v)$ denotes the set of edges going out of v .

3)
$$\sum_{e \in \partial(v)} L(f,e) = 0$$
 for every $v \in V(G), f \in E(G)$.

Let $\mathcal{L}_2(G)$ denote the span of 2-cycles.

Is it true that $\mathcal{L}_2(G) = C_2(G)$?

Kuratowski 2-cycles

Let $\mathcal{L}_2(G)$ denote the span of 2-cycles.

Is it true that $\mathcal{L}_2(G) = C_2(G)$?

Let $G = K_5$. $V(G) = \{1, 2, 3, 4, 5\}$ and let L(ij, kl) = sgn(i, j, k, l, m). (E.g. L(12, 35) = sgn(12354) = -1) L is the unique (up to rescaling) 2-cycle on K_5 .

(sgn(12,34) + sgn(12,35) = 0)

There also exists an essentially unique 2-cycle on $K_{3,3}$.

Bilinear forms corresponding to these 2-cycles on subdivisions of K_5 and $K_{3,3}$ in general graphs are called Kuratowski 2-cycles.

<u>Theorem(Van der Holst, N., Thomas)</u>: In a Kuratowski connected graph the space of 2-cycles $\mathcal{L}_2(G)$ has a basis consisting of 2-circuits and at most one Kuratowski 2-cycle. Moreover, one can find such a basis in polynomial time. <u>Theorem(Van der Holst, N., Thomas)</u>: In a Kuratowski connected graph the space of 2-cycles $\mathcal{L}_2(G)$ has a basis consisting of 2-circuits and at most one Kuratowski 2-cycle. Moreover, one can find such a basis in polynomial time.

Kuratowski connected: No two subdivisions of K_5 and/or $K_{3,3}$ are separated by an ≤ 3 -separation

Regular projection: displays an embedding in \mathbb{R}^3 as a drawing in the plane with crossings where for each crossing we record which edge is going "over" and which is going "under".

Regular projection: displays an embedding in \mathbb{R}^3 as a drawing in the plane with crossings where for each crossing we record which edge is going "over" and which is going "under".

Bilinear form:

Regular projection: displays an embedding in \mathbb{R}^3 as a drawing in the plane with crossings where for each crossing we record which edge is going "over" and which is going "under".

Bilinear form:

$$F(C,D) = 1-1 = 0$$

Regular projection: displays an embedding in \mathbb{R}^3 as a drawing in the plane with crossings where for each crossing we record which edge is going "over" and which is going "under".

Bilinear form:

Linkless embeddings and Kuratowski 2-cycles

Regular projection: displays an embedding in \mathbb{R}^3 as a drawing in the plane with crossings where for each crossing we record which edge is going "over" and which is going "under".

Suppose *G* admits a linkless embedding. Let *F* be the linking bilinear form in a regular projection of this embedding. Then *F* is identically zero on $C_2(G)$ (F(C,D) = 0 for any two cycles.) But any drawing of K_5 or $K_{3,3}$ contains an odd number of crossings between independent edges, so *F* is non-zero on any Kuratowski 2-cycle. Thus $L_2(G) \neq C_2(G)$.

Linkless embeddings and Kuratowski 2-cycles

Regular projection: displays an embedding in \mathbb{R}^3 as a drawing in the plane with crossings where for each crossing we record which edge is going "over" and which is going "under".

Suppose *G* admits a linkless embedding. Let *F* be the linking bilinear form in a regular projection of this embedding. Then *F* is identically zero on $C_2(G)$ (F(C,D) = 0 for any two cycles.) But any drawing of K_5 or $K_{3,3}$ contains an odd number of crossings between independent edges, so *F* is non-zero on any Kuratowski 2-cycle. Thus $L_2(G) \neq C_2(G)$.

<u>Theorem</u>: Let *G* be Kuratowski-connected. Then $\mathcal{L}_2(G) = C_2(G)$ if and only if *G* is planar or *G* does not admit a linkless embedding in \mathbb{R}^3 .

Open problem

<u>Pfaffian orientations</u>: It is #P-hard to compute the number of perfect matchings in a graph. But if a graph admits a Pfaffian orientation then one can compute it efficiently.

<u>Theorem(N.)</u>: A graph has a Pfaffian orientation if and only if it admits a drawing in the plane with crossings in which every perfect matching crosses itself even number of times.

Can we test if a drawing has this property?

Open problem

<u>Pfaffian orientations</u>: It is #P-hard to compute the number of perfect matchings in a graph. But if a graph admits a Pfaffian orientation then one can compute it efficiently.

<u>Theorem(N.)</u>: A graph has a Pfaffian orientation if and only if it admits a drawing in the plane with crossings in which every perfect matching crosses itself even number of times.

Can we test if a drawing has this property?

If $F : E(G) \times E(G) \rightarrow \mathbb{Z}_2$ is the crossing bilinear form (F(e, f)=1) if and only if e and f cross) then we want to determine whether F(M,M)=0 for every perfect matching M.

It is enough to find a basis of the span of $E(G) \ge E(G)$ -matrices X_M , where $X_M(e, f)=1$ if and only if $e, f \in M$.

Can this basis be found in polynomial time?

Thank you!