Nonorientable regular maps over linear fractional groups

M. Maˇcaj, Comenius University, Bratislava, Slovakia joint work with G. Jones and J. Širáň

> Fields Institute, Toronto 27th October 2011

Maps

A map M is a 2-cell embedding of a connected graph Γ into a compact surface S.

Map M is of type (k, m) if every vertex has valency k and every face has size m. Type (k, m) is hyperbolic if $1/k + 1/m < 1/2$.

As surfaces are not oriented, basic objects are flags (i.e., incident vertex-edge-face triples).

An automorphism ψ of Γ which can be extended into a selfhomeomorphism of S is called a *map automorphism*.

A map M is called *regular* if it acts regularly on the set of flags.

Existence of regular maps

Theorem. For any hyperbolic pair (k, m) there exist infinitely many regular oriented maps of type (k,m) .

Theorem. For any hyperbolic pair (k, m) there exist infinitely many regular maps of type (k,m) .

Problem 1 Show that there exist infinitely many nonorientable regular maps of type (k, m) .

Problem 2 Find infinitely many solutions of Problem 1.

Nonorientable regular maps

Theorem. Regular maps of type (k, m) on nonorientable surfaces are in one-to-one correspondence with groups having presentation

$$
G = \langle r, s; \ r^k = s^m = (rs)^2 = \dots = 1 \rangle \tag{1}
$$

such that m and k are true orders of r and s , respectively, and there exists an inner automorphism ψ of G inverting both r and s.

Remark 1 Without the automorphism ψ we have regular oriented maps.

Remark 2 If we allow ψ to be an arbitrary automorphism then we obtain regular maps.

Some notations

- K an algebraic closure of \mathbb{Z}_p , p coprime to $2km$,
- ξ and η primitive 2kth and 2mth root of unity in K,

•
$$
D = -(\xi^2 + \xi^{-2} + \eta^2 + \eta^{-2}),
$$

•
$$
R = \pm \begin{pmatrix} \xi & 0 \\ 0 & \xi^{-1} \end{pmatrix}
$$
 and
$$
S = \pm (\xi + \xi^{-1}) \begin{pmatrix} (\eta^{-1} - \eta)\xi^{-1} & D \\ 1 & (\eta - \eta^{-1})\xi \end{pmatrix}
$$
 - elements of $PSL(2, K)$,

• $G(\xi, \eta)$ – subgroup of $PSL(2, K)$ generated by R and S.

Previous results

Proposition. Sah 1969

- 1. Orders of R, S and RS in $PSL(2, K)$ are k, m and 2, respectively.
- 2. Every subgroup G of $PSL(2, K)$ with presentation (1) is conjugate to some $G(\xi, \eta)$.

Previous results

Proposition. Conder, Potočnik, Širáň 2008 Let $D\neq 0$. Then 1) There exists an integer $e = e(k, m, p)$ such that $G(\eta, \xi)$ is isomorphic either to $PSL(2, p^e)$ or $PGL(2, p^e/2)$ and which case occurs depends only on k , m , and p . 2) Whether $G(\eta,\xi)$ has an inner automorphism ψ inverting both R and S depends only on k, m, p, and D. In particular such ψ

exists whenever $G(\eta,\xi) \equiv PGL(2,p^{e/2})$.

Theorem. Siráň 2010 If 2 $|km$ then there exist infinitely many nonorientable regular maps of type (k, m) over linear fractional groups.

Previous results

Proposition. Let both k and m be odd. Then

1) D never equals 0.

2) $G(\xi, \eta)$ is always isomorphic to $PSL(2, p^e)$.

3) $G(\xi, \eta)$ has an involutory inner automorphism inverting both R and S iff D is a square in $GF(p^e)$.

Algebraic numbers

Let F be a number field of degree $[F: \mathbb{Q}] = n$, let O be the ring of algebraic integers in F, and let σ_1 , σ_2 ,..., σ_n be all injective homomorphisms $F \to \mathbb{C}$. Recall that the *norm* of $c \in F$ is defined by $N(c) = \prod \sigma_i(c)$.

Lemma. For any $o \in O$ we have $N(o) \in \mathbb{Z}$. Moreover $N(o) = \pm 1$ iff o is a unit in O .

Lemma. For any $o \in O$ and prime p there exists a maximal ideal I containing o with $|O/I| = p^d$ for some d iff $p|N(o)$.

Computing in C

Let (k, m) be a hyperbolic pair with km odd. Let α and β be primitive $2k$ -th and $2m$ -th roots of unity in \mathbb{C} , respectively, let $A = -(\alpha^2 + \alpha^{-2} + \beta^2 + \beta^{-2})$ and let O be the ring of algebraic integers of $\mathbb{Q}(\alpha,\beta)$.

Lemma. If $\alpha \neq \beta$ then A is a unit in O and if $\alpha = \beta$ then $|N(A)|$ is a power of two. The number $A - n^2$ is not a unit in O for any integer $n > 2$.

Back to finite fields

For any $n > 2$ let $I = I_n$ be a maximal ideal in O containing $A-n^2$, let $p=p_n$ be the characteristic of the field O/I and let $\xi = \alpha + I$, $\eta = \beta + I$ and $D = A + I$. **Lemma.** If n is coprime to $N(A)$ then $D = -(\xi^2 + \xi^{-2} + \eta^2 + \eta^{-2})$ is a nonzero square in \mathbb{Z}_p and p is coprime to n. Moreover, if p is coprime to $2km$ then ξ and η are primitive $2mth$ and $2kth$ roots of unity in O/I .

Main result

Theorem. For any hyperbolic pair (k, m) there exists infinitely many nonorientable regular maps over linear fractional groups.

Proof. It suffices to assume that both k and m are odd. Let $n_1 = 2km$ and let $n_j = 2km \prod_{i=1}^{j-1} p_i$ for $j > 1$. By the previous lemma all p_j 's are distinct and there exists a nonorientable regular map over a linear fractional group in characteristic p_j for any j.

Open problems

Problem 3 For a given p determine all pairs (k, m) such that there exists a nonorientable regular map of type (k, m) over a linear fractional group in characteristic p.

Problem 4 For a given hyperbolic pair (k, m) determine all p's such that there exists a nonorientable regular map of type (k, m) over ^a linear fractional group in characteristic p. **Lemma.** If both k and m are powers of primes congruent to 3 mod 4 and p is congruent to 1 mod 8 then there exists a nonorientable regular map of type (k, m) over a linear fractional group in characteristic p.

Thank You