Nonorientable regular maps over linear fractional groups

M. Mačaj, Comenius University, Bratislava, Slovakia joint work with G. Jones and J. Širáň

Fields Institute, Toronto 27th October 2011

Maps

A map \mathcal{M} is a 2-cell embedding of a connected graph Γ into a compact surface S.

Map \mathcal{M} is of type (k, m) if every vertex has valency k and every face has size m. Type (k, m) is hyperbolic if 1/k + 1/m < 1/2.

As surfaces are *not oriented*, basic objects are *flags* (i.e., incident vertex-edge-face triples).

An automorphism ψ of Γ which can be extended into a selfhomeomorphism of S is called a *map automorphism*.

A map \mathcal{M} is called *regular* if it acts regularly on the set of flags.

Existence of regular maps

Theorem. For any hyperbolic pair (k,m) there exist infinitely many regular oriented maps of type (k,m).

Theorem. For any hyperbolic pair (k,m) there exist infinitely many regular maps of type (k,m).

Problem 1 Show that there exist infinitely many *nonorientable* regular maps of type (k, m).

Problem 2 Find infinitely many solutions of Problem 1.

Nonorientable regular maps

Theorem. Regular maps of type (k, m) on nonorientable surfaces are in one-to-one correspondence with groups having presentation

$$G = \langle r, s; r^k = s^m = (rs)^2 = \dots = 1 \rangle$$
(1)

such that m and k are true orders of r and s, respectively, and there exists an inner automorphism ψ of G inverting both r and s.

Remark 1 Without the automorphism ψ we have regular oriented maps.

Remark 2 If we allow ψ to be an arbitrary automorphism then we obtain regular maps.

Some notations

- K an algebraic closure of \mathbb{Z}_p , p coprime to 2km,
- ξ and η primitive 2kth and 2mth root of unity in K,

•
$$D = -(\xi^2 + \xi^{-2} + \eta^2 + \eta^{-2}),$$

•
$$R = \pm \begin{pmatrix} \xi & 0 \\ 0 & \xi^{-1} \end{pmatrix}$$
 and $S = \pm (\xi + \xi^{-1}) \begin{pmatrix} (\eta^{-1} - \eta)\xi^{-1} & D \\ 1 & (\eta - \eta^{-1})\xi \end{pmatrix}$
- elements of $PSL(2, K)$,

• $G(\xi, \eta)$ – subgroup of PSL(2, K) generated by R and S.

Previous results

Proposition. Sah 1969

- 1. Orders of R, S and RS in PSL(2, K) are k, m and 2, respectively.
- 2. Every subgroup G of PSL(2, K) with presentation (1) is conjugate to some $G(\xi, \eta)$.

Previous results

Proposition. Conder, Potočnik, Širáň 2008 Let $D \neq 0$. Then 1) There exists an integer e = e(k, m, p) such that $G(\eta, \xi)$ is isomorphic either to $PSL(2, p^e)$ or $PGL(2, p^{e/2})$ and which case occurs depends only on k, m, and p. 2) Whether $G(\eta, \xi)$ has an inner automorphism ψ inverting both R and S depends only on k, m, p, and D. In particular such ψ

exists whenever $G(\eta,\xi) \equiv PGL(2,p^{e/2})$.

Theorem. Širáň 2010 If 2|km then there exist infinitely many nonorientable regular maps of type (k,m) over linear fractional groups.

Previous results

Proposition. Let both k and m be odd. Then

1) D never equals 0.

2) $G(\xi, \eta)$ is always isomorphic to $PSL(2, p^e)$.

3) $G(\xi, \eta)$ has an involutory inner automorphism inverting both R and S iff D is a square in $GF(p^e)$.

Algebraic numbers

Let F be a number field of degree $[F : \mathbb{Q}] = n$, let O be the ring of algebraic integers in F, and let $\sigma_1, \sigma_2, \ldots, \sigma_n$ be all injective homomorphisms $F \to \mathbb{C}$. Recall that the *norm* of $c \in F$ is defined by $N(c) = \prod \sigma_i(c)$.

Lemma. For any $o \in O$ we have $N(o) \in \mathbb{Z}$. Moreover $N(o) = \pm 1$ iff o is a unit in O.

Lemma. For any $o \in O$ and prime p there exists a maximal ideal I containing o with $|O/I| = p^d$ for some d iff p|N(o).

Computing in $\mathbb C$

Let (k,m) be a hyperbolic pair with km odd. Let α and β be primitive 2k-th and 2m-th roots of unity in \mathbb{C} , respectively, let $A = -(\alpha^2 + \alpha^{-2} + \beta^2 + \beta^{-2})$ and let O be the ring of algebraic integers of $\mathbb{Q}(\alpha, \beta)$.

Lemma. If $\alpha \neq \beta$ then A is a unit in O and if $\alpha = \beta$ then |N(A)| is a power of two. The number $A - n^2$ is not a unit in O for any integer n > 2.

Back to finite fields

For any n > 2 let $I = I_n$ be a maximal ideal in O containing $A - n^2$, let $p = p_n$ be the characteristic of the field O/I and let $\xi = \alpha + I$, $\eta = \beta + I$ and D = A + I. **Lemma.** If n is coprime to N(A) then $D = -(\xi^2 + \xi^{-2} + \eta^2 + \eta^{-2})$ is a nonzero square in \mathbb{Z}_p and p is coprime to n. Moreover, if p is coprime to 2km then ξ and η are primitive 2mth and 2kth roots of unity in O/I.

Main result

Theorem. For any hyperbolic pair (k,m) there exists infinitely many nonorientable regular maps over linear fractional groups.

Proof. It suffices to assume that both k and m are odd. Let $n_1 = 2km$ and let $n_j = 2km \prod_{i=1}^{j-1} p_i$ for j > 1. By the previous lemma all p_j 's are distinct and there exists a nonorientable regular map over a linear fractional group in characteristic p_j for any j.

Open problems

Problem 3 For a given p determine all pairs (k, m) such that there exists a nonorientable regular map of type (k, m) over a linear fractional group in characteristic p.

Problem 4 For a given hyperbolic pair (k, m) determine all p's such that there exists a nonorientable regular map of type (k, m) over a linear fractional group in characteristic p. **Lemma.** If both k and m are powers of primes congruent to 3 mod 4 and p is congruent to 1 mod 8 then there exists a nonorientable regular map of type (k,m) over a linear fractional group in characteristic p.

Thank You