Condition of convex optimization and spherical intrinsic volumes

Peter Bürgisser University of Paderborn

(joint work with Dennis Amelunxen)

From Dynamics to Complexity A conference celebrating the work of Mike Shub

> Fields Institute Toronto May 07-11, 2012

Motivation

Regular convex cones

- Fix a regular cone C ⊂ ℝⁿ, i.e., a closed convex cone with nonempty interior that does not contain a nontrivial linear subspace.
- The dual cone of C is defined as Č := {z ∈ ℝⁿ | ∀x ∈ C : z^Tx ≤ 0}. We call C self-dual if Č = −C.
- ► The positive orthant ℝⁿ₊ and products Lⁿ¹ × ... × L^{nr} of Lorentz cones Lⁿ := {x ∈ ℝⁿ | x_n ≥ (x₁² + ··· + x_{n-1}²)^{1/2}} are self-dual.
- ▶ The cone of positive semidefinite matrices Sym^k₊ is self-dual as well.

Renegars condition number

The homogeneous convex feasibility problem is to decide for a given matrix A ∈ ℝ^{m×n}, 1 ≤ m < n, the alternative</p>

$$\exists x \in \mathbb{R}^n \setminus 0 \text{ s.t. } Ax = 0, x \in \breve{C} , \qquad (\mathsf{P})$$

$$\exists y \in \mathbb{R}^m \setminus 0 \text{ s.t. } A^T y \in C .$$
 (D)

- The set of ill-posed inputs Σ_R is defined as the set of matrices A, for which (P) and (D) are both feasible. The feasibility problem has no unique solution if A ∈ Σ_R.
- Renegar's condition number R_C(A) of A is defined as inverse distance to ill-posedness with respect to spectral norm:

$$\mathcal{R}_{\mathcal{C}}(\mathcal{A}) := rac{\|\mathcal{A}\|}{d(\mathcal{A}, \Sigma_{\scriptscriptstyle \mathsf{R}})} \; ,$$

where $d(A, \Sigma_{\scriptscriptstyle R}) = \min\{\|A - A'\| \mid A' \in \Sigma_{\scriptscriptstyle R}\}.$

Relevance for complexity

- ▶ Jim Renegar realized that the complexity of solving linear—and more generally convex optimization problems—can be bounded in terms of the condition number R_C(A).
- For simplicity, we only focus here on the homogeneous convex feasibility problem.
- ▶ Vera, Rivera, Peña, Hui: There is an interior-point algorithm that solves the homogeneous convex feasibility problem, for $C \subseteq \mathbb{R}^n$ a self-scaled cone with a self-scaled barrier function, in $O(\sqrt{\nu_C} \cdot \log(\nu_C \cdot \mathcal{R}_C(A)))$ interior-point iterations.
- $\nu_C \leq n$ for the cones C of (LP), (SOCP), (SDP).

Average probabilistic analysis for $C = \mathbb{R}^n_+$

- ► To understand the complexity of convex optimization, we want to analyze the probabilistic behaviour of R_C(A).
- First step: average analysis. Assume that entries of A ∈ ℝ^{m×n} are iid standard Gaussian, i.e., A ~ N(0, I).
- For C = ℝⁿ₊ several papers on average analysis: B, Cheung, Cucker, Hauser, Lotz, Müller, Wschebor (also for condition numbers closely related to R(A)).
- As a result:

We have $\mathbb{E} \log \mathcal{R}(A) = \mathcal{O}(\log m)$ for $C = \mathbb{R}^n_+$.

Smoothed probabilistic analysis for $C = \mathbb{R}^n_+$

- More realistic viewpoint: Smoothed analysis.
- Fix $\sigma > 0$. Let $\bar{A} \in \mathbb{R}^{m \times n}$ st $\|\bar{A}\| \le 1$ and assume $A \sim N(\bar{A}, \sigma I)$.

Dunagan, Spielman, Teng (2011). For $C = \mathbb{R}^n_+$,

$$\sup_{\bar{A}\|\leq 1} \mathbb{E}_{A\sim N(\bar{A},\sigma I)} \log \mathcal{R}(A) = \mathcal{O}\big(\log \frac{n}{\sigma}\big).$$

Extension to more general distributions by Amelunxen & B.

Future goal: Smoothed analysis for any regular cone!

So far achieved for average analysis: this talk.

A coordinate-free condition number

The Grassmann manifolds Gr_{n,m}

- ► The known probabilistic analyses of R_C(A) rely on the product structure of the cone C = ℝ₊ × ··· × ℝ₊ and cannot be extended.
- Working with a coordinate-free, geometric notion of condition allows to overcome this difficulty, at the price of working in the intrinsic geometric setting of Grassmann manifolds.
- ► The Grassmann manifold $Gr_{n,m}$ is the set of *m*-dimensional linear subspaces W of \mathbb{R}^n .
- ▶ Gr_{n,m} is a compact manifold on which the orthogonal group O(n) acts transitively.
- $Gr_{n,m}$ is a Riemannian manifold with orthogonal invariant metric.
- The corresponding volume form defines an orthogonal invariant probability measure on Gr_{n,m}.

The homogeneous convex feasibility problem

Let C ⊂ ℝⁿ be a regular cone and 1 ≤ m < n. We define the sets of dual feasible and primal feasible subspaces, resp., as

$$\begin{aligned} \mathcal{D}_m(\mathcal{C}) &:= & \left\{ W \in \operatorname{Gr}_{n,m} \mid W \cap \mathcal{C} \neq \{0\} \right\} \\ \mathcal{P}_m(\mathcal{C}) &:= & \left\{ W \in \operatorname{Gr}_{n,m} \mid W^{\perp} \cap \check{\mathcal{C}} \neq \{0\} \right\}. \end{aligned}$$

- ► Farkas Lemma: $W \cap int(C) \neq \emptyset \iff W^{\perp} \cap \check{C} = \{0\}$, hence $\mathcal{D}_m(C) \cup \mathcal{P}_m(C) = Gr_{n,m}$.
- The boundaries of $\mathcal{D}_m(C)$ and $\mathcal{P}_m(C)$ coincide with

$$\Sigma_m(C) := \mathcal{D}_m(C) \cap \mathcal{P}_m(C)$$
.

 $\Sigma_m(C)$ is called the set of ill-posed subspaces and consists of the subspaces W touching the cone C.

▶ Duality: $W \mapsto W^{\perp}$ maps $\mathcal{D}_m(C)$ to $\mathcal{P}_{n-m}(\check{C})$ and maps $\mathcal{P}_m(C)$ to $\mathcal{D}_{n-m}(\check{C})$.

Grassmann condition number

- Let Π_{Wi} denote the orthogonal projection onto W_i ∈ Gr_{n,m}. The spectral norm d_p(W₁, W₂) := ||Π_{W1} − Π_{W2}|| is called the projection distance of W₁, W₂ ∈ Gr_{n,m}.
- ► We define the Grassmann condition as the function

$$\mathscr{C}_{\mathcal{C}}: \operatorname{Gr}_{n,m} \to [1,\infty], \quad \mathscr{C}_{\mathcal{C}}(W) := \frac{1}{d_p(W, \Sigma_m(\mathcal{C}))},$$

where $d_p(W, \Sigma_m(C)) := \min\{d_p(W, W') \mid W' \in \Sigma_m(C)\}.$

- ▶ We may characterize *C_C* also in term of the geodesic distance *d_g* of the Riemannian manifold Gr_{n,m}.
- Prop. $d_p(W, \Sigma_m(C)) = \sin d_g(W, \Sigma_m(C)).$

Comparison with Renegar's condition number

Let A ∈ ℝ^{m×n} with rk(A) = m and put W := im A^T. Belloni & Freund essentially showed:

$$\mathscr{C}_{\mathcal{C}}(W) \leq \mathcal{R}_{\mathcal{C}}(A) \leq \kappa(A) \cdot \mathscr{C}_{\mathcal{C}}(W) ,$$

where $\kappa(A)$ denotes the usual matrix condition number, i.e., the ratio between the largest and the smallest singular value of A.

- In particular, $\mathscr{C}_{\mathcal{C}}(W) = \mathcal{R}_{\mathcal{C}}(A)$ if $\kappa(A) = 1$.
- Can break up the probabilistic study of Renegar's condition number $\mathcal{R}_{\mathcal{C}}(A)$ into the study of $\mathscr{C}_{\mathcal{C}}$ and κ . In particular, for random A,

$$\mathbb{E}\log \mathcal{R}_{\mathcal{C}}(\mathcal{A}) \leq \mathbb{E}\log \kappa(\mathcal{A}) + \mathbb{E}\log \mathscr{C}_{\mathcal{C}}(\mathcal{A}).$$

Condition of convex optimization and spherical intrinsic volumes

L The Grassmann condition number

Main results

Average analysis of Grassmann CN: I

If $A \in \mathbb{R}^{m \times n}$ is a Gaussian random matrix, then $W := \operatorname{im} A^T$ is uniformly distributed in $\operatorname{Gr}_{n.m.}$

Theorem I (Amelunxen, B)

Let $C \subset \mathbb{R}^n$ be a regular cone. For $W \in Gr_{n,m}$ uniformly distributed,

$$\begin{aligned} \mathsf{Prob}[\mathscr{C}_{\mathcal{C}}(W) > t] &< \ \mathbf{6} \cdot \sqrt{m(n-m)} \cdot \frac{1}{t} \ , \quad \text{if } t > n^{\frac{3}{2}} \ , \\ \mathbb{E}\left[\mathsf{ln}\,\mathscr{C}_{\mathcal{C}}(W)\right] &< \ \mathbf{1.5} \cdot \mathsf{ln}(n) + \mathbf{1.5} \ . \end{aligned}$$

- Recall: $\mathscr{C}_{\mathcal{C}}(W) > t$ iff $d_p(W, \Sigma_m(\mathcal{C})) < 1/t$
- Prob[𝔅_C(𝔅) > t] equals the relative volume of the tube of radius 1/t around Σ_m(C), relative to the volume of Gr_{n,m}.

Average analysis of Grassmann CN: II

Theorem II (Amelunxen, B)

Let $C \subset \mathbb{R}^n$ be a regular self-dual cone. For $W \in \operatorname{Gr}_{n,m}$ uniformly distributed,

$$\begin{aligned} & \operatorname{Prob}[\mathscr{C}_{\mathcal{C}}(W) > t] < 20 \cdot v(\mathcal{C}) \cdot \sqrt{m} \cdot \frac{1}{t}, & \text{if } t > m, \\ & \mathbb{E}\left[\ln \mathscr{C}_{\mathcal{C}}(AW)\right] < \ln(m) + \max\{\ln(v(\mathcal{C})), 0\} + 3, \end{aligned}$$

with the excess over the Lorentz cone v(C) bounded as follows:

С	\mathbb{R}^{n}_{+}	\mathcal{L}^n	$\mathcal{L}^{n_1} imes \ldots imes \mathcal{L}^{n_r}$ (assuming some conjecture)	Sym ^k ₊ (assuming Conjecture SDP)
$v(C) \leq$	$\sqrt{2}$	1	2 ^{r-1}	2

Intrinsic volumes

Spherical intrinsic volumes

- A set K ⊆ Sⁿ⁻¹ is called spherical convex iff C := cone(K) is a convex cone. Then K = Sⁿ⁻¹ ∩ C.
- The α-tube T(K, α) around K is defined as the α-neighborhood of K in Sⁿ⁻¹ with respect to angular distance d.

• Put
$$\mathcal{O}_{n-1} := \operatorname{vol}_{n-1}(S^{n-1}) = \frac{2\pi^{n/2}}{\Gamma(n/2)}$$

H. Weyl's tube formula:

$$\operatorname{vol}_{n-1} \mathcal{T}(K, \alpha) = V_n(C) \cdot \mathcal{O}_{n-1} + \sum_{j=1}^{n-1} V_j(C) \cdot \operatorname{vol}_{n-1} \mathcal{T}(S^{i-1}, \alpha)$$
.

- ► The uniquely determined coefficients V₁(C),..., V_n(C) are called intrinsic volumes of C (or K).
- ▶ Note $V_n(C) = \frac{\operatorname{vol}_{n-1} K}{\mathcal{O}_{n-1}}$. We further set $V_0(C) := \frac{\operatorname{vol}_{n-1}(S^{n-1} \cap \check{C})}{\mathcal{O}_{n-1}}$.
- The intrinsic volumes are orthogonal invariant.

Probabilistic interpretation

- Let C be a polyhedral cone and Π_C: ℝⁿ → C denote the projection map onto C.
- $\Pi_C(x)$ lies in the interior of a unique face of C. Let $d_C(x)$ denote the dimension of this face.
- ▶ The proof of Weyl's formula reveals: for $0 \le j \le n$,

$$V_j(C) = \Pr_{p \in S^{n-1}}[d_C(p) = j] = \Pr_{x \in \mathcal{N}(0, l_n)}[d_C(x) = j]$$

• Ex. $C \subseteq \mathbb{R}^2$ with angle $\alpha \leq \pi$. Then \check{C} has angle $\pi - \alpha$.

$$V_0(C) = \frac{\pi - \alpha}{2\pi}, \ V_1 = \frac{1}{2}, \ V_2(C) = \frac{\alpha}{2\pi}.$$

Properties of intrinsic volumes

- ► Conclusions from $V_j(C) = \underset{x \in \mathcal{N}(0, I_n)}{\text{Prob}} [d_C(x) = j]$:
- ► The $V_0(C), \ldots, V_n(C)$ form a probability distribution on $\{0, 1, \ldots, n\}$, i.e., $\sum_{j=0}^n V_j(C) = 1$, $V_j(C) \ge 0$.
- Duality implies $V_j(\check{C}) = V_{n-j}(C)$.
- ► The vector V_j(C₁ × C₂) is obtained from V_j(C₁) and V_j(C₂) by (cyclic) convolution.
- Ex. ℝⁿ₊ = ℝ₊ × · · · × ℝ₊. The *n*-fold convolution of V(ℝ₊) = (¹/₂, ¹/₂) (Bernoulli) yields the symmetric binomial distribution:

$$V_j(\mathbb{R}^n_+)=2^{-n}\binom{n}{j}.$$

Example

- We have explicit formulas of the intrinsic volumes of Lⁿ (easy) and for Sym^k₊ (complicated), see talk by Dennis Amelunxen.
- The following graphics compares V_j(Sym⁵₊) with 2V_j(L¹⁵) (dashed); note Sym⁵ ≃ ℝ¹⁵.

The logconcavity conjecture

Logconcavity conjecture

For any closed convex cone $C \subset \mathbb{R}^n$, the sequence of intrinsic volumes $V_0(C), \ldots, V_n(C)$ is logconcave, i.e., $V_j(C)^2 \geq V_{j-1}(C) \cdot V_{j+1}(C)$.

- We proved this conjecture for \mathbb{R}^n_+ and products of Lorentz cones.
- The conjecture is trivially true for n = 1, 2. For n = 3, K ⊆ S², it follows from the well known isoperimetric inequality

$$\operatorname{vol}_1(\partial K)^2 \ge \operatorname{vol}_2(K)(4\pi - \operatorname{vol}_2(K)).$$

- For euclidean space, the logconcavity of the inner volumes is true, as a consequence of the Alexandrov-Fenchel inequalities.
- The euclidean case can obtained as a limit of the spherical case, but apparently, the spherical case seems more general.

Excess over Lorentz cones

▶ The Lorentz cone $\mathcal{L}^n = \{x \in \mathbb{R}^n \mid x_n \ge (x_1^2 + \dots + x_{n-1})^{1/2}\}$ satisfies

$$f_j(n) := V_j(\mathcal{L}^n) = rac{\binom{(n-2)/2}{(j-1)/2}}{2^{n/2}}.$$

For a self-dual cone C ⊆ ℝⁿ we define the excess v(C) over the Lorentz cone as

$$\mathbf{v}(\mathbf{C}) := \max_{0 \leq j \leq n} \frac{V_j(\mathbf{C})}{f_j(n)}$$

▶ By definition, $v(\mathcal{L}^n) = 1$. We can show $v(\mathbb{R}^n_+) \leq \sqrt{2}$.

Conjecture SDP

The cone Sym_{+}^{k} of positive semidefinite matrices satisfies $v(\text{Sym}_{+}^{k}) \leq 2$.

▶ The conjecture is numerically checked for small values of *k*.

A tube formula for Grassmannians

The tube formula for $Gr_{n,m}$

Let $C \subset \mathbb{R}^n$ be a regular cone and $\mathcal{T}(\Sigma_m(C), \alpha)$ denote the α -tube around $\Sigma_m(C)$ wrt geodesic distance.

Theorem

For
$$1 \le m \le n-1$$
 and $0 \le \alpha \le \frac{\pi}{2}$,

$$\frac{\operatorname{vol} \mathcal{T}(\Sigma_m(\mathcal{C}), \alpha)}{\operatorname{vol} \operatorname{Gr}_{n,m}} \leq \frac{4m(n-m)}{n} \binom{n/2}{m/2} \sum_{j=0}^{n-2} V_{j+1}(\mathcal{C}) \cdot F_j^{nm}(\alpha)$$

with the following functions (independent of C)

$$F_j^{nm}(\alpha) = \frac{\mathcal{O}_{n-2}}{\mathcal{O}_j \mathcal{O}_{n-2-j}} \cdot \sum_{i=0}^{n-2} d_{ij}^{nm} \cdot \int_0^\alpha (\cos \rho)^i (\sin \rho)^{n-2-i} \, d\rho$$

where $d_{ij}^{nm} := \left(\frac{m-1}{2} + \frac{m-1}{2}\right) \cdot \left(\frac{n-m-1}{\frac{1+j}{2}} - \frac{m-1}{2}\right) \cdot {\binom{n-2}{j}}^{-1}$ if $i + j + m \equiv 1 \pmod{2}$ and $d_{ij}^{nm} := 0$ otherwise.

Discussion

$$\frac{\operatorname{vol} \mathcal{T}(\Sigma_m(C), \alpha)}{\operatorname{vol} \operatorname{Gr}_{n,m}} \leq \frac{4m(n-m)}{n} \binom{n/2}{m/2} \sum_{j=0}^{n-2} V_{j+1}(C) \cdot F_j^{nm}(\alpha)$$

- ► The result is an extension of Weyl's spherical tube formula.
- ► The only dependence on *C* is through the intrinsic volumes!
- For the proof we may assume wlog that C has a smooth boundary with positive curvature (by continuity)!
- ► Theorems I-II follow by estimations using V_j(C) ≤ 1 or, more precisely, V_j(C) ≤ v(C)f_j(n), respectively.

Sharpness of the bound

$$\frac{\operatorname{vol} \mathcal{T}(\Sigma_m(C),\alpha)}{\operatorname{vol} \operatorname{Gr}_{n,m}} \leq \frac{4m(n-m)}{n} \binom{n/2}{m/2} \sum_{j=0}^{n-2} V_{j+1}(C) \cdot F_j^{nm}(\alpha)$$

- The bound is asymptotically sharp for $\alpha \to 0$.
- If the tube *T*(*C* ∩ *Sⁿ⁻¹*, α) is convex, we can even obtain get an exact formula, by using modified functions *F^{nm}_i*(α).
- ▶ If the cone *C* has smooth boundary with positive curvature, then $\mathcal{T}(C \cap S^{n-1}, \alpha)$ is convex for sufficiently small radius α .
- However, for our cones of interest, this convexity assumption is violated.
- Under the convexity assumption, the exact formula was already obtained by Glasauer 1995 (PhD thesis, University of Freiburg).
- However, Glasauer's works with measure theoretic techniques, which don't provide inequalities and thus results for our cones of interest.

The main geometric idea of proof

- ▶ $Gr_{n,m}$ is a Riemannian manifold and thus has exponential maps exp_W : $T_W Gr_{n,m} \rightarrow Gr_{n,m}$ at $W \in Gr_{n,m}$.
- Let C ⊆ ℝⁿ be a regular cone such that K := Sⁿ⁻¹ ∩ C has smooth boundary M := ∂K with positive curvature.
- Then Σ_m := Σ_m(C) is a smooth oriented hypersurface of Gr_{n,m} bounding D_m(C) and P_m(C). Let ν denote the unit normal vector field of Σ_m pointing inside D_m(C).
- The α -tube $\mathcal{T}(\Sigma_m, \alpha)$ around Σ_m is the image of

$$\Psi \colon \Sigma_m \times [-\alpha, \alpha] \to \operatorname{Gr}_{n,m}, (W, \theta) \mapsto \exp_W \left(\theta \, \nu(W) \right).$$

By the coarea formula

$$\operatorname{vol} \mathcal{T}(\Sigma_m, \alpha) \; = \; \int_{-\alpha}^{\alpha} \; d\theta \int_{\Sigma_m} \mathrm{NJ} \Psi \, d\Sigma_m \, .$$

• Need a parametrization of Σ_m and need to compute $NJ\Psi$.

Geometry of ill-posed set Σ_m

- ► Recall that Σ_m := Σ_m(C) ⊆ Gr_{n,m} consists of the m-dimensional subspaces W touching C.
- Each W touches K = Sⁿ⁻¹ ∩ C in a unique point p due to positive curvature of M = ∂K. Write Y := p[⊥] ∩ W. Then Y ∈ Gr(T_pM, m-1) and W = ℝp + Y.
- The fiber over p of the map

$$\Pi_{\scriptscriptstyle M} \colon \Sigma_m \to M, W \mapsto p$$
, where $W \cap K = \{p\}$

basically equals $F_p := \operatorname{Gr}(T_pM, m-1)$. We can thus view Σ_m as an embedding of the (m-1)th Grassmann bundle over M.

By the coarea formula:

$$\int_{\Sigma_m} \mathrm{NJ} \Psi \, d\Sigma_m = \int_{\rho \in \mathcal{M}} d\mathcal{M}(\rho) \, \int_{Y \in F_p} \mathrm{NJ} \Pi_{\mathcal{M}} \cdot \mathrm{NJ} \Psi \, dF_p(Y) \, .$$

Thank you, and

All the Best for You, Mike!!!

Twisted characteristic polynomial

- Let W_p: T_pM → T_pM denote the Weingarten map of M at p: the eigenvalues of W_p are the principle curvatures of the smooth hypersurface M of Sⁿ⁻¹.
- Let σ_k(p) denote the kth elementary symmetric polynomial in the principal curvatures of M at p.
- Weyl: For $1 \le j \le n-1$

$$V_j(\mathcal{C}) \;=\; rac{1}{\mathcal{O}_{j-1}\cdot\mathcal{O}_{n-j-1}}\cdot\int_{p\in\mathcal{M}}\sigma_{n-j-1}(p)\,dM$$
 ,

- Let Y ∈ Gr(T_pM, m − 1) and Π_Y: V → Y denote the orthogonal projection onto Y.
- ► We define the twisted characteristic polynomial of W_p with respect to Y as

$$\operatorname{ch}_{Y}(\mathcal{W}_{p},t) := \operatorname{det} \left(\mathcal{W}_{p} - \left(t \cdot \Pi_{Y} - \frac{1}{t} \cdot \Pi_{Y^{\perp}} \right) \right) \cdot t^{n-m-1}$$

Normal Jacobians

Recall $\Psi(W, \theta) = \exp_W \left(\theta \, \nu(W) \right)$ and $F_p := \operatorname{Gr}(T_p M, m-1)$

Theorem (technical!)

$$\begin{aligned} (\mathrm{NJ}\Pi_{\scriptscriptstyle M}\cdot\mathrm{NJ}\Psi)(W,\theta) &= (\cos\theta)^{n-2}\operatorname{ch}_{Y}(\mathcal{W}_{p},\tan\theta) \\ & \underset{Y\in F_{p}}{\mathbb{E}} \Big[|\operatorname{ch}_{Y}(\mathcal{W}_{p},t)| \Big] \leq \sum_{i,j=0}^{n-2} d_{ij}^{nm}\cdot\sigma_{n-2-j}(p)\cdot t^{n-i-2} \,. \end{aligned}$$

Wrapping up:

$$\operatorname{vol} \mathcal{T}(\Sigma_m, \alpha) = \int_{-\alpha}^{\alpha} d\theta \int_{\rho \in M} dM(p) \int_{Y \in F_p} (\cos \theta)^{n-2} |\operatorname{ch}_Y(\mathcal{W}_p, \tan \theta)| dF_p(Y)$$
$$= \int_{-\alpha}^{\alpha} (\cos \theta)^{n-2} d\theta \int_{\rho \in M} \operatorname{vol}(F_p) \sum_{Y \in F_p} \left[|\operatorname{ch}_Y(\mathcal{W}_p, \tan \theta)| \right] dM(p)$$
$$\stackrel{Thm.}{\leq} \operatorname{vol}(F_p) \sum_{i,j} d_{ij}^{nm} \int_{\rho \in M} \sigma_{n-2-j}(p) dM(p) \int_{-\alpha}^{\alpha} (\cos \theta)^{n-2} (\tan \theta)^{n-i-2} d\theta$$