Condition of convex optimization and spherical intrinsic volumes

Peter Bürgisser University of Paderborn

(joint work with Dennis Amelunxen)

From Dynamics to Complexity A conference celebrating the work of Mike Shub

> Fields Institute Toronto May 07-11, 2012

Motivation

Regular convex cones

- ! Fix a regular cone *^C* [⊂] ^R*ⁿ*, i.e., a closed convex cone with nonempty interior that does not contain a nontrivial linear subspace.
- ► The dual cone of *C* is defined as $\check{C} := \{z \in \mathbb{R}^n \mid \forall x \in C : z^T x \le 0\}.$ We call *C* self-dual if $\check{C} = -C$.
- \blacktriangleright The positive orthant \mathbb{R}^n_+ and products $\mathcal{L}^{n_1}\times\ldots\times\mathcal{L}^{n_r}$ of Lorentz cones $\mathcal{L}^n := \{ x \in \mathbb{R}^n \mid x_n \geq (x_1^2 + \cdots + x_{n-1}^2)^{1/2} \}$ are self-dual.
- \blacktriangleright The cone of positive semidefinite matrices Sym^k is self-dual as well.

Renegars condition number

 \triangleright The homogeneous convex feasibility problem is to decide for a given matrix $A \in \mathbb{R}^{m \times n}$, $1 \leq m < n$, the alternative

$$
\exists x \in \mathbb{R}^n \setminus 0 \text{ s.t. } Ax = 0, x \in \check{C}, \qquad (P)
$$

$$
\exists y \in \mathbb{R}^m \setminus 0 \text{ s.t. } A^T y \in C . \tag{D}
$$

- \triangleright The set of ill-posed inputs $\Sigma_{\rm R}$ is defined as the set of matrices A, for which (P) and (D) are both feasible. The feasibility problem has no unique solution if $A \in \Sigma_{\infty}$.
- \triangleright Renegar's condition number $\mathcal{R}_C(A)$ of A is defined as inverse distance to ill-posedness with respect to spectral norm:

$$
\mathcal{R}_\mathcal{C}(A) := \frac{\|A\|}{d(A,\Sigma_{\scriptscriptstyle R})},
$$

where $d(A, \Sigma_{\scriptscriptstyle R}) = \min\{\|A - A'\| \mid A' \in \Sigma_{\scriptscriptstyle R}\}.$

Relevance for complexity

- ▶ Jim Renegar realized that the complexity of solving linear—and more generally convex optimization problems—can be bounded in terms of the condition number $\mathcal{R}_C(A)$.
- \triangleright For simplicity, we only focus here on the homogeneous convex feasibility problem.
- \triangleright Vera, Rivera, Peña, Hui: There is an interior-point algorithm that solves the homogeneous convex feasibility problem, for $C \subseteq \mathbb{R}^n$ a self-scaled cone with a self-scaled barrier function, in $O(\sqrt{\nu_C} \cdot \log(\nu_C \cdot \mathcal{R}_C(A)))$ interior-point iterations.
- $\triangleright \nu_c$ < *n* for the cones *C* of (LP), (SOCP), (SDP).

Average probabilistic analysis for $\mathcal{C} = \mathbb{R}^n_+$

- \triangleright To understand the complexity of convex optimization, we want to analyze the probabilistic behaviour of $\mathcal{R}_C(A)$.
- ! First step: average analysis. Assume that entries of *^A* [∈] ^R*^m*×*ⁿ* are iid standard Gaussian, i.e., *A* ∼ *N*(0, *I*).
- \blacktriangleright For $C = \mathbb{R}^n_+$ several papers on average analysis: B, Cheung, Cucker, Hauser, Lotz, Müller, Wschebor (also for condition numbers closely related to $\mathcal{R}(A)$).
- \triangleright As a result:

We have $\mathbb{E} \log \mathcal{R}(A) = \mathcal{O}(\log m)$ for $C = \mathbb{R}^n_+$.

Smoothed probabilistic analysis for $C=\mathbb{R}^n_+$

- \triangleright More realistic viewpoint: Smoothed analysis.
- \blacktriangleright Fix $\sigma > 0$. Let $\bar{A} \in \mathbb{R}^{m \times n}$ st $\|\bar{A}\| \leq 1$ and assume $A \sim N(\bar{A}, \sigma I)$.

Dunagan, Spielman, Teng (2011). For $C = \mathbb{R}^n_+$,

$$
\sup_{\|\bar{A}\| \leq 1} \mathbb{E}_{A \sim N(\bar{A}, \sigma I)} \log \mathcal{R}(A) = \mathcal{O}\big(\log \frac{n}{\sigma}\big).
$$

► Extension to more general distributions by Amelunxen & B.

Future goal: Smoothed analysis for any regular cone!

So far achieved for average analysis: this talk.

A coordinate-free condition number

[Condition of convex optimization and spherical intrinsic volumes](#page-0-0) [The Grassmann condition number](#page-8-0)

The Grassmann manifolds Gr*ⁿ*,*^m*

- \triangleright The known probabilistic analyses of $\mathcal{R}_C(A)$ rely on the product structure of the cone $C = \mathbb{R}_+ \times \cdots \times \mathbb{R}_+$ and cannot be extended.
- \triangleright Working with a coordinate-free, geometric notion of condition allows to overcome this difficulty, at the price of working in the intrinsic geometric setting of Grassmann manifolds.
- \triangleright The Grassmann manifold Gr_{n,m} is the set of *m*-dimensional linear subspaces W of \mathbb{R}^n .
- \triangleright Gr_{n,m} is a compact manifold on which the orthogonal group $O(n)$ acts transitively.
- \triangleright Gr_{n,m} is a Riemannian manifold with orthogonal invariant metric.
- \triangleright The corresponding volume form defines an orthogonal invariant probability measure on Gr*n*,*m*.

[Condition of convex optimization and spherical intrinsic volumes](#page-0-0) [The Grassmann condition number](#page-9-0)

The homogeneous convex feasibility problem

! Let *^C* [⊂] ^R*ⁿ* be a regular cone and 1 [≤] *^m* < *ⁿ*. We define the sets of dual feasible and primal feasible subspaces, resp., as

$$
\mathcal{D}_m(C) := \{ W \in \mathsf{Gr}_{n,m} \mid W \cap C \neq \{0\} \}
$$

$$
\mathcal{P}_m(C) := \{ W \in \mathsf{Gr}_{n,m} \mid W^{\perp} \cap C \neq \{0\} \}.
$$

- **►** Farkas Lemma: $W \cap \text{int}(C) \neq \emptyset \iff W^{\perp} \cap \check{C} = \{0\}$, hence $\mathcal{D}_m(C) \cup \mathcal{P}_m(C) = \mathsf{Gr}_{n,m}$.
- \blacktriangleright The boundaries of $\mathcal{D}_m(C)$ and $\mathcal{P}_m(C)$ coincide with

$$
\Sigma_m(C) := \mathcal{D}_m(C) \cap \mathcal{P}_m(C) \ .
$$

Σ*m*(*C*) is called the set of ill-posed subspaces and consists of the subspaces *W* touching the cone *C*.

▶ Duality: $W \mapsto W^{\perp}$ maps $\mathcal{D}_m(C)$ to $\mathcal{P}_{n-m}(\breve{C})$ and maps $\mathcal{P}_m(C)$ to $\mathcal{D}_{n-m}(\check{C})$.

Grassmann condition number

- ! Let Π*Wi* denote the orthogonal projection onto *Wⁱ* ∈ Gr*ⁿ*,*^m*. The spectral norm $d_p(W_1, W_2) := ||\Pi_{W_1} - \Pi_{W_2}||$ is called the projection distance of $W_1, W_2 \in \mathsf{Gr}_{n,m}$.
- \triangleright We define the Grassmann condition as the function

$$
\mathscr{C}_C\colon\operatorname{Gr}_{n,m}\to[1,\infty]\ ,\quad \mathscr{C}_C(W):=\frac{1}{d_p(W,\Sigma_m(C))}\ ,
$$

 $\mathsf{where} \, d_p(W, \Sigma_m(C)) := \min \{d_p(W, W') \mid W' \in \Sigma_m(C)\}.$

- \triangleright We may characterize $\mathscr{C}_{\mathcal{C}}$ also in term of the geodesic distance d_g of the Riemannian manifold Gr*ⁿ*,*^m*.
- \blacktriangleright Prop. $d_p(W, \Sigma_m(C)) = \sin d_g(W, \Sigma_m(C)).$

Comparison with Renegar's condition number

► Let $A \in \mathbb{R}^{m \times n}$ with $rk(A) = m$ and put $W := \text{im } A^T$. Belloni & Freund essentially showed:

$$
\mathscr{C}_C(W) \leq \mathcal{R}_C(A) \leq \kappa(A) \cdot \mathscr{C}_C(W) ,
$$

where $\kappa(A)$ denotes the usual matrix condition number, i.e., the ratio between the largest and the smallest singular value of *A*.

- In particular, $\mathcal{C}_C(W) = \mathcal{R}_C(A)$ if $\kappa(A) = 1$.
- \triangleright Can break up the probabilistic study of Renegar's condition number $\mathcal{R}_C(A)$ into the study of \mathcal{C}_C and κ . In particular, for random A,

$$
\mathbb{E}\log\mathcal{R}_C(A)\leq \mathbb{E}\log\kappa(A)+\mathbb{E}\log\mathscr{C}_C(A).
$$

[Condition of convex optimization and spherical intrinsic volumes](#page-0-0)

 $\mathrel{{\sqsubseteq}}$ [The Grassmann condition number](#page-12-0)

Main results

Average analysis of Grassmann CN: I

If $A \in \mathbb{R}^{m \times n}$ is a Gaussian random matrix, then $W := \text{im } A^T$ is uniformly distributed in Gr*ⁿ*.*^m*.

Theorem I (Amelunxen, B)

Let $C \subset \mathbb{R}^n$ be a regular cone. For $W \in \mathsf{Gr}_{n,m}$ uniformly distributed,

$$
\text{Prob}[\mathscr{C}_C(W) > t] < 6 \cdot \sqrt{m(n-m)} \cdot \frac{1}{t}, \quad \text{if } t > n^{\frac{3}{2}},
$$
\n
$$
\mathbb{E}[\ln \mathscr{C}_C(W)] < 1.5 \cdot \ln(n) + 1.5 \, .
$$

- \blacktriangleright Recall: $\mathcal{C}_C(W) > t$ iff $d_p(W, \Sigma_m(C)) < 1/t$
- \triangleright Prob $\mathcal{C}_C(W) > t$ equals the relative volume of the tube of radius 1/*t* around $\Sigma_m(C)$, relative to the volume of $Gr_{n,m}$.

Average analysis of Grassmann CN: II

Theorem II (Amelunxen, B)

Let $C \subset \mathbb{R}^n$ be a regular self-dual cone. For $W \in \mathsf{Gr}_{n,m}$ uniformly distributed,

$$
\text{Prob}[\mathscr{C}_C(W) > t] < 20 \cdot v(C) \cdot \sqrt{m} \cdot \frac{1}{t}, \quad \text{if } t > m,
$$
\n
$$
\mathbb{E}\left[\ln \mathscr{C}_C(AW)\right] < \ln(m) + \max\{\ln(v(C)), 0\} + 3,
$$

with the excess over the Lorentz cone $v(C)$ bounded as follows:

Intrinsic volumes

Spherical intrinsic volumes

- \triangleright A set $K \subseteq S^{n-1}$ is called spherical convex iff *C* := cone(*K*) is a convex cone. Then $K = S^{n-1} \cap C$.
- \triangleright The α -tube $\mathcal{T}(K, \alpha)$ around K is defined as the α -neighborhood of *K* in *Sⁿ*−¹ with respect to angular distance *d*.

$$
\text{Put } \mathcal{O}_{n-1} := \text{vol}_{n-1}(S^{n-1}) = \frac{2\pi^{n/2}}{\Gamma(n/2)}.
$$

 \blacktriangleright H. Weyl's tube formula:

$$
\operatorname{vol}_{n-1} \mathcal{T}(K, \alpha) = V_n(C) \cdot \mathcal{O}_{n-1} + \sum_{j=1}^{n-1} V_j(C) \cdot \operatorname{vol}_{n-1} \mathcal{T}(S^{i-1}, \alpha) .
$$

- \blacktriangleright The uniquely determined coefficients $V_1(C),..., V_n(C)$ are called intrinsic volumes of *C* (or *K*).
- ► Note $V_n(C) = \frac{\text{vol}_{n-1} K}{\mathcal{O}_{n-1}}$. We further set $V_0(C) := \frac{\text{vol}_{n-1}(S^{n-1} \cap \check{C})}{\mathcal{O}_{n-1}}$.
- \triangleright The intrinsic volumes are orthogonal invariant.

Probabilistic interpretation

- Exercise Let *C* be a polyhedral cone and $\Pi_C: \mathbb{R}^n \to C$ denote the projection map onto *C*.
- \triangleright $\Pi_C(x)$ lies in the interior of a unique face of *C*. Let $d_C(x)$ denote the dimension of this face.
- \blacktriangleright The proof of Weyl's formula reveals: for $0 \leq j \leq n$,

$$
V_j(C) = \text{Prob}_{p \in S^{n-1}} [d_C(p) = j] = \text{Prob}_{x \in \mathcal{N}(0, I_n)} [d_C(x) = j]
$$

Ex. $C \subseteq \mathbb{R}^2$ with angle $\alpha \leq \pi$. Then \breve{C} has angle $\pi - \alpha$.

$$
V_0(C) = \frac{\pi - \alpha}{2\pi}, \ V_1 = \frac{1}{2}, \ V_2(C) = \frac{\alpha}{2\pi}.
$$

Properties of intrinsic volumes

- ► Conclusions from $V_j(C) = \text{Prob}_{x \in \mathcal{N}(0, I_n)} [d_C(x) = j]$:
- \blacktriangleright The $V_0(C), \ldots, V_n(C)$ form a probability distribution on $\{0, 1, \ldots, n\}$, i.e., $\sum_{j=0}^{n} V_j(C) = 1$, $V_j(C) \ge 0$.

▶ Duality implies $V_i(\check{C}) = V_{n-i}(C)$.

- \triangleright The vector $V_j(C_1 \times C_2)$ is obtained from $V_j(C_1)$ and $V_j(C_2)$ by (cyclic) convolution.
- Ex. $\mathbb{R}^n_+ = \mathbb{R}_+ \times \cdots \times \mathbb{R}_+$. The *n*-fold convolution of $V(\mathbb{R}_{+})=(\frac{1}{2},\frac{1}{2})$ (Bernoulli) yields the symmetric binomial distribution:

$$
V_j(\mathbb{R}^n_+)=2^{-n}\binom{n}{j}.
$$

Example

- \triangleright We have explicit formulas of the intrinsic volumes of \mathcal{L}^n (easy) and for Sym*^k* ⁺ (complicated), see talk by Dennis Amelunxen.
- \blacktriangleright The following graphics compares $V_j(\text{Sym}^5_+)$ with $2V_j(\mathcal{L}^{15})$ (dashed); note $Sym^5 \simeq \mathbb{R}^{15}$.

The logconcavity conjecture

Logconcavity conjecture

For any closed convex cone $C \subset \mathbb{R}^n$, the sequence of intrinsic volumes *V*⁰(*C*),..., *V*ⁿ(*C*) is logconcave, i.e., *V*_{*i*}(*C*)² > *V*_{*i*−1}(*C*) · *V*_{*i*+1}(*C*).

- \blacktriangleright We proved this conjecture for \mathbb{R}^n_+ and products of Lorentz cones.
- \triangleright The conjecture is trivially true for *n* = 1, 2. For *n* = 3, *K* ⊂ *S*², it follows from the well known isoperimetric inequality

$$
\mathsf{vol}_1(\partial K)^2 \geq \mathsf{vol}_2(K)\big(4\pi-\mathsf{vol}_2(K)\big).
$$

- \triangleright For euclidean space, the logconcavity of the inner volumes is true, as a consequence of the Alexandrov-Fenchel inequalities.
- \triangleright The euclidean case can obtained as a limit of the spherical case, but apparently, the spherical case seems more general.

Excess over Lorentz cones

▶ The Lorentz cone $\mathcal{L}^n = \{x \in \mathbb{R}^n \mid x_n \geq (x_1^2 + \cdots + x_{n-1})^{1/2}\}$ satisfies

$$
f_j(n) := V_j(\mathcal{L}^n) = \frac{\binom{(n-2)/2}{(j-1)/2}}{2^{n/2}}.
$$

! For a self-dual cone *^C* [⊆] ^R*ⁿ* we define the excess *^v*(*C*) over the Lorentz cone as

$$
v(C) := \max_{0 \le j \le n} \frac{V_j(C)}{f_j(n)}.
$$

► By definition, $v(\mathcal{L}^n) = 1$. We can show $v(\mathbb{R}^n_+) \leq \sqrt{2}$.

Conjecture SDP

The cone Sym $^k_+$ of positive semidefinite matrices satisfies $v(\text{Sym}^k_+) \leq 2$.

! The conjecture is numerically checked for small values of *k*.

A tube formula for Grassmannians

The tube formula for Gr*ⁿ*,*^m*

Let $C \subset \mathbb{R}^n$ be a regular cone and $\mathcal{T}(\Sigma_m(C), \alpha)$ denote the α -tube around Σ*m*(*C*) wrt geodesic distance.

Theorem

For
$$
1 \le m \le n-1
$$
 and $0 \le \alpha \le \frac{\pi}{2}$,

$$
\frac{\text{vol } \mathcal{T}(\Sigma_m(C),\alpha)}{\text{vol } \mathsf{G}r_{n,m}} \ \leq \ \frac{4m(n-m)}{n} {n/2 \choose m/2} \sum_{j=0}^{n-2} V_{j+1}(C) \cdot F_j^{nm}(\alpha)
$$

with the following functions (independent of *C*)

$$
F_j^{nm}(\alpha) = \frac{\mathcal{O}_{n-2}}{\mathcal{O}_j \mathcal{O}_{n-2-j}} \cdot \sum_{i=0}^{n-2} d_{ij}^{nm} \cdot \int_0^{\alpha} (\cos \rho)^i (\sin \rho)^{n-2-i} d\rho,
$$

where $d_{ij}^{nm} := \left(\frac{m-1}{2} + \frac{m-1}{2} \right) \cdot \left(\frac{n-m-1}{\frac{j+j}{2} - \frac{m-1}{2}} \right) \cdot \left(\frac{n-2}{j} \right)^{-1}$ if $i + j + m \equiv 1 \pmod{2}$ and $d_{ij}^{nm} := 0$ otherwise.

Discussion

$$
\frac{\text{vol } \mathcal{T}(\Sigma_m(C),\alpha)}{\text{vol } \mathsf{Gr}_{n,m}} \ \leq \ \frac{4m(n-m)}{n} {n/2 \choose m/2} \sum_{j=0}^{n-2} V_{j+1}(C) \cdot F_j^{nm}(\alpha)
$$

- \triangleright The result is an extension of Weyl's spherical tube formula.
- \triangleright The only dependence on *C* is through the intrinsic volumes!
- ▶ For the proof we may assume wlog that *C* has a smooth boundary with positive curvature (by continuity)!
- ▶ Theorems I-II follow by estimations using V *_j*(*C*) \leq 1 or, more precisely, $V_i(C) \le v(C)f_i(n)$, respectively.

[Condition of convex optimization and spherical intrinsic volumes](#page-0-0) [Tube formula for Grassmannians](#page-25-0)

Sharpness of the bound

$$
\frac{\text{vol } \mathcal{T}(\Sigma_m(C),\alpha)}{\text{vol } \mathrm{Gr}_{n,m}} \leq \frac{4m(n-m)}{n} {n/2 \choose m/2} \sum_{j=0}^{n-2} V_{j+1}(C) \cdot F_j^{nm}(\alpha)
$$

- \blacktriangleright The bound is asymptotically sharp for $\alpha \to 0$.
- If the tube $\mathcal{T}(\mathcal{C} \cap \mathcal{S}^{n-1}, \alpha)$ is convex, we can even obtain get an exact formula, by using modified functions $F_j^{nm}(\alpha)$.
- \triangleright If the cone C has smooth boundary with positive curvature, then $\mathcal{T}(\mathcal{C} \cap \mathcal{S}^{n-1}, \alpha)$ is convex for sufficiently small radius α .
- \blacktriangleright However, for our cones of interest, this convexity assumption is violated.
- \triangleright Under the convexity assumption, the exact formula was already obtained by Glasauer 1995 (PhD thesis, University of Freiburg).
- \blacktriangleright However, Glasauer's works with measure theoretic techniques, which don't provide inequalities and thus results for our cones of interest.

The main geometric idea of proof

- ► Gr_{n,m} is a Riemannian manifold and thus has exponential maps $\exp_{W}: T_{W} \mathsf{Gr}_{n,m} \to \mathsf{Gr}_{n,m}$ at $W \in \mathsf{Gr}_{n,m}$.
- \triangleright Let *C* ⊂ \mathbb{R}^n be a regular cone such that $K := S^{n-1} \cap C$ has smooth boundary $M := \partial K$ with positive curvature.
- \triangleright Then $\Sigma_m := \Sigma_m(C)$ is a smooth oriented hypersurface of Gr_{n, m} bounding $\mathcal{D}_m(C)$ and $\mathcal{P}_m(C)$. Let ν denote the unit normal vector field of Σ_m pointing inside $\mathcal{D}_m(C)$.
- \triangleright The α -tube $\mathcal{T}(\Sigma_m, \alpha)$ around Σ_m is the image of

$$
\Psi\colon \Sigma_m\times [-\alpha,\alpha]\to \mathsf{Gr}_{n,m},\, (W,\theta)\mapsto \exp_W\big(\theta\,\nu(W)\big).
$$

 \triangleright By the coarea formula

$$
\text{vol}\,\mathcal{T}(\Sigma_m,\alpha) ~=~ \int_{-\alpha}^{\alpha}\,d\theta\int_{\Sigma_m}\text{NJ}\Psi\,d\Sigma_m{\,}.
$$

! Need a parametrization of Σ*^m* and need to compute NJΨ.

Geometry of ill-posed set Σ*^m*

- \triangleright Recall that $\Sigma_m := \Sigma_m(C) ⊆ Gr_{n,m}$ consists of the *m*-dimensional subspaces *W* touching *C*.
- **Each** *W* touches $K = S^{n-1} ∩ C$ in a unique point *p* due to positive curvature of $M = \partial K$. Write $Y := p^{\perp} \cap W$. Then $Y \in Gr(T_pM, m-1)$ and $W = \mathbb{R}p + Y$.
- ▶ The fiber over *p* of the map

$$
\Pi_M\colon \Sigma_m\to M, W\mapsto p, \text{ where } W\cap K=\{p\}
$$

basically equals $F_p := Gr(T_pM, m-1)$. We can thus view Σ_m as an embedding of the (*m* − 1)th Grassmann bundle over *M*.

 \triangleright By the coarea formula:

$$
\int_{\Sigma_m} \text{NJ}\Psi \, d\Sigma_m = \int_{\rho \in M} dM(\rho) \int_{Y \in F_\rho} \text{NJ}\Pi_M \cdot \text{NJ}\Psi \, dF_\rho(Y) \, .
$$

Thank you, and

All the Best for You, Mike!!!

Twisted characteristic polynomial

- \blacktriangleright Let \mathcal{W}_p : $\mathcal{T}_pM \to \mathcal{T}_pM$ denote the Weingarten map of M at p: the eigenvalues of W_p are the principle curvatures of the smooth hypersurface *M* of *Sⁿ*−¹.
- \triangleright Let $\sigma_k(p)$ denote the *k*th elementary symmetric polynomial in the principal curvatures of *M* at *p*.
- ! Weyl: For 1 ≤ *j* ≤ *n* − 1

$$
V_j(C) = \frac{1}{\sigma_{j-1} \cdot \sigma_{n-j-1}} \cdot \int_{p \in M} \sigma_{n-j-1}(p) dM,
$$

- \triangleright Let *Y* ∈ Gr(T_pM , $m-1$) and Π_Y : *V* → *Y* denote the orthogonal projection onto *Y* .
- \triangleright We define the twisted characteristic polynomial of W_p with respect to *Y* as

$$
\operatorname{ch}_Y(\mathcal{W}_p, t) := \det \left(\mathcal{W}_p - \left(t \cdot \Pi_Y - \frac{1}{t} \cdot \Pi_{Y^\perp} \right) \right) \cdot t^{n-m-1}.
$$

Normal Jacobians

 $\mathsf{Recall} \ \Psi(W, \theta) = \exp_W (\theta \nu(W)) \ \mathsf{and} \ \mathsf{F}_p := \mathsf{Gr}(\mathsf{T}_pM, m-1)$

Theorem (technical!)

$$
(\text{NJT}_M \cdot \text{NJ}\Psi)(W, \theta) = (\cos \theta)^{n-2} \operatorname{ch}_Y(W_p, \tan \theta)
$$

$$
\mathbb{E}_{Y \in \mathcal{F}_p} \Big[\big| \operatorname{ch}_Y(W_p, t) \big| \Big] \leq \sum_{i,j=0}^{n-2} d_{ij}^{nm} \cdot \sigma_{n-2-j}(p) \cdot t^{n-i-2} .
$$

Wrapping up:

$$
\text{vol}\,\mathcal{T}(\Sigma_m,\alpha) = \int_{-\alpha}^{\alpha} d\theta \int_{\rho \in M} dM(\rho) \int_{Y \in F_\rho} (\cos \theta)^{n-2} |\operatorname{ch}_Y(\mathcal{W}_p, \tan \theta)| dF_\rho(Y)
$$
\n
$$
= \int_{-\alpha}^{\alpha} (\cos \theta)^{n-2} d\theta \int_{\rho \in M} \text{vol}(F_\rho) \underbrace{\mathbb{E}}_{Y \in F_\rho} [|\operatorname{ch}_Y(\mathcal{W}_p, \tan \theta)|] dM(\rho)
$$
\n
$$
\stackrel{\text{Thm.}}{\leq} \text{vol}(F_\rho) \sum_{i,j} d_{ij}^{nm} \int_{\rho \in M} \sigma_{n-2-j}(\rho) dM(\rho) \int_{-\alpha}^{\alpha} (\cos \theta)^{n-2} (\tan \theta)^{n-i-2} d\theta
$$