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The τ -Conjecture [Shub-Smale’95]

τ(f ) = length of smallest straight-line program for f ∈ Z[X ].
No constants are allowed.
Conjecture: f has at most τ(f )c integer zeros (for a constant c).
Theorem [Shub-Smale’95]: τ -conjecture ⇒ PC 6= NPC.
Theorem [Bürgisser’07]:
τ -conjecture ⇒ no polynomial-size arithmetic circuits

for the permanent.
Remarks:

I What if constants are allowed?

I We must have c ≥ 2.

I Conjecture becomes false for real roots:
Shub-Smale (Chebyshev’s polynomials), Borodin-Cook’76.
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The Real τ -Conjecture

Conjecture: Consider f (X ) =
∑k

i=1

∏m
j=1 fij(X ),

where the fij are t-sparse.
If f is nonzero, its number of real roots is polynomial in kmt.
Theorem: If the conjecture is true then the permanent is hard.
Remarks:

I It is enough to bound the number of integer roots.
Could techniques from real analysis be helpful?

I Case k = 1 of the conjecture follows from Descartes’ rule.

I By expanding the products, f has at most 2ktm − 1 zeros.

I k = 2 is open. An even more basic question
(courtesy of Arkadev Chattopadhyay):
how many real solutions to fg = 1 ?
Descartes’ bound is O(t2) but true bound could be O(t).
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Descartes’s rule without signs

Theorem:
If f has t monomials then f at most t − 1 positive real roots.
Proof: Induction on t. No positive root for t = 1.
For t > 1: let aαX

α = lowest degree monomial.
We can assume α = 0 (divide by Xα if not). Then:

(i) f ′ has t − 1 monomials ⇒ ≤ t − 2 positive real roots.

(ii) There is a positive root of f ′ between 2 consecutive positive
roots of f (Rolle’s theorem).
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Real τ -Conjecture ⇒ Permanent is hard

The 2 main ingredients:

I The Pochhammer-Wilkinson polynomials:
PWn(X ) =

∏n
i=1(X − i).

Theorem [Bürgisser’07-09]: If the permanent is easy,
PWn has circuits size (log n)O(1).

I Reduction to depth 4 for arithmetic circuits
(Agrawal and Vinay, 2008).



The second ingredient: reduction to depth 4

Depth reduction theorem (Agrawal and Vinay, 2008):
Any multilinear polynomial in n variables with an arithmetic circuit
of size 2o(n) also has a depth four (ΣΠΣΠ) circuit of size 2o(n).

Our polynomials are far from multilinear, but:

Depth-4 circuit with inputs of the form X 2i , or constants

(Shallow circuit with high-powered inputs)

m
Sum of Products of Sparse Polynomials



How the proof does not go

Assume by contradiction that the permanent is easy.
Goal:
Show that SPS polynomials of size 2o(n) can compute

∏2n

i=1(X − i)
⇒ contradiction with real τ -conjecture.

1. From assumption:
∏2n

i=1(X − i) has circuits of polynomial in n
(Bürgisser).

2. Reduction to depth 4 ⇒ SPS polynomials of size 2o(n).

What’s wrong with this argument:
No high-degree analogue of reduction to depth 4
(think of Chebyshev’s polynomials).
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How the proof goes (more or less)

Assume that the permanent is easy.
Goal:
Show that SPS polynomials of size 2o(n) can compute

∏2n

i=1(X − i)
⇒ contradiction with real τ -conjecture.

1. From assumption:
∏2n

i=1(X − i) has circuits of polynomial in n
(Bürgisser).

2. Reduction to depth 4 ⇒ SPS polynomials of size 2o(n).

For step 2: need to use again the assumption that perm is easy.



The limited power of powering (a tractable special case)

What if the number of distinct fij is very small (even constant)?

Consider f (X ) =
∑k

i=1

∏m
j=1 f

αij

j (X ),
where the fj are t-sparse.
Theorem [with Grenet, Portier and Strozecki]:

If f is nonzero, it has at most tO(m.2k ) real roots.
Remarks:

I For this model we also give a permanent lower bound
and a polynomial identity testing algorithm (f ≡ 0 ?).
See also [Agrawal-Saha-Saptharishi-Saxena, STOC’2012].

I Bounds from Khovanskii’s theory of fewnomials are
exponential in k,m, t.

Today’s result:
Theorem [with Portier and Tavenas]:
If f is nonzero, it has at most tO(m.k2) real roots.
The main tool is...
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The Wronskian

Definition: Let f1, . . . , fk : I → R. Their Wronskian is the
determinant of the Wronskian matrix

W(f1, . . . , fk) = det


f1 f2 · · · fk
f ′1 f ′2 · · · f ′k
...

...
...

f
(k−1)
1 f

(k−1)
2 · · · f

(k−1)
k


I Linear dependence ⇒W(f1, . . . , fk) ≡ 0.

I Converse is not always true (Peano, 1889):
Let f1(x) = x2, f2(x) = x |x |. Then

W(f1, f2) = det

[
x2 sign(x)x2

2x 2sign(x)x

]
≡ 0.

I Converse is true for analytic functions (Bôcher, 1900).



The Wronskian and Real Roots

Upper Bound Theorem: Assume that the k wronskians

W (f1),W (f1, f2),W (f1, f2, f3), . . . ,W (f1, . . . , fk)

have no zeros on I .
Let f = a1f1 + · · ·+ ak fk where ai 6= 0 for some i .
Then f has at most k − 1 zeros on I , counted with multiplicities.
Remark:
Connections between real roots and the Wronksian were known.
Typical application:
Divide R into intervals where the k wronskians have no zeros.
Case k = 2:

1. If a2 = 0, f = a1f1 has no zero on I .

2. If a2 6= 0, write f = f1g where g = a1 + a2f2/f1.
g ′ = a2(f ′2f1 − f2f

′
1)/f 21 = a2W(f1, f2)/f 21 has no zero ⇒

by Rolle’s theorem, g has at most 1 zero, and f too.
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Linear Dependence for Analytic Functions (1/3)

Theorem [Bôcher]: If f1, . . . , fk : I → R are analytic
and W(f1, . . . , fk) ≡ 0, these functions are linearly dependent.
Proof: By induction on k. Pick J ⊆ I where f1 6= 0. On J:

a1f1 + · · ·+ ak fk ≡ 0
⇔ a1 + a2(f2/f1) + · · ·+ ak(fk/f1) ≡ 0
⇔ a2(f2/f1)′ + · · ·+ ak(fk/f1)′ ≡ 0. (∗)

(*) follows from induction hypothesis and the recursive formula:

W(f1, . . . , fk) = f k1 W((f2/f1)′, . . . , (fk/f1)′).

To conclude: for analytic functions,
if f = a1f1 + · · ·+ ak fk ≡ 0 on J, then f ≡ 0 on I .
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Linear Dependence for Analytic Functions (2/3)
Lemma: W(f1g , f2g , . . . , fkg) = gkW(f1, f2, . . . , fk).
For instance:

W(f1g , f2g , f3g) =

∣∣∣∣∣∣
f1g f2g f3g

(f1g)′ (f2g)′ (f3g)′′

(f1g)′′ (f2g)′′ (f3g)′′

∣∣∣∣∣∣
= g

∣∣∣∣∣∣
f1 f2 f3

f ′1g + f1g
′ f ′2g + f2g

′ f ′3g + f3g
′

f1”g + 2f ′1g
′ + f1g” f2”g + 2f ′2g

′ + f2g” f3”g + 2f ′3g
′ + f3g”

∣∣∣∣∣∣
= g

∣∣∣∣∣∣
f1 f2 f3
f ′1g f ′2g f ′3g

f1”g + 2f ′1g
′ f2”g + 2f ′2g

′ f3”g + 2f ′3g
′

∣∣∣∣∣∣
= g2

∣∣∣∣∣∣
f1 f2 f3
f ′1 f ′2 f ′3

f1”g + 2f ′1g
′ f2”g + 2f ′2g

′ f3”g + 2f ′3g
′

∣∣∣∣∣∣ = g3W(f1, f2, f3).
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Linear Dependence for Analytic Functions (3/3):
The Recursive Formula for the Wronskian

Proposition [Hesse - Christoffel - Frobenius]:
W(f1, . . . , fk) = f k1 W((f2/f1)′, . . . , (fk/f1)′).
From previous lemma:

W(f1, f2, f3) = f 31 W(1, f2/f1, f3/f1) = f 31

∣∣∣∣∣∣
1 f2/f1 f3/f1
0 (f2/f1)′ (f3/f1)′

0 (f2/f1)” (f3/f1)”
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Hence

W(f1, f2, f3) = f 31

∣∣∣∣ (f2/f1)′ (f3/f1)′

(f2/f1)” (f3/f1)”

∣∣∣∣ = f 31 W((f2/f1)′, (f3/f1)′).
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Proof of Upper Bound Theorem

Theorem: Assume that the k wronskians

W (f1),W (f1, f2),W (f1, f2, f3), . . . ,W (f1, . . . , fk)

have no zeros on I .
Let f = a1f1 + · · ·+ ak fk where ai 6= 0 for some i .
Then f has at most k − 1 zeros on I , counted with multiplicities.
Proof: By induction on k.
Assume k ≥ 2 and a2, . . . , ak not all 0.
Write f = f1g where g = a1 + a2f2/f1 + · · ·+ ak fk/f1.
To apply induction hypothesis to g ′ = a2(f2/f1)′ + · · ·+ ak(fk/f1)′:
Note

W((f2/f1)′, . . . , (fi/f1)′) = W(f1, . . . , fi )/f
i
1

has no zero on I .
Hence g ′ has at most k − 2 zeros on I ,
g and f at most k − 1 by Rolle’s theorem.
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Application: Intersection of a plane curve and a line (1/2)

Theorem (Avendano’09):
Let g =

∑k
j=1 ajx

αj yβj and f (x) = f (x , ax + b). Assume f 6≡0.
If b/a > 0 then f has at most 2k − 2 in each of the 3 intervals
]−∞,−b/a[, ]− b/a, 0[, ]0,+∞[.
Remark: This bound is provably false for rational exponents.

Set a = b = 1 and fj(X ) = Xαj (1 + X )βj .
The entries of the wronskians are of the form:

f
(i)
j (X ) =

i∑
t=0

cijtX
αj−t(1 + X )βj−i+t .

Factorizing common factors in rows and columns shows

W(f1, . . . , fk) = X
∑

j αj−(k2)(1 + X )
∑

j βj−(k2) detM

where detM has degree ≤
(k
2

)
.



Application: Intersection of a plane curve and a line (1/2)

Theorem (Avendano’09):
Let g =

∑k
j=1 ajx

αj yβj and f (x) = f (x , ax + b). Assume f 6≡0.
If b/a > 0 then f has at most 2k − 2 in each of the 3 intervals
]−∞,−b/a[, ]− b/a, 0[, ]0,+∞[.
Remark: This bound is provably false for rational exponents.

Set a = b = 1 and fj(X ) = Xαj (1 + X )βj .
The entries of the wronskians are of the form:

f
(i)
j (X ) =

i∑
t=0

cijtX
αj−t(1 + X )βj−i+t .

Factorizing common factors in rows and columns shows

W(f1, . . . , fk) = X
∑

j αj−(k2)(1 + X )
∑

j βj−(k2) detM

where detM has degree ≤
(k
2

)
.



Application: Intersection of a plane curve and a line (2/2)

Conclusion:
f (x) =

∑k
j=1 ajx

αj (1 + x)βj has O(k4) zeros in ]0,+∞[.

Proof:
Assume W(f1, . . . , fk) 6≡0 (otherwise, there is a linear dependence).
We have k Wronskians, each with O(k2) zeros in ]0,+∞[.
⇒ O(k3) intervals containing ≤ k − 1 zeros each.

Remark: This can be adapted to a number of different models.
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To learn more about the Wronskian

I M. Krusemeyer. Why does the Wronskian work?
American Math. Monthly, 1988.
(Recursive formula for the Wronskian)

I A. Bostan and P. Dumas.
Wronskians and Linear Independence.
American Math. Monthly, 2010. (New non-recursive proof for
analytic functions and power series)

I G. Pólya and G. Szegö.
Problems and Theorems in Analysis II.
(Includes connection to Descartes’ rule of signs,
pointed out by Saugata Basu)





A lower bound for restricted depth 4 circuits, or:
the limited power of powering.

Consider representations of the permanent of the form:

PER(X ) =
k∑

i=1

m∏
j=1

f
αij

j (X ) (1)

where

I X is a n × n matrix of indeterminates.

I k and m are bounded, and the αij are of polynomial bit size.

I The fj are polynomials in n2 variables,
with at most t monomials.

Theorem [with Grenet, Portier and Strozecki]:
No such representation if t is polynomially bounded in n.
Remark: The point is that the αij may be nonconstant.
Otherwise, the number of monomials in (1) is polynomial in t.



Lower Bound Proof

I Assume otherwise:

PER(X ) =
k∑

i=1

m∏
j=1

f
αij

j (X ). (2)

I Since PER is easy, Pn =
∏2n

i=1(x − i) is easy too.
In fact [Bürgisser], Pn(x) = PER(X ) where X is of size nO(1),
with entries that are constants or powers of x .

I By (2) and upper bound theorem, Pn should have only nO(1)

real roots.
But Pn has 2n integer roots!

Remark:
The current proof requires the Generalized Riemann Hypothesis
(to handle arbitrary complex coefficients in the fj).
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