A primal-dual smooth perceptron-von Neumann algorithm

Javier Peña Carnegie Mellon University (joint work with Negar Soheili)

Shubfest, Fields Institute May 2012

Polyhedral feasibility problems

Given $A := \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \in \mathbb{R}^{m \times n}$, consider the alternative feasibility problems

1

$$\mathsf{A}^\mathsf{T} y > \mathbf{0}, \tag{D}$$

and

$$Ax = 0, x \ge 0, x \ne 0.$$
 (P)

Theme

Condition-based analysis of *elementary* algorithms for solving (P) and (D).

Perceptron Algorithm

Algorithm to solve

$$A^{\mathsf{T}}y > 0. \tag{D}$$

Perceptron Algorithm (Rosenblatt, 1958)

•
$$y := 0$$

• while $A^{\mathsf{T}}y \neq 0$
 $y := y + \frac{a_j}{\|a_j\|}$, where $a_j^{\mathsf{T}}y \leq 0$
end while

Throughout this talk: $\|\cdot\| = \|\cdot\|_2$.

Von Neumann's Algorithm

Algorithm to solve

$$Ax = 0, \ x \ge 0, \ x \ne 0. \tag{P}$$

Von Neumann's Algorithm (von Neumann, 1948)

•
$$x_0 := \frac{1}{n} \mathbf{1}; y_0 := Ax_0$$

• for $k = 0, 1, ...$
if $a_j^T y_k := \min_i a_i^T y_k > 0$ then halt: (P) is infeasible
 $\lambda_k := \operatorname{argmin}_{\lambda \in [0,1]} ||(1 - \lambda)y_k - \lambda a_j|| = \frac{1 - a_j^T y_k}{||y_k||^2 - 2a_j^T y_k + 1}$
 $x_{k+1} := \lambda_k x_k + (1 - \lambda_k)e_j$, where $j = \operatorname{argmin}_i a_i^T y_k$
end for

Elementary algorithms

- The perceptron and von Neumann's algorithms are "elementary" algorithms.
- "Elementary" means that each iteration involves only simple computations.

Why should we care about elementary algorithms?

- Some large-scale optimization problems (e.g., in compressive sensing) are not solvable via conventional Newton-based algorithms.
- In some cases, the entire matrix A may not be explicitly available at once.
- Elementary algorithms have been effective in these cases.

Conditioning

Throughout the sequel assume $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$, where $\|a_j\| = 1, j = 1, \dots, n$.

Key parameter

$$\rho(A) := \max_{\|y\|=1} \min_{j=1,\dots,n} a_j^{\mathsf{T}} y.$$

Goffin-Cheung-Cucker condition number

$$\mathscr{C}(A) := rac{1}{|
ho(A)|}.$$

(This is closely related to Renegar's condition number.)

Conditioning

Notice

•
$$A^{\mathsf{T}}y > 0$$
 feasible $\Leftrightarrow \rho(A) > 0$.

•
$$Ax = 0, x \ge 0, x \ne 0$$
 feasible $\Leftrightarrow \rho(A) \le 0$.

III-posedness

A is **ill-posed** when $\rho(A) = 0$. In this case both $A^{\mathsf{T}}y > 0$ and Ax = 0, x > 0 are on the verge of feasibility.

Theorem (Cheung & Cucker, 2001)

$$|\rho(A)| = \min_{\tilde{A}} \{\max_{i} \|\tilde{a}_{i} - a_{i}\| : \tilde{A} \text{ is ill-posed} \}.$$

Some geometry

When $\rho(A) > 0$, it is a measure of thickness of the feasible cone:

$$\rho(A) = \max_{\|y\|=1} \left\{ r : \mathbb{B}(y, r) \subseteq \{ z : A^{\mathsf{T}} z \ge 0 \} \right\}.$$

More geometry

Let

$$\Delta_n := \{ x \ge 0 : \|x\|_1 = 1 \}.$$

Proposition (From Renegar 1995 and Cheung-Cucker 2001) $|\rho(A)| = \text{dist}(0, \partial \{Ax : x \ge 0, x \in \Delta_n\}).$

Condition-based complexity

Recall our problems of interest

$$A^{\mathsf{T}}y > 0, \tag{D}$$

and

$$Ax = 0, \ x \in \Delta_n. \tag{P}$$

Theorem (Block-Novikoff 1962) If $\rho(A) > 0$, then the perceptron algorithm terminates after at most

$$\frac{1}{\rho(A)^2} = \mathscr{C}(A)^2$$

iterations.

Condition-based complexity

Theorem (Dantzig, 1992)

If $\rho(A) < 0$, then von Neumann's algorithm finds an ϵ -solution to (P), i.e, $x \in \Delta_n$ with $||Ax|| < \epsilon$ in at most

$$\frac{1}{\epsilon^2}$$

iterations.

Theorem (Epelman & Freund, 2000)

If $\rho(A) < 0$, then von Neumann's algorithm finds an ϵ -solution to (P) in at most

$$rac{1}{
ho(A)^2} \cdot \log\left(rac{1}{\epsilon}
ight)$$

iterations.

Main Theorem

Theorem (Soheili & P, 2012)

A <u>smooth</u> version of perceptron/von Neumann's algorithm such that:

(a) If $\rho(A) > 0$, then it finds a solution to $A^T y > 0$ in at most

$$\mathcal{O}\left(rac{\sqrt{n}}{
ho(A)}\cdot \log\left(rac{1}{
ho(A)}
ight)
ight)$$

iterations.

(b) If $\rho(A) < 0$, then it finds an ϵ -solution to Ax = 0, $x \in \Delta_n$ in at most

$$\mathcal{O}\left(rac{\sqrt{n}}{|
ho(\mathcal{A})|}\cdot \log\left(rac{1}{\epsilon}
ight)
ight)$$

iterations.

(c) Iterations are elementary (not much more complicated than those of the perceptron or von Neumann's algorithms).

Perceptron algorithm again

Perceptron Algorithm

• for
$$k = 0, 1, \dots$$

 $a_j^\mathsf{T} y_k := \min_i a_i^\mathsf{T} y_k$
 $y_{k+1} := y_k + a_j$
end for

Observe

$$a_j^{\mathsf{T}} y := \min_i a_i^{\mathsf{T}} y \Leftrightarrow a_j = Ax(y), \ x(y) = \operatorname*{argmin}_{x \in \Delta_n} \langle A^{\mathsf{T}} y, x \rangle.$$

Hence in the above algorithm $y_k = Ax_k$ where $x_k \ge 0$, $||x_k||_1 = k$.

Normalized Perceptron Algorithm

$$\operatorname{Recall} x(y) := \operatorname{argmin}_{x \in \Delta_n} \langle A^{\mathsf{T}} y, x \rangle.$$

Normalized Perceptron Algorithm

• for
$$k = 0, 1, \dots$$

 $\theta_k := \frac{1}{k+1}$
 $y_{k+1} := (1 - \theta_k)y_k + \theta_k Ax(y_k)$

end for

In this algorithm $y_k = Ax_k$ for $x_k \in \Delta_n$.

Perceptron-Von Neumann's Template

Both the perceptron and von Neumann's algorithms perform similar iterations.

PVN Template

•
$$x_0 \in \Delta_n$$
; $y_0 := Ax_0$

• for
$$k = 0, 1, ...$$

 $x_{k+1} := (1 - \theta_k)x_k + \theta_k x(y_k)$
 $y_{k+1} := (1 - \theta_k)y_k + \theta_k A x(y_k)$

end for

Observe

- Recover (normalized) perceptron if $\theta_k = \frac{1}{k+1}$
- Recover von Neumann's if

$$\theta_k = \operatorname*{argmin}_{\lambda \in [0,1]} \| (1-\lambda) y_k - \lambda A x(y_k) \|.$$

Smooth Perceptron-Von Neumann Algorithm

Apply Nesterov's smoothing technique (Nesterov, 2005).

Key step: Use a smooth version of

$$x(y) = \operatorname*{argmin}_{x \in \Delta_n} \langle A^\mathsf{T} y, x \rangle,$$

namely,

$$x_{\mu}(y) := \operatorname*{argmin}_{x \in \Delta_n} \left\{ \langle \mathsf{A}^\mathsf{T} y, x \rangle + rac{\mu}{2} \|x - ar{x}\|^2
ight\},$$

for some $\mu > 0$ and $\bar{x} \in \Delta_n$.

Smooth Perceptron-Von Neumann Algorithm

Assume $\bar{x} \in \Delta_n$ and $\delta > 0$ are given inputs.

Algorithm SPVN(\bar{x}, δ)

•
$$y_0 := A\bar{x}; \ \mu_0 := n; \ x_0 := x_{\mu_0}(y_0)$$

• for
$$k = 0, 1, ...$$

 $\theta_k := \frac{2}{k+3}$
 $y_{k+1} := (1 - \theta_k)(y_k + \theta_k A x_k) + \theta_k^2 A x_{\mu_k}(y_k)$
 $\mu_{k+1} := (1 - \theta_k)\mu_k$
 $x_{k+1} := (1 - \theta_k)x_k + \theta_k x_{\mu_{k+1}}(y_{k+1})$
if $A^T y_{k+1} > 0$ then halt: y_{k+1} is a solution to (D)
if $||A x_{k+1}|| \le \delta$ then halt: x_{k+1} is δ -solution to (P)
end for

PVN update versus SPVN update

Update in PVN template

$$egin{aligned} y_{k+1} &:= (1- heta_k)y_k + heta_k Ax(y_k) \ x_{k+1} &:= (1- heta_k)x_k + heta_k x(y_k) \end{aligned}$$

Update in Algorithm SPVN

$$\begin{aligned} y_{k+1} &:= (1 - \theta_k)(y_k + \theta_k A x_k) + \theta_k^2 A x_{\mu_k}(y_k) \\ \mu_{k+1} &:= (1 - \theta_k) \mu_k \\ x_{k+1} &:= (1 - \theta_k) x_k + \theta_k x_{\mu_{k+1}}(y_{k+1}) \end{aligned}$$

Theorem (Soheili and P, 2011)

Assume $\bar{x} \in \Delta_n$ and $\delta > 0$ are given.

(a) If $\delta < \rho(A)$, then Algorithm SPVN finds a solution to (D) in at most

$$\frac{2\sqrt{2n}}{\rho(A)}-1.$$

iterations.

(b) If $\rho(A) < 0$, then Algorithm SPVN finds a δ -solution to (P) in at most

$$\frac{2\sqrt{2n}}{\delta} - 1$$

iterations.

Iterated Smooth Perceptron-Von Neumann Algorithm

Assume $\gamma > 1$ is a given constant.

Algorithm ISPVN(γ)

•
$$\tilde{x}_0 := \frac{1}{n} \mathbf{1}$$

• for
$$i = 0, 1, ...$$

$$\delta_i := \frac{\|A\tilde{x}_i\|}{\gamma}$$

$$\tilde{x}_{i+1} = \text{SPVN}(\tilde{x}_i, \delta_i)$$

end for

Main Theorem Again

Theorem (Soheili & P, 2012)

(a) If $\rho(A) > 0$, then each call to SPVN in Algorithm ISPVN halts in at most $\frac{2\sqrt{2n}}{\rho(A)} - 1$ iterations. Consequently, Algorithm ISPVN finds a solution to (D) in at most

$$\left(rac{2\sqrt{2n}}{
ho({A})}-1
ight)\cdotrac{\log(1/
ho({A}))}{\log(\gamma)}$$

SPVN iterations.

(b) If $\rho(A) < 0$, then each call to SPVN in Algorithm ISPVN halts in at most $\frac{2\gamma\sqrt{2n}}{|\rho(A)|} - 1$ iterations. Hence for $\epsilon > 0$ Algorithm ISPVN finds an ϵ -solution to (P) in at most

$$\left(rac{2\gamma\sqrt{2n}}{|
ho({\mathcal A})|}-1
ight)\cdotrac{\mathsf{log}(1/\epsilon)}{\mathsf{log}(\gamma)}$$

SPVN iterations.

Observe

- A "pure" SPVN ($\delta = 0$):
 - When $\rho(A) > 0$, it solves (D) in $\mathcal{O}\left(\frac{\sqrt{n}}{\rho(A)}\right)$ iterations.
 - When $\rho(A) < 0$, it finds ϵ -solution to (P) in $\mathcal{O}\left(\frac{\sqrt{n}}{\epsilon}\right)$ iterations.
- ISPVN (iterated SPVN with gradual reduction on δ):
 - When $\rho(A) > 0$, it solves (D) in $\mathcal{O}\left(\frac{\sqrt{n}}{\rho(A)}\log\left(\frac{1}{\rho(A)}\right)\right)$ iterations.
 - When $\rho(A) < 0$, it finds ϵ -solution to (P) in $\mathcal{O}\left(\frac{\sqrt{n}}{|\rho(A)|}\log\left(\frac{1}{\epsilon}\right)\right)$ iterations.

Perceptron and von Neumann's as subgradient algorithms

$$\phi(\mathbf{y}) := -\frac{\|\mathbf{y}\|^2}{2} + \min_{\mathbf{x} \in \Delta_n} \langle \mathbf{A}^\mathsf{T} \mathbf{y}, \mathbf{x} \rangle.$$

Observe

$$\max_{y} \phi(y) = \min_{x \in \Delta_n} \frac{1}{2} \|Ax\|^2 = \begin{cases} \frac{1}{2} \rho(A)^2 & \text{if } \rho(A) > 0 \\ 0 & \text{if } \rho(A) \le 0. \end{cases}$$

PVN Template: $y_{k+1} = y_k + \theta_k(-y_k + Ax(y_k))$ is a subgradient algorithm for

 $\max_y \phi(y).$

For $\mu > 0$ and $\bar{x} \in \Delta_n$ let

$$\begin{split} \phi_{\mu}(y) &:= -\frac{\|y\|^2}{2} + \min_{x \in \Delta_n} \left\{ \langle A^{\mathsf{T}} y, x \rangle + \frac{\mu}{2} \|x - \bar{x}\|^2 \right\} \\ &= -\frac{\|y\|^2}{2} + \langle A^{\mathsf{T}} y, x_{\mu}(y) \rangle + \frac{\mu}{2} \|x_{\mu}(y) - \bar{x}\|^2. \end{split}$$

Proof of Main Theorem

Apply Nesterov's excessive gap technique (Nesterov, 2005).

Claim

For all $x \in \Delta_n$ and $y \in \mathbb{R}^m$ we have $\phi(y) \leq \frac{1}{2} ||Ax||^2$.

Claim

For all
$$y \in \mathbb{R}^m$$
 we have $\phi(y) \le \phi_{\mu}(y) \le \phi(y) + 2\mu$.

Lemma

The iterates $x_k \in \Delta_n$, $y_k \in \mathbb{R}^m$, k = 0, 1, ... generated by the SPVN Algorithm satisfy the Excessive Gap Condition

$$\frac{1}{2}\|Ax_k\|^2 \leq \phi_{\mu_k}(y_k).$$

Proof of Main Theorem (a): $\rho(A) > 0$

Putting together the two claims and lemma we get

$$\frac{1}{2}\rho(A)^2 \leq \frac{1}{2} \|Ax_k\|^2 \leq \phi_{\mu_k}(y_k) \leq \phi(y_k) + 2\mu_k.$$

So

$$\phi(y_k) \geq \frac{1}{2}\rho(A)^2 - 2\mu_k.$$

In the algorithm $\mu_k = n \cdot \frac{1}{3} \cdot \frac{2}{4} \cdots \frac{k}{k+2} = \frac{2n}{(k+1)(k+2)} < \frac{2n}{(k+1)^2}$.

Thus $\phi(y_k) > 0$, and consequently $A^T y_k > 0$, as soon as

$$k\geq \frac{2\sqrt{2n}}{\rho(A)}-1.$$

Proof of Main Theorem (continued)

Suppose now $\rho(A) < 0$, i.e., (P) is feasible.

Let

$$S:=\{x\in\Delta_n:Ax=0\},$$

and for $v \in \mathbb{R}^n$ let

$$dist(v, S) := min\{||v - x|| : x \in S\}.$$

Lemma

If $\rho(A) < 0$ then for all $v \in \Delta_n$

$$\mathit{dist}(v,S) \leq rac{2\|\mathit{A}v\|}{|
ho(\mathit{A})|}.$$

Proof of Main Theorem (b): $\rho(A) < 0$

As in part (a), at iteration k of Algorithm SPVN we have

$$\begin{split} \frac{1}{2} \|Ax_k\|^2 &\leq \varphi_{\mu_k}(y_k) \\ &\leq \min_{x \in S} \left\{ -\frac{\|y_k\|^2}{2} + \langle A^\mathsf{T} y_k, x \rangle + \frac{\mu_k}{2} \|x - \bar{x}\|^2 \right\} \\ &\leq \frac{\mu_k}{2} \min_{x \in S} \|x - \bar{x}\|^2 \\ &= \frac{\mu_k}{2} \mathrm{dist}(\bar{x}, S)^2. \end{split}$$

Thus by previous lemma and the fact that $\mu_k < rac{2n}{(k+1)^2}$ we get

$$\|Ax_k\|^2 \le \mu_k \cdot \operatorname{dist}(\bar{x}, S)^2 \le \frac{4\mu_k \|A\bar{x}\|^2}{\rho(A)^2} \le \frac{8n \|A\bar{x}\|^2}{(k+1)^2 \rho(A)^2}.$$

So when $k \geq \frac{2\gamma\sqrt{2n}}{|\rho(A)|} - 1$ we have $||Ax_k|| \leq \frac{||A\bar{x}||}{\gamma}$ and Algorithm SPVN halts.

About the key smoothing step

We could instead use the entropy function

$$d(x) = \sum_{j=1}^{n} x_j \log(x_j).$$

Bregman distance:

$$h(x,\bar{x}) := d(x) - d(\bar{x}) - \langle \nabla d(\bar{x}), x - \bar{x} \rangle.$$

Given $\mu > 0$ and $\bar{x} \in \Delta_n$, smooth

$$x(y) = \operatorname*{argmin}_{x \in \Delta_n} \langle A^\mathsf{T} y, x \rangle,$$

to

$$x_{\mu}(y) := \operatorname*{argmin}_{x \in \Delta_n} \left\{ \langle A^{\mathsf{T}} y, x \rangle + \mu h(x, \bar{x}) \right\}.$$

Replace $\frac{1}{2} ||x - \bar{x}||^2$ with $h(x, \bar{x})$.

About the key smoothing step

With the entropy we get stronger result for SPVN:

Theorem (Soheili and P, 2011)

Assume $\bar{x} \in \Delta_n$ and $\delta > 0$ are given.

(a) If $\delta < \rho(A)$, then Algorithm SPVN finds a solution to (D) in at most

$$\frac{2\sqrt{\log(n)}}{\rho(A)} - 1.$$

iterations.

(b) If $\rho(A) < 0$, then Algorithm SPVN finds a δ -solution to (P) in at most

$$\frac{2\sqrt{\log(n)}}{\delta} - 1$$

iterations.

However, the proof of Main Theorem (b) for ISPVN breaks down.

More general feasibility problems

Given $A \in \mathbb{R}^{m \times n}$ and a regular closed convex cone $K \subseteq \mathbb{R}^n$, consider the alternative feasibility problems

$$A^{\mathsf{T}}y \in \mathsf{int}(\mathcal{K}^*), \tag{D}$$

and

$$Ax = 0, x \in K, x \neq 0.$$
 (P)

Assume

For some $\mathbf{1} \in int(K^*)$, we have an oracle that solves

$$x(y) := \underset{x}{\operatorname{argmin}} \left\{ \langle A^{\mathsf{T}} y, x \rangle : x \in K, \ \langle \mathbf{1}, x \rangle = 1 \right\}.$$

More general feasibility problems

Recall Renegar's condition number

$$C(A) = rac{\|A\|}{\displaystyle\inf_{A} \{\|A - \tilde{A}\| : \tilde{A} ext{ ill-posed} \}}.$$

Theorem (Epelman & Freund, 2000)

A generalized von Neumann's algorithm solves (D) in

 $\mathcal{O}(\beta \cdot C(A)^2)$

iterations, or finds an ϵ -solution to (P) in

$$\mathcal{O}(\beta \cdot C(A)^2 \cdot \log(\|A\|/\epsilon))$$

iterations.

eta: constant depending on specific choice of norms and $\mathbf{1} \in \mathsf{int}(\mathcal{K})$.

Smooth version

Assume

For some fixed $\mathbf{1} \in \operatorname{int}(K)$, we have an oracle that solves

$$\operatorname*{argmin}_{x}\left\{\langle \mathsf{A}^{\mathsf{T}}y,x
angle+rac{1}{2}\|x\|^{2}:x\in\mathcal{K},\ \langle\mathbf{1},x
angle=1
ight\}.$$

Theorem (Soheili & P, 2012)

A smooth generalized von Neumann's algorithm solves (D) in

 $\mathcal{O}(\beta \sqrt{n} \cdot C(A) \cdot \log(C(A)))$

iterations, or finds an ϵ -solution to (P) in

 $\mathcal{O}(\beta \sqrt{n} \cdot C(A) \cdot \log(\|A\|/\epsilon))$

iterations.

Summary

- Smooth perceptron-von Neumann algorithm improves condition-based complexity roughly from C(A)² to C(A).
- Smooth version preserves most of the algorithms' original simplicity.
- There seems to be room for sharper complexity results.

Happy Birthday to Mike Shub!