A primal-dual smooth perceptron-von Neumann algorithm

Javier Peña Carnegie Mellon University (joint work with Negar Soheili)

Shubfest, Fields Institute May 2012

Polyhedral feasibility problems

Given $A := \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \in \mathbb{R}^{m \times n}$, consider the alternative feasibility problems

$$
A^{\mathsf{T}}y>0,\tag{\mathsf{D}}
$$

and

$$
Ax = 0, x \ge 0, x \ne 0.
$$
 (P)

Theme

Condition-based analysis of elementary algorithms for solving [\(P\)](#page-1-0) and (D) .

Perceptron Algorithm

Algorithm to solve

$$
A^{\mathsf{T}}y>0.\tag{D}
$$

Perceptron Algorithm (Rosenblatt, 1958)

\n- •
$$
y := 0
$$
\n- • while $A^{T}y \ngeq 0$
\n- $y := y + \frac{a_j}{\|a_j\|}$, where $a_j^T y \leq 0$ end while
\n

Throughout this talk: $\|\cdot\| = \|\cdot\|_2$.

Von Neumann's Algorithm

Algorithm to solve

$$
Ax = 0, x \ge 0, x \ne 0.
$$
 (P)

Von Neumann's Algorithm (von Neumann, 1948)

\n- \n
$$
x_0 := \frac{1}{n} \mathbf{1}; \, y_0 := A x_0
$$
\n
\n- \n for $k = 0, 1, \ldots$ \n if $a_j^T y_k := \min_i a_i^T y_k > 0$ then halt: (P) is infeasible\n $\lambda_k := \operatorname{argmin}_{\lambda \in [0,1]} \|(1 - \lambda)y_k - \lambda a_j\| = \frac{1 - a_j^T y_k}{\|y_k\|^2 - 2a_j^T y_k + 1}$ \n $x_{k+1} := \lambda_k x_k + (1 - \lambda_k) e_j$, where $j = \operatorname{argmin}_i a_j^T y_k$ \n end for\n
\n

Elementary algorithms

- The perceptron and von Neumann's algorithms are "elementary" algorithms.
- "Elementary" means that each iteration involves only simple computations.

Why should we care about elementary algorithms?

- Some large-scale optimization problems (e.g., in compressive sensing) are not solvable via conventional Newton-based algorithms.
- \bullet In some cases, the entire matrix A may not be explicitly available at once.
- Elementary algorithms have been effective in these cases.

Conditioning

Throughout the sequel assume $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$, where $||a_j|| = 1, j = 1, \ldots, n$.

Key parameter

$$
\rho(A) := \max_{\|y\|=1} \min_{j=1,...,n} a_j^T y.
$$

Goffin-Cheung-Cucker condition number

$$
\mathscr{C}(A):=\frac{1}{|\rho(A)|}.
$$

(This is closely related to Renegar's condition number.)

Conditioning

Notice

•
$$
A^Ty > 0
$$
 feasible $\Leftrightarrow \rho(A) > 0$.

• $Ax = 0, x \ge 0, x \ne 0$ feasible $\Leftrightarrow \rho(A) \le 0$.

Ill-posedness

 A is **ill-posed** when $\rho(A)=0.$ In this case both $A^{\mathsf{T}}y>0$ and $Ax = 0, x > 0$ are on the verge of feasibility.

Theorem (Cheung & Cucker, 2001)

$$
|\rho(A)| = \min_{\widetilde{A}} \{ \max_i \|\widetilde{a}_i - a_i\| : \widetilde{A} \text{ is ill-posed} \}.
$$

Some geometry

When $\rho(A)>0$, it is a measure of thickness of the feasible cone:

$$
\rho(A) = \max_{\|y\|=1} \left\{ r : \mathbb{B}(y,r) \subseteq \{z : A^{\mathsf{T}} z \geq 0\} \right\}.
$$

More geometry

Let

$$
\Delta_n := \{x \ge 0 : ||x||_1 = 1\}.
$$

Proposition (From Renegar 1995 and Cheung-Cucker 2001)

$$
|\rho(A)| = \mathsf{dist}\left(0, \partial\{Ax : x \geq 0, x \in \Delta_n\}\right).
$$

Condition-based complexity

Recall our problems of interest

$$
A^{\mathsf{T}}y>0,\tag{\mathsf{D}}
$$

and

$$
Ax = 0, x \in \Delta_n. \tag{P}
$$

Theorem (Block-Novikoff 1962) If $\rho(A) > 0$, then the perceptron algorithm terminates after at most

$$
\frac{1}{\rho(A)^2} = \mathscr{C}(A)^2
$$

iterations.

Condition-based complexity

Theorem (Dantzig, 1992)

If $\rho(A) < 0$, then von Neumann's algorithm finds an ϵ -solution to [\(P\)](#page-1-0), i.e, $x \in \Delta_n$ with $||Ax|| < \epsilon$ in at most

$$
\frac{1}{\epsilon^2}
$$

iterations.

Theorem (Epelman & Freund, 2000) If $\rho(A)$ < 0, then von Neumann's algorithm finds an ϵ -solution to [\(P\)](#page-1-0) in at most

$$
\frac{1}{\rho(A)^2}\cdot \log\left(\frac{1}{\epsilon}\right)
$$

iterations.

Main Theorem

Theorem (Soheili & P, 2012)

A smooth version of perceptron/von Neumann's algorithm such that:

(a) If $\rho(A) > 0$, then it finds a solution to $A^{T}y > 0$ in at most

$$
\mathcal{O}\left(\frac{\sqrt{n}}{\rho(A)} \cdot \log\left(\frac{1}{\rho(A)}\right)\right)
$$

iterations.

(b) If $\rho(A) < 0$, then it finds an ϵ -solution to $Ax = 0$, $x \in \Delta_n$ in at most

$$
\mathcal{O}\left(\frac{\sqrt{n}}{|\rho(A)|} \cdot \log\left(\frac{1}{\epsilon}\right)\right)
$$

iterations.

 (c) Iterations are elementary (not much more complicated than those of the perceptron or von Neumann's algorithms).

Perceptron algorithm again

Perceptron Algorithm

$$
\bullet \ y_0 := 0
$$

• for
$$
k = 0, 1, ...
$$

\n
$$
a_j^Ty_k := \min_i a_i^Ty_k
$$
\n
$$
y_{k+1} := y_k + a_j
$$
\n
$$
y_k = y_k + a_j
$$

Observe

$$
a_j^Ty := \min_i a_i^Ty \Leftrightarrow a_j = Ax(y), x(y) = \underset{x \in \Delta_n}{\text{argmin}} \langle A^Ty, x \rangle.
$$

Hence in the above algorithm $y_k = Ax_k$ where $x_k \geq 0$, $||x_k||_1 = k$.

Normalized Perceptron Algorithm

Recall
$$
x(y) := \underset{x \in \Delta_n}{\text{argmin}} \langle A^T y, x \rangle
$$
.

Normalized Perceptron Algorithm

$$
\bullet \ y_0 := 0
$$

• for
$$
k = 0, 1, ...
$$

\n
$$
\begin{aligned}\n\theta_k &:= \frac{1}{k+1} \\
y_{k+1} &:= (1 - \theta_k)y_k + \theta_k Ax(y_k)\n\end{aligned}
$$

end for

In this algorithm $y_k = Ax_k$ for $x_k \in \Delta_n$.

Perceptron-Von Neumann's Template

Both the perceptron and von Neumann's algorithms perform similar iterations.

PVN Template

$$
\bullet \ x_0 \in \Delta_n; \ y_0 := Ax_0
$$

• for
$$
k = 0, 1, ...
$$

\n
$$
x_{k+1} := (1 - \theta_k)x_k + \theta_k x(y_k)
$$
\n
$$
y_{k+1} := (1 - \theta_k)y_k + \theta_k Ax(y_k)
$$

end for

Observe

- Recover (normalized) perceptron if $\theta_k = \frac{1}{k+1}$ $k+1$
- **e** Recover von Neumann's if

$$
\theta_k = \underset{\lambda \in [0,1]}{\text{argmin}} ||(1-\lambda)y_k - \lambda Ax(y_k)||.
$$

Smooth Perceptron-Von Neumann Algorithm

Apply Nesterov's smoothing technique (Nesterov, 2005).

Key step: Use a smooth version of

$$
x(y) = \underset{x \in \Delta_n}{\text{argmin}} \langle A^{\mathsf{T}} y, x \rangle,
$$

namely,

$$
x_{\mu}(y) := \underset{x \in \Delta_n}{\text{argmin}} \left\{ \langle A^{\mathsf{T}} y, x \rangle + \frac{\mu}{2} ||x - \bar{x}||^2 \right\},\,
$$

for some $\mu > 0$ and $\bar{x} \in \Delta_n$.

Smooth Perceptron-Von Neumann Algorithm

Assume $\bar{x} \in \Delta_n$ and $\delta > 0$ are given inputs.

Algorithm SPVN(\bar{x}, δ)

•
$$
y_0 := A\bar{x}
$$
; $\mu_0 := n$; $x_0 := x_{\mu_0}(y_0)$

• for
$$
k = 0, 1, ...
$$

\n
$$
\theta_k := \frac{2}{k+3}
$$
\n
$$
y_{k+1} := (1 - \theta_k)(y_k + \theta_k A x_k) + \theta_k^2 A x_{\mu_k}(y_k)
$$
\n
$$
\mu_{k+1} := (1 - \theta_k)\mu_k
$$
\n
$$
x_{k+1} := (1 - \theta_k)x_k + \theta_k x_{\mu_{k+1}}(y_{k+1})
$$
\nif $A^T y_{k+1} > 0$ then halt: y_{k+1} is a solution to (D) if $||Ax_{k+1}|| \le \delta$ then halt: x_{k+1} is δ -solution to (P) end for

PVN update versus SPVN update

Update in PVN template

$$
y_{k+1} := (1 - \theta_k)y_k + \theta_k Ax(y_k)
$$

$$
x_{k+1} := (1 - \theta_k)x_k + \theta_k x(y_k)
$$

Update in Algorithm SPVN

$$
y_{k+1} := (1 - \theta_k)(y_k + \theta_k A x_k) + \theta_k^2 A x_{\mu_k}(y_k)
$$

$$
\mu_{k+1} := (1 - \theta_k)\mu_k
$$

$$
x_{k+1} := (1 - \theta_k)x_k + \theta_k x_{\mu_{k+1}}(y_{k+1})
$$

Theorem (Soheili and P, 2011)

Assume $\bar{x} \in \Delta_n$ and $\delta > 0$ are given.

(a) If $\delta < \rho(A)$, then Algorithm SPVN finds a solution to [\(D\)](#page-1-1) in at most √

$$
\frac{2\sqrt{2n}}{\rho(A)}-1.
$$

iterations.

(b) If $\rho(A) < 0$, then Algorithm SPVN finds a δ -solution to [\(P\)](#page-1-0) in at most √

$$
\frac{2\sqrt{2n}}{\delta}-1
$$

iterations.

Iterated Smooth Perceptron-Von Neumann Algorithm

Assume $\gamma > 1$ is a given constant.

Algorithm $ISPVN(\gamma)$

$$
\bullet \ \tilde{x}_0 := \tfrac{1}{n} \mathbf{1}
$$

• for
$$
i = 0, 1, ...
$$

\n
$$
\delta_i := \frac{\|A\tilde{x}_i\|}{\gamma}
$$
\n
$$
\tilde{x}_{i+1} = \text{SPVN}(\tilde{x}_i, \delta_i)
$$

end for

Main Theorem Again

Theorem (Soheili & P, 2012)

(a) If $\rho(A) > 0$, then each call to SPVN in Algorithm ISPVN halts in at most $\frac{2\sqrt{2n}}{p(A)}-1$ iterations. Consequently, Algorithm ISPVN finds a solution to [\(D\)](#page-1-1) in at most

$$
\left(\frac{2\sqrt{2n}}{\rho(A)}-1\right)\cdot\frac{\log(1/\rho(A))}{\log(\gamma)}
$$

SPVN iterations.

(b) If $\rho(A)$ < 0, then each call to SPVN in Algorithm ISPVN halts in at most $\frac{2\gamma\sqrt{2n}}{|\rho(A)|} - 1$ iterations. Hence for $\epsilon > 0$ Algorithm ISPVN finds an ϵ -solution to [\(P\)](#page-1-0) in at most

$$
\left(\frac{2\gamma\sqrt{2n}}{|\rho(A)|}-1\right)\cdot\frac{\log(1/\epsilon)}{\log(\gamma)}
$$

SPVN iterations.

Observe

- A "pure" SPVN $(\delta = 0)$:
	- When $\rho(A) > 0$, it solves [\(D\)](#page-1-1) in $\mathcal{O}\left(\frac{\sqrt{n}}{\rho(A)}\right)$ iterations.
	- When $\rho(A) < 0$, it finds ϵ -solution to (P) in $\mathcal{O}\left(\frac{\sqrt{n}}{\epsilon}\right)$ iterations.
- ISPVN (iterated SPVN with gradual reduction on δ):
	- When $\rho(A) > 0$, it solves [\(D\)](#page-1-1) in $\mathcal{O}\left(\frac{\sqrt{n}}{\rho(A)}\log\left(\frac{1}{\rho(A)}\right)\right)$ iterations.
	- When $\rho(A) < 0$, it finds ϵ -solution to [\(P\)](#page-1-0) in $\mathcal{O}\left(\frac{\sqrt{n}}{|\rho(A)|} \log\left(\frac{1}{\epsilon}\right)\right)$ iterations.

Perceptron and von Neumann's as subgradient algorithms Let \cdots

$$
\phi(y) := -\frac{\|y\|^2}{2} + \min_{x \in \Delta_n} \langle A^T y, x \rangle.
$$

Observe

$$
\max_{y} \phi(y) = \min_{x \in \Delta_n} \frac{1}{2} ||Ax||^2 = \begin{cases} \frac{1}{2} \rho(A)^2 & \text{if } \rho(A) > 0 \\ 0 & \text{if } \rho(A) \leq 0. \end{cases}
$$

PVN Template: $y_{k+1} = y_k + \theta_k(-y_k + Ax(y_k))$ is a subgradient algorithm for

max $\phi(y)$.

For $\mu > 0$ and $\bar{x} \in \Delta_n$ let

$$
\begin{array}{rcl}\n\phi_{\mu}(y) & := & -\frac{\|y\|^2}{2} + \min\limits_{x \in \Delta_n} \left\{ \langle A^{\mathsf{T}} y, x \rangle + \frac{\mu}{2} \|x - \bar{x}\|^2 \right\} \\
& = & -\frac{\|y\|^2}{2} + \langle A^{\mathsf{T}} y, x_{\mu}(y) \rangle + \frac{\mu}{2} \|x_{\mu}(y) - \bar{x}\|^2.\n\end{array}
$$

Proof of Main Theorem

Apply Nesterov's excessive gap technique (Nesterov, 2005).

Claim

For all $x\in \Delta_n$ and $y\in \mathbb{R}^m$ we have $\phi(y)\leq \frac{1}{2}$ $\frac{1}{2} ||Ax||^2$.

Claim

For all $y \in \mathbb{R}^m$ we have $\phi(y) \leq \phi_{\mu}(y) \leq \phi(y) + 2\mu$.

Lemma

The iterates $x_k \in \Delta_n$, $y_k \in \mathbb{R}^m$, $k = 0, 1, \ldots$ generated by the SPVN Algorithm satisfy the Excessive Gap Condition

$$
\frac{1}{2}||Ax_k||^2 \leq \phi_{\mu_k}(y_k).
$$

Proof of Main Theorem (a): $\rho(A) > 0$

Putting together the two claims and lemma we get

$$
\frac{1}{2}\rho(A)^2 \leq \frac{1}{2}||Ax_k||^2 \leq \phi_{\mu_k}(y_k) \leq \phi(y_k) + 2\mu_k.
$$

So

$$
\phi(y_k) \geq \frac{1}{2}\rho(A)^2 - 2\mu_k.
$$

In the algorithm $\mu_k = n \cdot \frac{1}{3}$ $rac{1}{3} \cdot \frac{2}{4}$ $\frac{2}{4} \cdots \frac{k}{k+2} = \frac{2n}{(k+1)(k+2)} < \frac{2n}{(k+1)^2}.$

Thus $\phi(\mathsf{y}_k)>0$, and consequently $\mathsf{A}^\mathsf{T}\mathsf{y}_k>0$, as soon as

$$
k \geq \frac{2\sqrt{2n}}{\rho(A)} - 1.
$$

 \Box

Proof of Main Theorem (continued)

Suppose now $\rho(A) < 0$, i.e., [\(P\)](#page-1-0) is feasible.

Let

$$
S:=\{x\in\Delta_n:Ax=0\},\
$$

and for $v \in \mathbb{R}^n$ let

$$
dist(v, S) := min{||v - x|| : x \in S}.
$$

Lemma

If $\rho(A) < 0$ then for all $v \in \Delta_n$

$$
\text{dist}(v, S) \leq \frac{2||Av||}{|\rho(A)|}.
$$

Proof of Main Theorem (b): $\rho(A) < 0$

As in part (a), at iteration k of Algorithm SPVN we have

$$
\frac{1}{2} ||Ax_k||^2 \leq \varphi_{\mu_k}(y_k)
$$
\n
$$
\leq \min_{x \in S} \left\{ -\frac{||y_k||^2}{2} + \langle A^{\mathsf{T}} y_k, x \rangle + \frac{\mu_k}{2} ||x - \bar{x}||^2 \right\}
$$
\n
$$
\leq \frac{\mu_k}{2} \min_{x \in S} ||x - \bar{x}||^2
$$
\n
$$
= \frac{\mu_k}{2} \text{dist}(\bar{x}, S)^2.
$$

Thus by previous lemma and the fact that $\mu_k < \frac{2n}{(k+1)^2}$ we get

$$
||Ax_k||^2 \leq \mu_k \cdot \text{dist}(\bar{x}, S)^2 \leq \frac{4\mu_k ||A\bar{x}||^2}{\rho(A)^2} \leq \frac{8n ||A\bar{x}||^2}{(k+1)^2 \rho(A)^2}.
$$

So when $k \geq \frac{2 \gamma \sqrt{2n}}{|\rho(A)|} - 1$ we have $\|Ax_k\| \leq \frac{\|Ax\|}{\gamma}$ and Algorithm SPVN halts.

About the key smoothing step

We could instead use the entropy function

$$
d(x) = \sum_{j=1}^n x_j \log(x_j).
$$

Bregman distance:

$$
h(x,\bar{x}) := d(x) - d(\bar{x}) - \langle \nabla d(\bar{x}), x - \bar{x} \rangle.
$$

Given $\mu > 0$ and $\bar{x} \in \Delta_n$, smooth

$$
x(y) = \underset{x \in \Delta_n}{\text{argmin}} \langle A^{\mathsf{T}} y, x \rangle,
$$

to

$$
x_{\mu}(y) := \underset{x \in \Delta_n}{\text{argmin}} \left\{ \langle A^{\mathsf{T}} y, x \rangle + \mu h(x, \bar{x}) \right\}.
$$

Replace $\frac{1}{2}||x-\bar{x}||^2$ with $h(x,\bar{x})$.

————————

About the key smoothing step

With the entropy we get stronger result for SPVN:

Theorem (Soheili and P, 2011)

Assume $\bar{x} \in \Delta_n$ and $\delta > 0$ are given.

(a) If $\delta < \rho(A)$, then Algorithm SPVN finds a solution to [\(D\)](#page-1-1) in at most

$$
\frac{2\sqrt{\log(n)}}{\rho(A)}-1.
$$

iterations.

(b) If $\rho(A) < 0$, then Algorithm SPVN finds a δ -solution to [\(P\)](#page-1-0) in at most

$$
\frac{2\sqrt{\log(n)}}{\delta}-1
$$

iterations.

However, the proof of Main Theorem (b) for ISPVN breaks down.

More general feasibility problems

Given $A \in \mathbb{R}^{m \times n}$ and a regular closed convex cone $K \subseteq \mathbb{R}^n$, consider the alternative feasibility problems

$$
A^{\mathsf{T}}y \in \mathsf{int}(K^*),\tag{\mathsf{D}}
$$

and

$$
Ax = 0, x \in K, x \neq 0. \tag{P}
$$

Assume

For some $\mathbf{1} \in \mathsf{int}(K^*)$, we have an oracle that solves

$$
x(y) := \underset{x}{\text{argmin}} \left\{ \langle A^{\mathsf{T}} y, x \rangle : x \in K, \ \langle \mathbf{1}, x \rangle = 1 \right\}.
$$

More general feasibility problems

Recall Renegar's condition number

$$
C(A) = \frac{||A||}{\inf_{A} {||A - \tilde{A}|| : \tilde{A} ||I-posed}}.
$$

Theorem (Epelman & Freund, 2000)

A generalized von Neumann's algorithm solves [\(D\)](#page-1-1) in

 $\mathcal{O}(\beta \cdot \mathcal{C}(A)^2)$

iterations, or finds an ϵ -solution to (P) in

$$
\mathcal{O}(\beta \cdot C(A)^2 \cdot \log(\|A\|/\epsilon))
$$

iterations.

β: constant depending on specific choice of norms and $\mathbf{1} \in \text{int}(K)$.

Smooth version

Assume

For some fixed $1 \in \text{int}(K)$, we have an oracle that solves

$$
\underset{x}{\text{argmin}} \left\{ \langle A^{\mathsf{T}}y, x \rangle + \frac{1}{2} ||x||^2 : x \in \mathsf{K}, \ \langle \mathbf{1}, x \rangle = 1 \right\}.
$$

Theorem (Soheili & P, 2012)

A smooth generalized von Neumann's algorithm solves [\(D\)](#page-1-1) in

 $\mathcal{O}(\beta$ √ $\overline{n} \cdot C(A) \cdot log(C(A)))$

iterations, or finds an ϵ -solution to [\(P\)](#page-1-0) in

 $\mathcal{O}(\beta$ $√($ $\overline{n} \cdot \overline{C(A)} \cdot \log(\|A\|/\epsilon))$

iterations.

Summary

- Smooth perceptron-von Neumann algorithm improves condition-based complexity roughly from $C(A)^2$ to $C(A)$.
- Smooth version preserves most of the algorithms' original simplicity.
- There seems to be room for sharper complexity results.

Happy Birthday to Mike Shub!