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Smale’s Fundamental Theorem of Algebra

In 1981 Steve Smale initiated the complexity theory of finding a

solution of polynomial equations of one complex variable.

Problem (*):

Given

f (z) =
d∑

i=0

aiz
i , ai ∈ C, find η ∈ C such that f (η) = 0

η should be replaced by an approximate zero (“strong”

Newton sink).

Complexity = number of required steps.
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Smale’s Fundamental Theorem of Algebra
Statistical Point of View

Smale introduced a statistical theory of cost:

Let A be an algorithm to solve (*), and consider a probability

measure on the set of polynomials.

Given ε > 0, an allowable probability of failure, does the

cost of A on a set of polynomials with probability 1− ε,
grow at most polynomial in d?

Smale gives a positive answer to this question, however this initial

algorithm was not proven to be finite average cost.
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Smale’s Fundamental Theorem of Algebra
Smale’s FTA Algorithm:

Smale’s Algorithm:

Let 0 < h ≤ 1 and let z0 = 0.

Inductively define

zn = Th(zn−1),

where Th is the modified Newton’s method for f given by

Th(z) = z − h
f (z)

f ′(z)
.

(If h is small enough, {zn} approximate the trajectories of the

Newton Flow N(z) = − f (z)
f ′(z) .)
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Smale’s Fundamental Theorem of Algebra
Smale’s algorithm interpretation

For z0 ∈ C, consider

ft = f − (1− t)f (z0), 0 ≤ t ≤ 1.

ft is a polynomial of the same degree as f ;

z0 is a zero of f0;

f1 = f .

We analytically continue z0 to zt a zero of ft .

For t = 1 we arrive at a zero of f . Newton’s method is then used

to produce a discrete numerical approximation to the path (ft , zt).
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Smale’s FTA: Extension and Smale’s 17th

• A tremendous amount of work has been done in the last 30 years

following on Smale’s initial contribution.

• In a series of papers (Bezout I-V) Shub-Smale made some

further changes and achieved enough results for Smale 17th

Problem 17: Solving Polynomial Equations.

Can a zero of n-complex polynomial equations

in n-unknowns be found approximately, on the

average, in polynomial time with a uniform

algorithm?

• Beltrán, Boito, Bürgisser, Cucker, Dedieu, Hirsch, Kim, Leykin,

Li, Malajovich, Martens, Pardo, Renegar, Rojas, Sutherland.... and

specially Mike Shub and Steve Smale.
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Extensions
Notations

• H(d) := Hd1 × · · · × Hdn where Hdi is the vector space of

homogeneous polynomials of degree di in n + 1 complex variables.

• For f ∈ H(d) and λ ∈ C,

f (λζ) = ∆
(
λdi
)
f (ζ),

where ∆(ai ) means the diagonal matrix whose i-th diagonal entry

is ai .

• Thus the zeros of f ∈ H(d) are now complex lines so may be

considered as points in projective space P(Cn+1).
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Extensions
Notations

On Hdi we put a unitarily invariant Hermitian structure:

If f (z) =
∑
‖α‖=di

aαz
α and g(z) =

∑
‖α‖=di

bαz
α then the

Weyl Hermitian structure is given by

〈f , g〉 =
∑
‖α‖=di

aαbα

(
di
α

)−1

.

On H(d) we put the product structure

〈f , g〉 =
n∑

i=1

〈fi , gi 〉.
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Extensions
Notations

On Cn+1 we put the usual Hermitian structure

〈x , y〉 =
n∑

k=0

xk yk .

P(Cn+1) inherits the Hermitian structure from Cn+1

(Fubini-Study Herm. struct. 〈w1,w2〉v = 〈w1,w2〉
〈v ,v〉 , wi ∈ v⊥).

U(n + 1) (group of unitary transformations) acts on H(d) and

Cn+1: f 7→ f ◦ U−1, and ζ 7→ Uζ, U ∈ U(n + 1).

This unitary action preserves the Hermitian structure on H(d)

and Cn+1.
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Extensions
Notations

The solution variety

V = {(f , ζ) ∈ (H(d) − {0})× P(Cn+1) : f (ζ) = 0},

is a central object of study.

V is equipped with two projections

V

H(d) P(Cn+1)

�
�
�	

π1 @
@
@R

π2
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Homotopy Methods

Choose (g , ζ) ∈ V a known pair.

Connect g to f by a C 1 curve ft in H(d), 0 ≤ t ≤ 1, such that

f0 = g , f1 = f , and continue ζ0 = ζ to ζt such that

ft(ζt) = 0, so that f1(ζ1) = 0.

Now homotopy methods numerically approximate the path (ft , ζt).

One way to accomplish the approximation is via (projective)

Newton’s methods.

Given an approximation xt to ζt define

xt+∆t = Nft+∆t
(xt),

where

Nf (x) = x − (Df (x)|x⊥)−1f (x).
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Homotopy Methods

Mike Shub prove that ∆t may be chosen so that:

• t0 = 0, tk = tk−1 + ∆tk ;

• xtk is an approx. zero of ftk with associated zero ζtk and

• tK = 1 for

K = K (f , g , ζ) ≤ C D3/2

∫ 1

0
µ(ft , ζt) ‖(ḟt , ζ̇t)‖(ft ,ζt) dt = (I ).

(C universal constant, D = max di ),

µ(f , ζ) = ‖f ‖ · ‖(Df (ζ)|ζ⊥)−1∆(‖ζ‖di−1
√

di )‖

is the condition number of f at ζ, and

‖(ḟt , ζ̇t)‖(ft ,ζt) is the norm of the tangent vector to the projected

curve in (ft , ζt) in VP ⊂ P
(
H(d)

)
× P(Cn+1).(∆tk is made explicit

in Dedieu-Malajovich-Shub).
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Smale’s 17th problem

An affirmative probabilistic solution to Smale’s 17th problem is

proven by Beltrán and Pardo (2009). They prove that a random

point (g , ζ) is good in the sense that with random fixed starting

point (g , ζ) = (f0, ζ0) the average value of K is bounded by

O(nN).

Bürgisser and Cucker (2011) produce a deterministic starting point

with polynomial average cost, except for a narrow range of

dimensions. Precisely, D ≤ n
1

1+ε (lin. h.m) or D ≥ n1+ε (variant

Renegar).

So Smale’s 17th problem in its deterministic form remains open for

a narrow range of degrees and variables.
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Smale’s algorithm reconsidered
Joint work with Mike Shub

Given ζ ∈ P(Cn+1) we define for f ∈ H(d) the straight line

segment ft ∈ H(d), 0 ≤ t ≤ 1, by

(ft)i = fi − (1− t)
〈·, ζ〉di
〈ζ, ζ〉di

fi (ζ), (i = 1, . . . , n).

So f0(ζ) = 0 and f1 = f . Therefore we may apply homotopy

methods to this line segment.

Note that if we restrict f to the affine chart ζ + ζ⊥ then

ft(z) = f (z)− (1− t)f (ζ),

and if we take ζ = (1, 0, . . . , 0) and n = 1 we recover Smale’s

algorithm.
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Smale’s algorithm reconsidered

Let Vζ = π1(π−1
2 (ζ)) be the subspace of H(d) given by

Vζ = {f ∈ H(d) : f (ζ) = 0},

then

f0 = f −∆

(
〈·, ζ〉di
〈ζ, ζ〉di

)
f (ζ),

is the orthogonal projection Πζ(f ) of f on Vζ .

We have

‖f − Πζ(f )‖ = ‖∆(‖ζ‖−di )f (ζ)‖,
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Smale’s algorithm reconsidered

Then we can write ft = (1− t)Πζ(f ) + tf .

Let ζt be the homotopy continuation of ζ along the path ft (in

case it is defined). Then {(ft , ζt)}∈[0,1] ⊂ V, and ζ1 is a root of f .

For a.e. f ∈ H(d) the set of ζ ∈ P(Cn+1) such that ζt is

defined for all t ∈ [0, 1] has full measure. Moreover, the

boundary of this full measure set is a stratified set.

Suppose η is a non-degenerate zero of h ∈ H(d).

Let B(h, η) be the basin of η, i.e. the set of those

ζ ∈ P(Cn+1) such that the zero ζ of Πζ(h) continues to η for

the homotopy ht . ( B(h, η) is an open set.)
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Smale’s algorithm reconsidered

The main result is

Theorem

E((I)) =
“C”D3/2

(2π)N

∫
h∈H(d)

[ ∑
η/ h(η)=0

µ2(h, η)

‖h‖2
Θ(h, η)

]
e−‖h‖

2/2 dh,

where

Θ(h, η) =

∫
ζ∈B(h,η)

‖Πζ(h)‖
‖∆(‖ζ‖−di )h(ζ)‖2n−1

e‖∆(‖ζ‖−di )h(ζ)‖2/2 dζ.

Essentially nothing is known about the integrals.
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Smale’s algorithm reconsidered

(a) Is E(I) finite for all or some n?

(b) Might E(I) even be polynomial in N for some range of

dimensions and degrees?

(c) What are the basins like?

The integral

1

(2π)N

∫
h∈H(d)

∑
η/ h(η)=0

µ2(h, η)

‖h‖2
· e−‖h‖2/2 dh ≤ e(n + 1)

2
D,

where D = d1 · · · dn is the Bézout number (Shub-Smale,

Bürgisser-Cucker). So the question is how does the factor

Θ(h, η) affect the integral.
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Smale’s algorithm reconsidered

Evaluate or estimate∫
ζ∈P(Cn+1)

1

‖∆(‖ζ‖−di )h(ζ)‖2n−1
· e

1
2
‖∆(‖ζ‖−di )h(ζ)‖2

dζ.

If this integral can be controlled, if the integral on the D basins are

reasonably balanced, the factor of D in

1

(2π)N

∫
h∈H(d)

∑
η/ h(η)=0

µ2(h, η)

‖h‖2
· e−‖h‖2/2 dh ≤ e(n + 1)

2
D,

may cancel!.
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Smale’s algorithm reconsidered: Experiments

Numerical experiments performed by Carlos Beltrán (n = 1 and

d = 7) in the Altamira super-computer.

Roots in C µ(h, ·) Θ(h, ·) vol(B(h, ·))

3.260883− i1.658800 1.712852 1.487095 0.140509π

−2.357860− i1.329208 1.738380 1.728768 0.138576π

−0.210068 + i1.868947 1.608231 1.586398 0.144054π

0.227994− i0.782004 1.909433 1.544021 0.125685π

−0.044701 + i0.384342 3.231554 3.152883 0.147277π

−0.308283 + i0.049618 3.183603 2.793696 0.152433π

0.213950− i0.068700 2.948318 2.647258 0.151466π

Table: Degree 7 random polynomial.
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Smale’s algorithm reconsidered: Experiments

Figure: The basins B(h, η) in C and in the Riemann sphere of the

degree 7 random polynomial (GNU Octave).
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Smale’s algorithm reconsidered: Experiments

Comparison with roots of unity case: The errors for the root of

unity case does not seem enough to explain the variation of

Θ(h, ·). So it is likely that they are not all equal.

On the other hand, the ratios of the volumes of the basins of the

random and roots of unity examples do seem to be of the same

order of magnitude. So perhaps they are all equal?

There appear to be 7 connected regions with a root in each.

So there is some hope that this is true in general. That is

there may generically be a root in each connected component

of the basins and all these basins may have equal volume.

This would be very interesting and would be very good start

on understanding the integrals.
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Smale’s algorithm reconsidered: Experiments

Also Santiago Laplagne is doing more experimental examples and

it seems again that the volumes of the basins are equal.

More questions:

The boundary of the basins are contained in a stratified set,

the structure of which should be persistent by the isotopy

theorem on the connected components of the complement of

the critical values of the projection (f , ζ) 7→ f .

Is there more than one component?
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Figure: Mike and Jean-Pierre in FOCM Semester, Fields Institute 2009

.

GRACIAS MIKE!!
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