Optimization: Then and Now

Optimization: Then and Now

Why would a dynamicist be interested in linear programming?

Linear Programming (LP)

Linear Programming (LP)

First general algorithm: The Simplex Method, by George Dantzig (1947)

Linear Programming (LP)

First general algorithm: The Simplex Method, by George Dantzig (1947)

The "Klee-Minty Cube"

Simplex Method visits all 2^n vertices

(depending on the particular "pivot" rule)

Polynomial-time $*$ algorithms

- The Ellipsoid Method (Khachiyan, 1979)
- *•* "Karmarkar's Algorithm" (Karmarkar, 1984)

– formally known as the "projective rescaling algorithm"

• Barrier Method

This algorithm existed long before the others, but was proven to be polynomial-time only later, by Gonzaga in 1986

> – who was motivated by work that had established relations between the Barrier Method and Karmarkar's Algorithm (Gill, Murray, Saunders, Tomlin and Wright (1985))

- *•* Potential Reduction Methods
- . . . Many other algorithms, too.

 $*$ – polynomial-time, that is, in the Turing model of computation, not in the Blum-Shub-Smale model!

> *Whether there exists a BSS polynomial-time LP algorithm remains a major open question.*

Interior-Point Methods (IPM's)

• "Karmarkar's Algorithm" (Karmarkar, 1984)

– formally known as the "projective rescaling algorithm"

• Barrier Method

This algorithm existed long before the others, but was proven to be polynomial-time only later, by Gonzaga in 1986

> – who was motivated by work that had established relations between the Barrier Method and Karmarkar's Algorithm (Gill, Murray, Saunders, Tomlin and Wright (1985))

- *•* Potential Reduction Methods
- . . . Many other algorithms, too.

"All IPM's follow the 'central path' "

– a.k.a., the "path of analytic centers"

 $Ax \geq b \leftrightarrow \alpha_i^T x \geq b_i \text{ for } i = 1, \ldots, m$

I.e., the force at x is $\frac{1}{\alpha^T x}$

Think of each constraint as emitting a force that acts on feasible points *x*.

The direction of the force is perpendicular to the constraint and the magnitude equals the reciprocal of the distance from *x* to the constraint.

 α_i

 $\alpha_i^T x - b_i$

x

 $Ax \geq b \leftrightarrow \alpha_i^T x \geq b_i \text{ for } i = 1, \ldots, m$

I.e., the force at x is $\frac{1}{\alpha^T x}$

Think of each constraint as emitting a force that acts on feasible points *x*.

The direction of the force is perpendicular to the constraint and the magnitude equals the reciprocal of the distance from *x* to the constraint.

 α_i

 $\alpha_i^T x - b_i$

 $Ax \geq b \leftrightarrow \alpha_i^T x \geq b_i \text{ for } i = 1, \ldots, m$

The equilibrium point *z* is called "the analytic center"

Analytic center z maximizes $f(x) := \sum \ln(\alpha_i^T x - b_i)$. "barrier function"

Newton's method for maximizing $f: x \mapsto x - (\nabla^2 f(x)^{-1}) \nabla f(x)$

Analytic center z maximizes $f(x) := \sum \ln(\alpha_i^T x - b_i)$. *ⁱ* barrier function"

Newton's method for maximizing $f: x \mapsto x - (\nabla^2 f(x)^{-1}) \nabla f(x)$

Analytic center z maximizes $f(x) := \sum \ln(\alpha_i^T x - b_i)$. *i* "barrier function"

Newton's method for maximizing $f: x \mapsto x - (\nabla^2 f(x)^{-1}) \nabla f(x)$

the Newton flow is preserved under invertible affine transformations

Of course restricting the inequalities $Ax \geq b$ to a supporting hyperplane results in inequalities in a lower dimensional space

... and hence naturally induces a Newton flow on the face.

Mike and Jean-Pierre (2004): For generic (A, b) , the Newton flows on the faces analytically extend the Newton flow on the interior.

This changes the analytic center, the equilibrium point. Add a new constraint, perpendicular to *c*: $c^T x \ge k_1$ for some constant k_1

Denote the new analytic center by $z(k_1)$.

This changes the analytic center, the equilibrium point. Add a new constraint, perpendicular to *c*: $c^T x \ge k_1$ for some constant k_1

Denote the new analytic center by $z(k_1)$.

Now increase k_1 to a new constant k_2 , giving a new analytic center $z(k_2)$.

This changes the analytic center, the equilibrium point. Add a new constraint, perpendicular to *c*: $c^T x \ge k_1$ for some constant k_1

Denote the new analytic center by $z(k_1)$. Now increase k_1 to a new constant k_2 , giving a new analytic center $z(k_2)$. And so on: $z(k_1), z(k_2), z(k_3), \ldots$

This changes the analytic center, the equilibrium point. Add a new constraint, perpendicular to *c*: $c^T x \ge k_1$ for some constant k_1

Denote the new analytic center by $z(k_1)$.

Now increase k_1 to a new constant k_2 , giving a new analytic center $z(k_2)$.

And so on: $z(k_1), z(k_2), z(k_3), \ldots$

the "central path"

(a.k.a., "the path of analytic centers")

the "central path"

(a.k.a., "the path of analytic centers")

If we do likewise with *c* replaced by $-c$, the path extends to the feasible point minimizing $c^T x$.

(not just for *x* on the central path) Natural to consider vector field $x \mapsto -(\nabla^2 f(x))^{-1}c$ for all interior *x*

– this yields the "affine scaling algorithm"

A theorem in Mike's first optimization paper (1985-86, with N. Megiddo):

When initiated at appropriate interior points, the affine-scaling flow closely follows the bad path of the Klee-Minty cube.

For example, the predictor-corrector method: 1) "Predict" - move in affine-scaling direction

For example, the predictor-corrector method:

The straighter the central path, the better!
Duality & Dynamics

Many contributors, all the way back to:

N. Megiddo, "Pathways to the optimal set in linear programming" (1988)

M. Kojima, S. Mizuno, and A. Yoshise, "A primal-dual interior point algorithm for linear programming" (1988)

R.D.C. Monteiro, I. Adler, "Interior path following primal-dual algorithms" (1989)

The relevant inner product at interior x is

$$
\langle u, \hat{u} \rangle_x = \sum \frac{u_j \hat{u}_j}{x_j^2}
$$

$$
\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}^n
$$

$$
(x,s) \mapsto xs := \begin{bmatrix} x_1 s_1 \\ \vdots \\ x_n s_n \end{bmatrix}
$$

Restricted map

is a diffeo with \mathbb{R}^n_{++}

The Riemannian structure induced on \mathbb{R}^n_{++} depends on the particular affine spaces $L + \hat{x}$ and $L^{\perp} + \hat{s}$

For algorithmic purposes, it is useful to endow \mathbb{R}^n_{++} with a different – albeit particularly elementary – Riemannian structure

Specifically, for
$$
v \in \mathbb{R}_{++}^n
$$
,
let
 $\langle u, \hat{u} \rangle_v := u^T \hat{u} / (\min v_j)^2$

The Riemannian structure induced on \mathbb{R}^n_{++} depends on the particular affine spaces $L + \hat{x}$ and $L^{\perp} + \hat{s}$

For algorithmic purposes, it is useful to endow \mathbb{R}^n_{++} with a different – albeit particularly elementary – Riemannian structure

Specifically, for
$$
v \in \mathbb{R}_{++}^n
$$
,
let
 $\langle u, \hat{u} \rangle_v := u^T \hat{u} / (\min v_j)^2$

Key fact:

The image of R_{4} (0.1) $B_{(x,s)}(0,1)$ under the differential for \downarrow covers $B_{xs}(0,1)$

Consequence: The image of $u \in B_{xs}(0,1)$ under the differential for \uparrow is a vector $(\Delta x, \Delta s)$ for which $x + \Delta x$ and $s + \Delta s$ are feasible.

 \bullet Choose "target" v satisfying $||v - xs||_{xs} < 1$

- Choose "target" *v* satisfying $||v - xs||_{xs} < 1$
- Replace map $(x, s) \mapsto xs$ with first-order approximation at (*x, s*) and let (x_+, s_+) be the pair mapping to *v*

- Choose "target" *v* satisfying $||v - xs||_{xs} < 1$
- Replace map $(x, s) \mapsto xs$ with first-order approximation at (*x, s*) and let (x_+, s_+) be the pair mapping to *v*

Then x_+ and s_+ are feasible and ...

- Choose "target" *v* satisfying $||v - xs||_{xs} < 1$
- Replace map $(x, s) \mapsto xs$ with first-order approximation at (*x, s*) and let (x_+, s_+) be the pair mapping to *v*

Then x_+ and s_+ are feasible and ...

Fact:

$$
||x_+s_+ - v||_{xs} \le \frac{1}{2} ||v - xs||_{xs}^2
$$

 $\bullet\,$ Bad: Move directly towards the origin.

- *•* Bad: Move directly towards the origin.
- *•* Good: Get away from boundary, then move towards origin.

- *•* Bad: Move directly towards the origin.
- *•* Good: Get away from boundary, then move towards origin.

that is, start by moving towards ${t}{t \mathbf{1} : t > 0}$ ${\text{the line } {t \mathbf{1} : t > 0}$

- *•* Bad: Move directly towards the origin.
- *•* Good: Get away from boundary, then move towards origin.

that is, start by moving towards ${t}{t \mathbf{1} : t > 0}$ ${\text{the line } {t \mathbf{1} : t > 0}$

> This line happens to be the image of the primal-dual central path under the map $(x, s) \mapsto xs$

most naturally defined on \mathbb{R}_{++}^n , then pulled back to the feasible regions.

In designing primal-dual algorithms, vector field flows are thus most naturally defined on \mathbb{R}_{++}^n , then pulled back to the feasible regions.

For example, the Tanabe-Todd-Ye potential-reduction method relies on the vector field $v \mapsto -v +$ $\sum v_j$ $\frac{n}{n+\sqrt{n}}$

> *...* and on the potential function $(x, s) \mapsto (n + \sqrt{n}) \ln x^T s - \sum \ln x_i - \sum \ln s_i$

1

The primal-dual central path is not necessarily a geodesic but it is a " $\sqrt{2}$ -geodesic" – Nesterov & Todd (2002) (results for symmetric-cone programming, not just for LP)

The primal (or dual) central path is an $O(n^{1/4})$ -geodesic – Nesterov & Nemirovski (2008)

(results are *very* general)

The straighter the central path, the better!

Mike, Jean-Pierre, Gregorio (2005):

For generic (A, b, c) , the expected Euclidean curvature of the central path for bounded regions does not exceed $2\pi n$.

Mike, Jean-Pierre, Gregorio (2005):

For generic (A, b, c) , the expected Euclidean curvature of the central path for bounded regions does not exceed $2\pi n$.

De Loera, Sturmfels and Vinzant (soon to be published):

For generic (b, c) , the expected Euclidean curvature of the central path for bounded regions does not exceed $2\pi n$ and potentially can be much better depending on *A*
You're great, Mike!!!