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Did a 1-Dimensional
Magnet Detect a

248-Dimensional Lie
Algebra?

David Borthwick and Skip Garibaldi

Y
ou may have heard some of the buzz
spawned by the recent paper [CTW+] in
Science. That paper described a neu-
tron scattering experiment involving
a quasi-1-dimensional cobalt niobate

magnet and led to rumors that E8 had been de-
tected “in nature”. This is fascinating, because E8

is a mathematical celebrity and because such a
detection seems impossible: it is hard for us to
imagine a realistic experiment that could directly
observe a 248-dimensional object such as E8.

The connection between the cobalt niobate
experiment and E8 is as follows. Around 1990,
physicist Alexander Zamolodchikov and others
studied perturbed conformal field theories in
general; one particular application of this was
a theoretical model describing a 1-dimensional
magnet subjected to two magnetic fields. This
model makes some numerical predictions that
were tested in the cobalt niobate experiment, and
the results were as predicted by the model. As the
model involves E8 (in a way we will make precise
in the section “Affine Toda Field Theory”), one can
say that the experiment provides evidence for “E8
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symmetry”. No one is claiming to have directly
observed E8.

Our purpose here is to fill in some of the
details omitted in the previous paragraph. We
should explain that we are writing as journalists
rather than mathematicians here, and we are not
physicists. We will give pointers to the physics
literature so that the adventurous reader can go
directly to the words of the experts for complete
details.

The Ising Model
The article in Science describes an experiment
involving the magnetic material cobalt niobate
(CoNb2O6). The material was chosen because the

Figure 1. Photograph of an artificially grown
single crystal of CoNb2O6. The experiment
involved a 2-centimeter-long piece of this
crystal, weighing about 8 grams. (Image

courtesy of Radu Coldea.)

internal crystal structure is such that magnetic
Co2+ ions are arranged into long chains running
along one of the crystal’s axes, and this could
give rise to 1-dimensional magnetic behavior.1 In

1Two additional practical constraints led to this choice of
material: (1) large, high-quality single crystals of it can
be grown as depicted in Figure 1, and (2) the strength
of the magnetic interactions between the Co2+ spins is
low enough that the quantum critical point correspond-
ing to gx = 1 in (Eq.2) can be matched by magnetic fields
currently achievable in the laboratory.
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particular, physicists expected that this material
would provide a realization of the famous Ising
model, which we now describe briefly.

The term Ising model refers generically to the
original, classical model.2 This simple model for
magnetic interactions was suggested by W. Lenz
as a thesis problem for his student E. Ising, whose
thesis appeared in Hamburg in 1922 [I]. The classi-
cal form of the model is built on a square, periodic,
n-dimensional lattice, with the periods sufficiently
large that the periodic boundary conditions don’t
play a significant role in the physics. Each site
j is assigned a spin σj = ±1, interpreted as the
projection of the spin onto some preferential axis.
The energy of a given configuration of spins is

(Eq.1) H = −J
∑

〈i,j〉
σiσj ,

where J is a constant and the sum ranges over
pairs 〈i, j〉 of nearest-neighbor sites. This Hamil-
tonian gives rise to a statistical ensemble of states
that is used to model the thermodynamic proper-
ties of actual magnetic materials. The statistical
ensemble essentially amounts to a probability dis-
tribution on the set of spin configurations, with
each configuration weighted by e−kH/T (the Boltz-
mann distribution), where k is constant and T is
the temperature. The assumption of this distribu-
tion makes the various physical quantities, such as
individual spins, average energy, magnetization,
etc., into random variables. For J > 0, spins at
neighboring sites tend to align in the same direc-
tion; this behavior is called ferromagnetic, because
this is what happens with iron.

To describe the cobalt niobate experiment, we
actually want the quantum spin chain version of
the Ising model. In this quantum model, each
site in a 1-dimensional (finite periodic) chain is
assigned a 2-dimensional complex Hilbert space.
The Pauli spin matrices Sx, Sy , and Sz act on
each of these vector spaces as spin observables,
meaning they are self-adjoint operators whose
eigenstates correspond to states of particular
spin. For example, the ±1 eigenvectors of Sz

correspond to up and down spins along the
z-axis. A general spin state is a unit vector in the
2-dimensional Hilbert space, which could be
viewed as a superposition of up and down spin
states, if we use those eigenvectors as a basis.

The Hamiltonian operator for the standard
1-dimensional quantum Ising model is given by

(Eq.2) Ĥ = −K
∑

j

[
Szj S

z
j+1 + gxSxj

]
.

In the quantum statistical ensemble one assigns
probabilities to the eigenvectors of Ĥ weighted by
the corresponding energy eigenvalues. This then
defines, via the Boltzmann distribution again, a

2For more details on this model, see, for example, [MW 73]
or [DFMS, Chap. 12].

probability distribution on the unit ball in the total
Hilbert space of the system.

Just as in the classical case, physical quanti-
ties become random variables with distributions
that depend on the temperature and constants
K and gx. It is by means of these distribu-
tions that the model makes predictions about
the interrelationships of these quantities.

The first term in the Hamiltonian (Eq.2) has
a ferromagnetic effect (assuming K > 0), just as
in the classical case. That is, it causes spins of
adjacent sites to align with each other along the
z-axis, which we will refer to as the preferen-
tial axis. (Experimental physicists might call this
the “easy” axis.) The second term represents the
influence of an external magnetic field in the x-
direction, perpendicular to the z-direction—we’ll
refer to this as the transverse axis. The effect of
the second term is paramagnetic, meaning that it
encourages the spins to align with the transverse
field.

The 1-dimensional quantum Ising spin chain
exhibits a phase transition at zero temperature.
The phase transition (also called a critical point) is
the point of transition between the ferromagnetic
regime (gx < 1, where spins tend to align along the
z-axis) and the paramagnetic (gx > 1). The critical
point (gx = 1) is distinguished by singular be-
havior of various macroscopic physical quantities,
such as the correlation length. Roughly speaking,
this is the average size of the regions in which the
spins are aligned with each other.

To define correlation length a little more
precisely, we consider the statistical correlation
between the z-components of spins at two sites
separated by a distance r . These spins are just ran-
dom variables whose joint distribution depends
on the constants K and gx, as well as the separa-
tion r and the temperature T . (We are assuming
r is large compared with the lattice spacing, but
small compared with the overall dimensions of the
system.) For gx > 1 the correlation falls off expo-
nentially as e−r/ξ , because spins lined up along the
x-axis will be uncorrelated in the z-direction; the
constant ξ is the correlation length. In contrast,
at the critical point gx = 1 and T = 0, the decay
of the spin correlation is given by a power law;
this radical change of behavior corresponds to the
divergence of ξ. This phase transition has been
observed experimentally in a LiHoF4 magnet [BRA].

One might wonder why an external magnetic
field is included by default in the quantum case
but not in the classical case. The reason for this
is a correspondence between the classical models
and the quantum models of one lower dimen-
sion. The quantum model includes a notion of
time evolution of an observable according to the
Schrödinger equation, and the correspondence in-
volves interpreting one of the classical dimensions
as imaginary time in the quantum model. Under
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this correspondence, the classical interaction in
the spatial directions gives the quantum ferro-
magnetic term, while interactions in the imaginary
time direction give the external field term (see [Sa,
§2.1.3] for details).

Although there are some important differences
in the physical interpretation on each side, the
classical-quantum correspondence allows various
calculations to be carried over from one case to the
other. For example, the critical behavior of the 1-
dimensional transverse-field quantum Ising model
(Eq.2) at zero temperature, with the transverse field
parameter tuned to the critical value gx = 1, can be
“mapped” onto equivalent physics for the classical
2-dimensional Ising model (Eq.1) at a nonzero
temperature. The latter case is the famous phase
transition of the 2-dimensional classical model,
which was discovered by Peierls and later solved
exactly by Onsager [O].

Adapting the Model to the Magnet
The actual magnet used in the experiment is not
quite modeled by the quantum Ising Hamiltonian
(Eq.2). In the ferromagnetic regime (gx < 1), weak
couplings between the magnetic chains create
an effective magnetic field pointing along the
preferential axis [CT]. The relevant model for the
experiment is thus

(Eq.3) Ĥ = −K
∑

j

[
Szj S

z
j+1 + gxSxj + gzSzj

]
,

which is just (Eq.2) with an additional term gzS
z
j

representing this internal magnetic field.
The first phase of the cobalt niobate experiment

tested the appropriateness of (Eq.3) as a model
for the magnetic dynamics in the absence of an
external magnetic field, i.e., with gx = 0. The
experimental evidence does support the claim
that this 3-dimensional object is behaving as
a 1-dimensional magnetic system. For example,
Figure 2 shows a comparison of the experimental
excitation energies (as a function of wave vector)
to theoretical predictions from the 1-dimensional
model. The presence of a sequence of well-defined
and closely spaced energy levels, as shown in these
pictures, is predicted only in dimension 1.

What Is E8?
Before we explain how the rather simple quantum
Ising model from the previous sections leads to a
theory involving E8, we had better nail down what
it means to speak of “E8”. It’s an ambiguous term,
with at least the following six common meanings:

(1) The root system of type E8. This is a collec-
tion of 240 points, called roots, in R8. The
usual publicity photo for E8 (reproduced
in Figure 3A) is the orthogonal projection
of the root system onto a copy of R2 in R8.

(A) Experimental data at 40mK

(B) Calculated

Figure 2. Comparison of excitations under no
external magnetic field: experimental (top)
versus predictions based on the 1-dimensional
model (bottom). (Figure adapted from [CTW+] with

permission of AAAS.)

(2) The E8 lattice, which is the subgroup of R8

(additively) generated by the root system.
(3) A complex Lie group—in particular, a

closed subgroup of GL248(C)—that is
simple and 248-dimensional.

There are also three simple real Lie groups—
meaning in particular that they are closed sub-
groups of GL248(R)—whose complexification is the
complex Lie group from (3). (The fact that there are
exactly three is part of Elie Cartan’s classification
of simple real Lie groups; see [Se 02, §II.4.5] for an
outline of a modern proof.) They are:

(4) The split real E8. This is the form of E8 that
one can define easily over any field or even
over an arbitrary scheme. Its Killing form
has signature 8.

(5) The compact real E8, which is the unique
largest subgroup of the complex E8 that is
compact as a topological space. Its Killing
form has signature −248.
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(A) The popular picture

(B) Vertices only

Figure 3. The top panel (A) is the picture of E8

that one finds in the popular press. Deleting
some edges leaves you with the frontispiece

of [Cox]. (Image courtesy of John Stembridge [St].)

The bottom panel (B) is the same picture with
the edges removed; it is the image of the root

system of E8 in a Coxeter plane.

(6) The remaining real form of E8 is sometimes
called “quaternionic”. Its Killing form has
signature −24.

In physics, the split real E8 appears in super-
gravity [MS] and the compact real E8 appears in
heterotic string theory [GHMR]. These two appear-
ances in physics, however, are purely theoretical;
the models in which they appear are not yet subject
to experiment. It is the compact real E8 (or, more
precisely, the associated Lie algebra) that appears
in the context of the cobalt niobate experiment,
making this the first actual experiment to detect a
phenomenon that could be modeled using E8.

There have also been two recent frenzies in
the popular press concerning E8. One concerned
the computation of the Kazhdan-Lusztig-Vogan
polynomials which you can read about in the
prizewinning paper [V]; that work involved the

split real E8. The other frenzy was sparked by
the manuscript [L]. The E8 referred to in [L] is
clearly meant to be one of the real forms, but
the manuscript contains too many contradictory
statements to be sure which one3, and in any case
the whole idea has serious difficulties as explained
in [DG].

Groups Versus Algebras

Throughout this article we conflate a real Lie group
G, which is a manifold, with its Lie algebra g, which
is the tangent space to G at the identity and is a
real vector space endowed with a nonassociative
multiplication. This identification is essentially
harmless and is standard in physics. Even when
physicists discuss symmetry “groups”, they are
frequently interested in symmetries that hold
only in a local sense, and so the Lie algebra is
actually the more relevant object.

Real Versus Complex

Moreover, physicists typically compute within the
complexification g ⊗ C of g. This is the complex
vector space with elements of the form x + iy
for x, y ∈ g, where complex conjugation acts
via x + iy ! x − iy . Note that one can recover
g as the subspace of elements fixed by complex
conjugation. Therefore, morally speaking, working
with the R-algebra g (as mathematicians often do)
amounts to the same as working with g⊗C together
with complex conjugation (as physicists do). This
is an example of the general theory of Galois
descent as outlined in, e.g., [J 79, §X.2] or [Se 79,
§X.2].

From the Ising Model to E8

What possible relevance could a 248-dimensional
algebra have for a discrete one-dimensional statis-
tical physics model? This is a long and interesting
story, and we can only give a few highlights here.

As we mentioned above, the 1-dimensional
quantum Ising model from (Eq.2) undergoes a
phase transition at zero temperature at the criti-
cal value of the transverse magnetic field strength.
If the system is close to this critical point, the cor-
relation length (described in the section “The Ising
Model” in this article) will be very large compared
with the lattice spacing, and so we can assume that
the discrete spins vary smoothly across nearby lat-
tice sites. In this regime we can thus effectively

3There are three places in [L] where a particular form of
E8 might be specified. At the top of page 18 is a form con-
taining a product of the nonsplit, noncompact form of F4
and the compact G2; therefore it is the split real E8 by
[J 71, p. 118] or [GaS, §3]. The form of E8 described in
the middle of page 21 is supposed to contain a copy of
so(7,1) ⊕ so(8), but there is no such real form of E8. Fi-
nally, on page 29, the quaternionic E8 is mentioned in the
text.
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model the system using continuous “field” vari-
ables, i.e., using quantum field theory. For the
1-dimensional quantum Ising model, the corre-
sponding continuous theory is a quantum field
theory of free, spinless fermionic particles in 1+1
space-time dimensions.

To understand what happens as the critical
point is approached, one can apply “scaling”
transformations that dilate the macroscopic length
scales (e.g., the correlation length) while keeping
the microscopic lengths (e.g., the lattice spacing)
unchanged. (See, e.g., [Sa, §4.3] for a more thor-
ough explanation of this.) The limiting theory at
the critical point should then appear as a fixed
point for these transformations, called the scal-
ing limit. Polyakov famously argued in [P] that the
scaling limit should be distinguished by invariance
with respect to local conformal transformations.
This paper established the link between the study
of phase transitions and conformal field theory
(CFT).

In [BPZ], Belavin, Polyakov, and Zamolodchikov
showed that certain simple CFTs called minimal
models could be solved completely in terms of
(and so are determined by) a Hilbert space made
of a finite number of “discrete series” (unitary, ir-
reducible) representations of the Virasoro algebra,
see [He, Chap. 2] or [DFMS, Chap. 7] for more de-
tails. These representations are characterized by
the eigenvalue c assigned to the central element,
called the central charge, which can be computed
directly from the scaling limit of the statistical
model. This works out beautifully in the case of
the critical 1-dimensional quantum Ising model:
In that case, the central charge is c = 1/2, the min-
imal model is built from the three discrete series
representations of the Virasoro algebra with that
central charge, and this CFT exactly matches the
Ising phase transition; see [BPZ, App. E], [DFMS,
§7.4.2], or [Mu, §14.2] for details.

The discrete series representations mentioned
above are described by c and another parameter
h which have some relations between them, and
there are tight constraints on the possible values
of c and h to be unitary [FQS]. To prove that all
of these values of c and h indeed correspond to
irreducible unitary representations, one employs
the coset construction of Goddard, Kent, and Olive;
see [GKO] or [DFMS, Chap. 18]. This construc-
tion produces such representations by restricting
representations of an affine Lie algebra, i.e., a cen-
tral extension of the (infinite-dimensional) loop
algebra of a compact Lie algebra g. Using the
coset construction, there are two ways to obtain
the c = 1/2 minimal model that applies to our
zero-field Ising model: we could use either of the
compact Lie algebras su(2) or E8 as the base g
for the affine Lie algebra [DFMS, §18.3, §18.4.1].
These two algebras are the only choices that lead
to c = 1/2 [Mu, §14.2].

Of course, the appearance of E8 here is some-
what incidental. The minimal model could be
described purely in terms of Virasoro representa-
tions, without reference to either su(2) or E8. As
we explain below, E8 takes center stage only when
we consider a perturbation of the critical Ising
model as in (Eq.3).

Magnetic Perturbation and
Zamolodchikov’s Calculation
In a 1989 article [Z], Zamolodchikov investigated
the field theory for a model equivalent to the
1-dimensional quantum Ising model (Eq.2), in the
vicinity of the critical point, but perturbed by a
small magnetic field directed along the preferen-
tial spin axis. In other words, he considered the
field theory model corresponding to (Eq.3) with
gx ≈ 1 and gz very small. Note the change of
perspective: for Zamolodchikov gx is fixed, and
the perturbation consists of a small change in the
value of gz . But in the cobalt niobate experiment,
this magnetic “perturbation” is already built in—it
is the purely internal effect arising from the inter-
chain interactions as we described in the section
“Adapting the Model to the Magnet”. The experi-
menters can’t control the strength of the internal
field, they only vary gx. Fortunately, the internal
magnetic field gz turns out to be relatively weak,
so when the external field gx is tuned close to the
critical value, the experimental model matches the
situation considered by Zamolodchidkov.

The qualitative features of the particle spectrum
for the magnetically perturbed Ising model had
been predicted by McCoy and Wu [MW 78]. Those
earlier calculations show a large number of stable
particles for small gx, with the number decreasing
as gx approaches 1. Zamolodchikov’s paper makes
some predictions for the masses of these particles
at gx = 1.

As we noted above, the c = 1/2 minimal model
is the conformal field theory associated with the
phase transition of the unperturbed quantum Ising
model. The perturbed field theory is no longer a
conformal field theory, but Zamolodchikov found
six local integrals of motion for the perturbed field
theory and conjectured that these were the start
of an infinite series. On this basis, he made the
fundamental conjecture:

(Z1) The perturbation gives an integrable field
theory.

One implication of (Z1) is that the resulting scat-
tering theory should be “purely elastic”, meaning
that the number of particles and their individ-
ual momenta would be conserved asymptotically.
Zamolodchikov combined this purely elastic scat-
tering assumption with three rather mild assump-
tions on the particle interactions of the theory [Z,
p. 4236]:
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(Z2) There are at least 2 particles, say p1 and
p2.

(Z3) Bothp1 andp2 appear as bound-state poles
on the scattering amplitude for two p1’s.

(Z4) The particle p1 appears as a bound-state
pole in the scattering amplitude between
p1 and p2.

Assumptions (Z3) and (Z4) merely assert that
certain coupling constants that govern the inter-
particle interactions are nonzero, so they could be
viewed as an assumption of some minimum level
of interaction between the two particles.

The word “particle” bears some explaining here,
because it is being used here in the sense of quan-
tum field theory: a stable excitation of the system
with distinguishable particle-like features such as
mass and momentum. However, it is important to
note that the continuum limit of the Ising model
is made to look like a field theory only through the
application of a certain transformation (Jordan-
Wigner; see [Sa, §4.2]) that makes “kink” states
(boundaries between regions of differing spin) the
basic objects of the theory. So Zamolodchikov’s
particles aren’t electrons or ions. The field the-
ory excitations presumably correspond to highly
complicated aggregate spin states of the original
system. On the statistical physics side the usual
term for this kind of excitation is quasiparticle. In
the experiment these quasiparticles are detected
just as ordinary particles would be, by measuring
the reaction to a beam of neutrons.

From the mild assumptions (Z2)–(Z4), Zamolod-
chikov showed that the simplest purely elastic
scattering theory consistent with the integrals of
motion contains eight particles with masses listed
in Table 1. (See [He, §14.3] for more background
on these calculations.) These predictions were
quickly corroborated by computational methods,
through numerical diagonalization of the Hamil-
tonian (Eq.3); see [HeS] or [SZ]. In Table 1, m1 and
m2 are the masses of the two original particles p1

and p2. Note that only the ratios of the masses,
such as m2/m1, are predicted; in the discrete
model (Eq.3) the individual masses would depend
on the overall length of the lattice, and in passing
to the scaling limit we give up this information.

Zamolodchikov’s results give some indications
of a connection with the algebra or root system
E8. The spins of the six integrals of motion he
calculated were

s = 1,7,11,13,17,19.

The conjecture is that this is the start of a sequence
of integrals of motion whose spins include all
values of s relatively prime to 30. These numbers
are suggestive because 30 is the Coxeter number
of E8 and the remainders of these numbers modulo
30 are the exponents of E8 (see, for example, [Bo]
for a definition of Coxeter number and exponent).
This was taken as a hint that the conjectured

m2 = 2 cos π
5m1 ≈ 1.618m1

m3 = 2 cos π
30m1 ≈ 1.989m1

m4 = 2 cos π
5 cos 7π

30m1 ≈ 2.405m1

m5 = 4 cos π
5 cos 2π

15m1 ≈ 2.956m1

m6 = 4 cos π
5 cos π

30m1 ≈ 3.218m1

m7 = 8(cos π
5 )

2 cos 7π
30m1 ≈ 3.891m1

m8 = 8(cos π
5 )

2 cos 2π
15m1 ≈ 4.783m1

Table 1. The masses of the particles predicted
by Zamolodchikov.

integrable field theory could have a model based
on E8, and in fact such a connection with E8 had
already been proposed by Fateev based on other
theoretical considerations [Z, pp. 4247, 4248].

Affine Toda Field Theory
Soon after Zamolodchikov’s first paper appeared,
Fateev and Zamolodchikov conjectured in [FZ] that
if you take a minimal model CFT constructed from
a compact Lie algebra g via the coset construction
and perturb it in a particular way, then you obtain
the affine Toda field theory (ATFT) associated with
g, which is an integrable field theory. This was
confirmed in [EY] and [HoM].

If you do this with g = E8, you arrive at the
conjectured integrable field theory investigated
by Zamolodchikov and described in the previous
paragraph. That is, if we take the E8 ATFT as
a starting point, then the assumptions (Z1)–(Z4)
become deductions. This is the essential role of E8

in the numerical predictions relevant to the cobalt
niobate experiment. (In the next section, we will
explain how the masses that Zamolodchikov found
arise naturally in terms of the algebra structure.
But that is just a bonus.)

What Is the Role of E8 in the Affine Toda Field
Theory?

To say the ATFT in question is “associated” with E8

leaves open a range of possible interpretations, so
we should spell out precisely what this means. The
ATFT construction from a compact Lie algebra g
proceeds by choosing a Cartan subalgebra4 h in g—
it is a real inner product space with inner product
the Killing form ( , ) and is isomorphic to R8 in the
case g = E8. Letφ be a scalar field in 2-dimensional
Minkowski space-time, taking values in h. Then the
Lagrangian density for the affine Toda field theory
is

(Eq.4)
1
2
(∂µφ, ∂

µφ)− (eβφEe−βφ, E),

4It doesn’t matter which one you choose, because any one
can be mapped to any other via some automorphism of g.

1060 Notices of the AMS Volume 58, Number 8



where β is a coupling constant. Here E is a regular
semisimple element of g ⊗ C that commutes with
its complex conjugate E. More precisely, for x ∈ h
a principal regular element, conjugation by e2π ix/h

with h the Coxeter number of g gives a Z/h-grading
on g ⊗ C, and the element E belongs to the e2π i/h-
eigenspace. (Said differently, the centralizer of E
is a Cartan subalgebra of g ⊗ C in apposition to
h⊗ C in the sense of [K 59, p. 1018].)

The structure of E8 thus enters into the basic
definitions of the fields and their interactions.
However, E8 does not act by symmetries on this
set of fields.

Why Is It E8 That Leads to Zamolodchikov’s
Theory?

We opened this section by asserting that perturb-
ing a minimal model CFT constructed from g via
the coset construction leads to an ATFT associ-
ated with g. For this association to make sense,
the perturbing field is required to have “conformal
dimension” 2/(h + 2). The two coset models for
the Ising model give us two possible perturbation
theories. Starting from su(2), which has h = 2, we
could perturb using the field of conformal dimen-
sion 1/2, which is the energy. This perturbation
amounts to raising the temperature away from
zero, which falls within the traditional framework
of the Ising model and is well understood.

The other choice is to start from E8, which has
h = 30, and perturb using the field of confor-
mal dimension 1/16, which is the magnetic field
along the preferential axis.5 This is exactly the
perturbation that Zamolodchikov considered in
his original paper. This means that if an ATFT is
used to describe the magnetically perturbed Ising
model, we have no latitude in the choice of a Lie
algebra: it must be E8.

Why Is It the Compact Form of E8?

As Folland noted recently in [Fo], physicists tend
to think of Lie algebras in terms of generators and
relations, without even specifying a background
field if they can help it. So it can be difficult to
judge from the appearance of a Lie algebra in the
physics literature whether any particular form of
the algebra is being singled out.

Nevertheless, the algebras appearing here are
the compact ones. The reason is that the minimal
model CFTs involve unitary representations of the
Virasoro algebra. The coset construction shows
that these come from representations of affine
Lie algebras that are themselves constructed from
compact finite-dimensional algebras. And it is

5The conformal dimension of the magnetic field is fixed
by the model. It corresponds to the well-known critical ex-
ponent 1/8 that governs the behavior of the spontaneous
magnetization of the Ising model as the critical point is
approached.

these finite-dimensional Lie algebras that appear
in the ATFT.

What about E6 and E7?

So far, we have explained why it is E8 that is related
to the cobalt niobate experiment. This prompts
the question: given a simple compact real Lie al-
gebra g, does it give a theory describing some
other physical setup? Or, to put it differently,
what is the physical setup that corresponds to a
theoretical model involving, say, E6 or E7? In fact,
the field theories based on these other algebras do
have interesting connections to statistical mod-
els. For example, E7 Toda field theory describes
the thermal perturbation of the tricritical Ising
model and the E6 theory the thermal deformation
of the tricritical three-state Potts model. These
other models are easily distinguished from the
magnetically perturbed Ising model by their cen-
tral charges. It will be interesting to see whether
physicists can come up with ways to probe these
other models experimentally. The E7 model might
be easiest—the unperturbed, CFT version has al-
ready been realized, for example, in the form of
helium atoms on krypton-plated graphite [TFV].

The Zamolodchikov Masses and E8’s
Publicity Photo
Translating Zamolodchikov’s theory into the lan-
guage of affine Toda field theory provides a way
to transform his calculation of the particle masses
listed in Table 1 into the solution of a rather easy
system of linear equations, and that in turn is con-
nected to the popular image of the E8 root system
from Figure 3A. These are connections that work
for a general ATFT, and we will now describe them
in that level of generality.

An ATFT is based on a compact semisimple
real Lie algebra g, such as the Lie algebra of
the compact real E8. We assume further that this
algebra is simple and is not su(2). Then from g
we obtain a simple root system R spanning R' for
some ' ≥ 2; this is canonically identified with the
dual h∗ of the Cartan subalgebra mentioned at the
end of the previous section.

We briefly explain how to make a picture like
Figure 3B forR. (For background on the vocabulary
used here, please see [Bo] or [Ca].) Pick a set B
of simple roots in R. For each β ∈ R, write sβ
for the reflection in the hyperplane orthogonal
to β. The product w :=

∏
β∈B sβ with respect

to any fixed ordering of B is called a Coxeter
element, and its characteristic polynomial has
m(x) := x2 − 2 cos(2π/h)x + 1 as a simple factor
[Bo, VI.1.11, Prop. 30], where h is the Coxeter
number ofR. The primary decomposition theorem
gives a uniquely determined plane P inR' on which
w restricts to have minimal polynomial m(x), i.e.,
is a rotation through 2π/h—we call P the Coxeter
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plane for w . The picture in Figure 3B is the image
of R under the orthogonal projection π : R' → P
in the case where R = E8. We remark that while P
depends on the choice of w , all Coxeter elements
are conjugate under the orthogonal group [Ca,
10.3.1], so none of the geometric features of π(R)
are changed if we vary w , and we will refer to P as
simply a Coxeter plane for R.

In Figure 3B, the image of R lies on eight
concentric circles. This is a general feature of the
projection in P and is not special to the case
R = E8. Indeed, the action of w partitions R into '
orbits of h elements each [Bo, VI.1.11, Prop. 33(iv)],
and w acts on P as a rotation. So the image of R
necessarily lies on ' circles.

The relationship between the circles in Figure
3B and physics is given by the following theorem.

Theorem. Let g be a compact simple Lie algebra
that is not su(2), and write R for its root system.
For an affine Toda field theory constructed from g,
the following multisets are the same, up to scaling
by a positive real number:

(1) The (classical) masses of the particles in the
affine Toda theory.

(2) The radii of the circles containing the pro-
jection of R in a Coxeter plane.

(3) The entries in a Perron-Frobenius eigenvec-
tor for a Cartan matrix of R.

The terms in (3) may need some explanation.
The restriction of the inner product on R' to R
is encoded by an '-by-' integer matrix C, called
the Cartan matrix of R. You can find the matrix
for R = E8 in Figure 4A. We know a lot about the
Cartan matrix,no matter whichR one chooses—for
example, its eigenvalues are all real and lie in the
interval (0,4), see [BLM, Th. 2]. Further, the matrix
2−C has all nonnegative entries and is irreducible
in the sense of the Perron-Frobenius theorem, so its
largest eigenvalue—hence the smallest eigenvalue
of C—has a 1-dimensional eigenspace spanned
by a vector (x with all positive entries. (Such an
eigenvector is exhibited in Figure 4B for the case
R = E8.) This (x is the vector in (3), and it is an
eigenvector of C with eigenvalue 4 sin2(π/2h), so
calculating (x amounts to solving an easy system
of linear equations.

Sketch of Proof. The theorem above has been
known to physicists since the early 1990s; here
is a gloss of the literature. Freeman showed that
(1) and (3) are equivalent in [Fr]. We omit his
argument, which amounts to computations in the
complex Lie algebra g ⊗ C, but it is worth noting
that his proof does rely on g being compact.

The equivalence of (2) and (3) can be proved
entirely in the language of root systems and fi-
nite reflection groups; see, for example, [FLO] or
[Cor, §2]. The Dynkin diagram (a graph with ver-
tex set B) is a tree, so it has a 2-coloring σ : B →




2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2




(A)(
m2 m4 m6 m8 m7 m5 m3 m1

)

(B)

Figure 4. The Cartan matrix (A) for the root
system E8 and a Perron-Frobenius eigenvector

(B), where the entries are as in Table 1.

{±1}, and one picks w to be a corresponding Cox-
eter element as in [Ca, §10.4]. Conveniently, the
elements σ (β)β for β ∈ B are representatives of
the orbits of w on R; see [K 85, p. 250, (6.9.2)]
or [FLO, p. 91]. It is elementary to find the inner
products of π(σ (β)β)with the basis vectors for P
given in [Ca, §10.4], hence the radius of the circle
containing π(σ (β)β). The entries of the Perron-
Frobenius eigenvector appear naturally, because
these entries are part of the expressions for the
basis vectors for P .

Alternatively, Kostant shows the equivalence of
(1) and (2) in [K 10] using Lie algebras. !

There is a deeper connection between the parti-
cles in the ATFT and the roots in the root system.
Physicists identify the w -orbits in the root system
with particles in the ATFT. The rule for the cou-
pling of particles in a scattering experiment (called
a “fusing” rule) is that the scattering amplitude
for two particlesΩ1 andΩ2 has a bound-state pole
corresponding to Ω3 if and only if there are roots
ρi ∈ Ωi so that ρ1+ρ2+ρ3 = 0 in R'; see [Do] and
[FLO]. This leads to a “Clebsch-Gordan” necessary
condition for the coupling of particles; see [Br].
We remark that these fusing rules are currently
only theoretical—it is not clear how they could be
tested experimentally.

Back to the Experiment
Let’s get back to the cobalt niobate experiment.
As we noted above, when the external magnetic
field is very close to the critical value that in-
duces the phase transition, it was expected that
the experimental system would be modeled by
the critical 1-dimensional quantum Ising model
perturbed by a small magnetic field directed along
the preferential axis. This model is the subject
of Zamolodchikov’s perturbation theory, and the
resulting field theory has been identified as the E8

ATFT.
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To test this association, the experimenters con-
ducted neutron scattering experiments on the
magnet. Figure 5A shows an intensity plot of scat-
tered neutrons averaged over a range of scattering
angles. Observations were actually made at a series
of external field strengths, from 4.0 tesla (T) to
5.0 T, with the second peak better resolved at the
lower energies. Both peaks track continuously as
the field strength is varied. Figure 5A represents
the highest field strength at which the second peak
could be resolved.

(A) Masses detected

(B) Predictions

Figure 5. The top panel (A) is an example
intensity plot, exhibiting the two detected
masses under a transverse magnetic field of 5
tesla, 90% of the critical strength. (Figure

adapted from [CTW+ with permission of AAAS].) The
bottom panel (B) shows the relative intensities
obtained from the form factors computed in
[DM, p. 741, Table 3]. The axes have the same
labels as in the top panel. The dotted vertical
line marks the onset of the incoherent
continuum.

The two peaks give evidence of the existence
of at least two particles in the system, which
was one of Zamolodchikov’s core assumptions.
And, indeed, the ratio of the masses appears to
approach the golden ratio—see Figure 6—as the

critical value (about 5.5 T) is approached, just as
Zamolodchikov predicted twenty years earlier.

Figure 6. The ratio m2/m1 of the masses of the
two lightest particles approaches the golden
ratio as the transverse magnetic field
approaches critical strength of 5.5 tesla. (Figure

adapted from [CTW+] with permission of AAAS.)

We can also compare the relative intensities of
the first two mass peaks to the theoretical pre-
dictions exhibited in Figure 5B. Here again we see
approximate agreement between the observations
and theoretical predictions. The figure shows a
threshold at 2m1, where a continuous spectrum is
generated by the scattering of the lightest particle
with itself. Particles with masses at or above this
threshold will be very difficult to detect, as their
energy signature is expected to consist of rather
small peaks that overlap with the 2m1 contin-
uum.6 Hence the fact that only two particles out of
eight were observed is again consistent with the
theoretical model.

Experimental Evidence for E8 Symmetry?
We can now finally address the question from
the title of this paper, slightly rephrased: Did the
experimenters detect E8? First, we should say that
they themselves do not claim to have done so.
Rather, they claim to have found experimental evi-
dence for the theory developed by Zamolodchikov
et al. and described above—which we shall call be-
low simply Zamolodchikov’s theory—and that this
in turn means giving evidence for E8 symmetry.

The argument for these claims goes as follows.
The E8 ATFT is an integrable field theory de-
scribing the magnetically perturbed Ising model
(Eq.3) and satisfying (Z1)–(Z4). In that situa-
tion, Zamolodchikov and Delfino-Mussardo made
some numerical predictions regarding the relative
masses of the particles and relative intensities

6Possibly because of this, the region above this threshold
has been called the “incoherent continuum”, a suggestive
and Lovecraftian term.
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of the scattering peaks. The experimental data
show two peaks, but the second peak is resolved
only at lower energies. The ratios of masses and
intensities are certainly consistent with the theo-
retical predictions, although the ratios appear to
be measured only rather roughly.

At this point, we want to address three objec-
tions to this line of argument that we heard when
giving talks on the subject.

Objection #1: Confirmatory Experimental
Results Are Not Evidence

We heard the following objection: experiments
can never provide evidence for a scientific theory;
they can only provide evidence against it. (This
viewpoint is known as falsificationism.) This is
of course preposterous. Science progresses only
through the acceptance of theories that have
survived enough good experimental tests, even
if the words “enough” and “good” are open to
subjective interpretations.

A less extreme version of this same objec-
tion is: confirmatory experimental results are
automatically suspect in view of notorious his-
torical examples of experimenter’s bias such as
cold fusion and N-rays. This sort of objection
is better addressed to the experimental physics
community, which as a whole is familiar with
these specific examples and with the general issue
of experimenter’s bias. As far as we know, no
such criticisms have been raised concerning the
methods described in [CTW+].

Objection #2: It Still Doesn’t Seem Like Enough
Data

Recall that the experimental results can be sum-
marized as a limited set of numbers that approx-
imately agree with the theoretical predictions.
Based on this, we have heard the following objec-
tion: if you start by looking at this small amount
of data, how can you claim to have pinned down
something as complex as E8? This question con-
tains its own answer. One doesn’t analyze the
results of the experiment by examining the data,
divorced from all previous experience and theoret-
ical framework. Instead, humanity already knows
a lot about so-called critical point phenomena,7

and there is a substantial theoretical model that is
expected to describe the behavior of the magnet.
The experiment described in [CTW+] was a test
of the relevance and accuracy of Zamolodchikov’s
theory, not an investigation of magnets beginning
from no knowledge at all.

To put it another way, someone who approaches
science from the viewpoint of this objector would
necessarily reject many results from experimental

7See, for example, the twenty-volume series Phase Tran-
sitions and Critical Phenomena edited by C. Domb and
J. L. Lebowitz.

physics that are based on similar sorts of indirect
evidence. To give just one example of such a result,
the reported observations of the top quark in
[A+ 95a] and [A+ 95b] were not direct observations
but rather confirmations of theoretical predictions
made under the assumption that the top quark
exists.

Objection #3: The Numerical Predictions Don’t
Require E8

If you examine the papers [Z] by Zamolodchikov
and [DM] by Delfino and Mussardo, you see that
the numerical predictions are made without in-
voking E8. At this point, one might object that E8

is not strictly necessary for the theoretical model.
But, as we explained in the section “Magnetic Per-
turbation and Zamolodchikov’s Calculation”, the
role of E8 in the theory is that by employing it,
Zamolodchikov’s assumption (Z1) is turned into a
deduction. That is, by including E8, we reduce the
number of assumptions and achieve a more con-
cise theoretical model. Moreover, the E8 version of
the theory justifies the amazing numerological co-
incidences between Zamolodchikov’s calculations
and the E8 root system.

Evidence for E8 Symmetry?

Finally, we should address the distinction between
“detecting E8” and “finding evidence for E8 sym-
metry”. Although the former is pithier, we’re only
talking about the latter here. The reason is that, as
far as we know, there is no direct correspondence
between E8 and any physical object. This is in con-
trast, for example, to the case of the gauge group
SU(3) of the strong force in the standard model
in particle physics. One can meaningfully identify
basis vectors of the Lie algebra su(3) with gluons,
the mediators of the strong force, which have been
observed in the laboratory. With this distinction
in mind, our view is that the experiment cannot be
said to have detected E8 but that it has provided
evidence for Zamolodchikov’s theory and hence
for E8 symmetry as claimed in [CTW+].

Summary
The experiment with the cobalt niobate magnet
consisted of two phases. In the first phase, the
experimenters verified that in the absence of an
external magnetic field, the 1-dimensional quan-
tum Ising model (Eq.3) accurately describes the
spin dynamics, as predicted by theorists. In the
second phase, the experimenters added an exter-
nal magnetic field directed transverse to the spins’
preferredaxisandtunedthisfieldclose to the value
required to reach the quantum critical regime. In
that situation, Zamolodchikov et al. had predicted
the existence of eight distinct types of particles in
a field theory governed by the compact Lie algebra
E8. The experimenters observed the two smallest
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particles and confirmed two numerical predic-
tions: the ratio of the masses of the two smallest
particles (predicted by Zamolodchikov) and the
ratio of the intensities corresponding to those two
particles (predicted by Delfino-Mussardo).

In this article, we have focused on the E8

side of the story because E8 is a mathematical
celebrity. But there is a serious scientific reason
to be interested in the experiment apart from E8:
it is the first experimental test of the perturbed
conformal field theory constructed by Zamolod-
chikov around 1990. Also, it is the first laboratory
realization of the critical state of the quantum
1-dimensional Ising model in such a way that
it can be manipulated—the experimenters can
continuously vary the transverse field strength gx
in (Eq.3) across a wide range while preserving the
1-dimensional character—and the results ob-
served directly. Since the Ising model is the
fundamental model for quantum phase transi-
tions, the opportunity to probe experimentally its
very rich physics represents a breakthrough.
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