Triality over arbitrary fields and over \mathbb{F}_1

M-A. Knus, ETH Zürich

April 19-22, 2012 **Workshop on Exceptional Algebras and Groups** University of Ottawa

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ B $2Q$

Outline

- \blacktriangleright Some history
- \blacktriangleright Triality over arbitrary fields (Chernousov, Tignol, K., 2011)

KID KARK KERKER E 1990

 \blacktriangleright Triality over \mathbb{F}_1 (Tignol, K., 2012)

I. Some history

Wikipedia:

"There is a geometrical version of triality, analogous to duality in projective geometry.

KO KA KEKKEK E 1990

... one finds a curious phenomenon involving 1, 2, and 4 dimensional subspaces of 8-dimensional space ..."

Geometric triality

- \blacktriangleright (*V*, *q*) : Quadratic space of dimension 8 of maximal index. *U_i*: Set of isotropic subspaces of *V* of dimension *i*, *i* \leq 4.
- \blacktriangleright "Projective" terminology : $Q = \{q = 0\}$ defines a 6-dimensional quadric in \mathbb{P}^7 , the elements of U_i , $i=1,2,3,4,$ are $\boldsymbol{\mathsf{points}},$ lines, $\boldsymbol{\mathsf{planes}}$ **and solids of** *Q*.
- ► Two solids are of the **same kind** if their intersection is of even dimension. Two solids are of the same kind if and only if one can be transformed in the other by a rotation.
	- \Rightarrow 2 kinds of solids !

Eduard Study

Grundlagen und Ziele der analytischen Kinematik, 1913

- I The variety of solids of a fixed kind in *Q*⁶ is isomorphic to a quadric *Q*⁶ .
- II Any proposition in the geometry of *Q*⁶ [about incidence relations] remains true if the concepts points, solids of one kind and solids of the other kind are cyclically permuted.

KO K KO K K E K K E K K K K K K K K K

In other words, geometric triality is a geometric correspondence of order 3

$$
\begin{array}{|l|c|c|c|c|c|c|c|c|}\hline \text{Points} & \rightarrow & \text{Solids 1} & \rightarrow & \text{Solids 2} & \rightarrow & \text{Points} \\\hline \end{array}
$$

which is compatible with incidence relations.

In analogy to **geometric duality** which is a geometric $correspondence$ Points \rightarrow Hyperplanes in projective space.

The word **triality** goes back to Élie Cartan : "On peut dire que le *principe de dualité* de la géométrie projective est remplacé ici par un *principe de trialité*".

Élie Cartan

Le principe de dualité et la théorie des groupes simples et semi-simples, 1925

- \blacktriangleright The group PGO $_8^+$ admits a group of outer automorphisms isomorphic to S_3 .
- ▶ Outer automorphisms are related to "Cayley octaves".

Outer automorphisms of order 3 will be called

trialitarian automorphisms.

K ロ ▶ K @ ▶ K ミ X K E X E → Y Q Q Q

Cayley octaves or Octonions

 \triangleright Octonions are a 8-dimensional algebra \oslash with unit, norm n and conjugation $x \mapsto \overline{x}$ such that

$$
\blacktriangleright \; \mathfrak{n}(X) = X \cdot \overline{X} = \overline{X} \cdot X, \quad \mathfrak{n}(X \cdot y) = \mathfrak{n}(X) \mathfrak{n}(y).
$$

 \triangleright Cartan :

Given $A \in SO(n)$ there exist $B, C \in SO(n)$ such that

$$
C(x \cdot y) = Ax \cdot By.
$$

 $\sigma: \mathcal{A} \mapsto \mathcal{B}, \quad \tau: \mathcal{A} \mapsto \mathcal{C}$ induce $\hat{\sigma}, \, \hat{\tau} \in$ Aut $(\mathsf{PGO}^+(\mathfrak{n}))$ such that

$$
\hat{\sigma}^3=1, \ \hat{\tau}^2=1, \ \langle \hat{\sigma}, \hat{\tau} \rangle=S_3 \text{ in Aut } \big(\, \text{PGO}^+(\mathfrak{n}) \big).
$$

KO KA KEKKEK E 1990

The orthogonal projective group

\n- PGO(n) =
$$
GO(n)/F^{\times}
$$
,
\n- GO(n) = $\{f \in GL(\mathbb{O}) \mid n(f(x)) = \mu(f)n(x)\}$, $\mu(f) \in F^{\times}$.
\n- PGO⁺(n) = GO^+/F^{\times} , where $GO^+(n)$ is the subgroup of $GO(n)$ of direct similitudes (or projectively, of similitudes which respect the two kinds of solids).
\n

KID KARK KERKER E 1990

Notation : $f \in GO(n) \mapsto [f] \in PGO(n)$

Octaves and geometric triality

Félix Vaney, Professeur au Collège cantonal, Lausanne, PhD-Student of É. Cartan, 1929 :

I Solids are of the form

1.
$$
K_a = \{x \in \mathbb{O} \mid a \cdot x = 0\}
$$
 and 2. $R_a = \{x \in \mathbb{O} \mid x \cdot a = 0\}.$

II Geometric triality can be described as

$$
a\mapsto K_a\mapsto R_a\mapsto a.
$$

K ロ ▶ K @ ▶ K ミ X K E X E → Y Q Q Q

for all $a \in \mathbb{O}$ with $n(a) = 0$.

A selection of later works

- E. A. Weiss (1938,1939) : More (classical) projective geometry
- É. Cartan (1938) : Leçons sur la théorie des spineurs
- N. Kuiper (1950) : Complex algebraic geometry
- H. Freudenthal (1951) : Local and global triality
- C. Chevalley (1954) : The algebraic theory of spinors
- J. Tits (1958) : Triality for loops
- J. Tits (1959) : Classification of geometric trialities over arbitrary fields
- F. van der Blij, T. A. Springer (1960) : Octaves and triality
- T. A. Springer (1963) : Octonions, Jordan algebras and exceptional groups
- N. Jacobson (1964) : Triality for Lie algebras over arbitrary fields.

Books (Porteous, Lounesto, [KMRT], Springer-Veldkamp).

II. Triality over arbitrary fields

with V. Chernousov and J-P. Tignol

KID KARK KERKER E 1990

Simple groups with trialitarian automorphisms

G simple algebraic group with a trialitarian automorphism

⇒ *G* of type *D*⁴

Reason *D*₄ is the only Dynkin diagram with an automorphism of order 3

(ロ) (O) (E) (E) (E) 990

Theorem *G* of classical type $1,2$ *D*₄ with a trialitarian automorphism

 \Rightarrow *G* = PGO⁺(n) or *G* = Spin(n), n a 3-Pfister form.

Aim

- ► Classify all trialitarian automorphisms of $PGO^+(n)$, up to conjugacy.
- \triangleright Classify all geometric trialities up to isomorphism.

Method Reduce to the (known) classification of a certain class of composition algebras.

Remark Similar results for Spin(n).

There is a class of composition algebras well suited for triality, which Rost called **symmetric compositions**.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 O

Symmetric compositions

A **composition algebra** is a quadratic space (*S*, n) with a bilinear multiplication \star such that the norm of multiplicative :

 $n(x \star y) = n(x) \star n(y)$

They exist only in dimension 1, 2, 4 and 8 (Hurwitz).

A **symmetric composition** satisfies

$$
x \star (y \star x) = (x \star y) \star x = \mathfrak{n}(x)y
$$
 and
$$
b(x \star y, z) = b(x, y \star z).
$$

$$
b(x \star y, z) = b(x, y \star z).
$$

Remark For octonions the relations are

$$
\overline{x}(xy) = (yx)\overline{x} = n(x)y
$$
 and $\overline{b(xy, z) = b(x, z\overline{y})}$.

KO K KO K K E K K E K K K K K K K K K

Some history

Symmetric compositions existed already !

- **Petersson (1969) : Einfach involutorische Algebren** The product $x \star y = \overline{x} \overline{y}$ on an octonion algebra defines a symmetric composition (**"para-octonions"**).
- ▶ Okubo (1978) : Pseudo-octonions algebras $S = M_3(F)^0$, $x \star y = \frac{yx - \omega xy}{1 - \omega} - \frac{1}{3}$ $\frac{1}{3}$ tr(*xy*), Char $F \neq 3$, $\omega^3 = 1$.
- **Faulkner (1988) :** Trace zero elements in cubic separable alternative algebras.

Classification (Elduque-Myung, 1993) Over fields of characteristic different from 3 8-dimensional symmetric compositions are either para-octonions or Okubo algebras attached to central simple algebras of degree 3.

Zorn matrices

The para-Zorn algebra
$$
3 = \left\{ \begin{pmatrix} \alpha & a \\ b & \beta \end{pmatrix} \middle| \alpha, \beta \in F, a, b \in F^3 \right\}
$$

\n
$$
\begin{pmatrix} \alpha & a \\ b & \beta \end{pmatrix} * \begin{pmatrix} \gamma & c \\ d & \delta \end{pmatrix} = \begin{pmatrix} \beta \delta + a \cdot d & -\beta c - \gamma a - b \times d \\ -\delta b - \alpha d + a \times c & \alpha \gamma + b \cdot c \end{pmatrix},
$$

The Petersson twist $x \star_{\theta} y = \theta(x) \star \theta^{-1}(y)$

$$
\theta\big(\begin{pmatrix} \alpha & \bm{a} \\ \bm{b} & \beta \end{pmatrix}\big)=\begin{pmatrix} \alpha & \bm{a}^\varphi \\ \bm{b}^\varphi & \beta \end{pmatrix},\ \varphi\colon (\bm{a}_1,\bm{a}_2,\bm{a}_3)\mapsto (\bm{a}_2,\bm{a}_3,\bm{a}_1)
$$

Theorem (Petersson, Elduque-Perez) Symmetric compositions are forms of the para-Zorn algebra and its Petersson twist.

A variation (Chernousov, Tignol, K., 2011)

 (S, n) : 3-fold Pfister form $(\Leftrightarrow$ norm of an octonion algebra)

Symmetric composition : \star : $S \times S \rightarrow S$ such that

$$
\blacktriangleright n(x \star y) = \lambda_{\star} n(x) n(y), \ \lambda_{\star} \in F^{\times} \ (\lambda_{\star} \text{ is the multiplier of } \star)
$$

$$
\blacktriangleright \; b(x \star y, z) = b(x, y \star z)
$$

Explanation This definition is more suited to deal with similitudes, $\lambda_+ = 1$, "normalized symmetric composition"

Symmetric compositions and triality

Theorem

 (S, \star, n) a symmetric composition of dimension 8,

I Given *f* ∈ GO⁺(n), there exists *g*, *h* ∈ GO⁺(n), such that

 $f(x \star v) = g(x) \star h(v)$.

(ロ) (O) (E) (E) (E) 990

II the map $\rho_{\star} : [f] \mapsto [g]$ is an outer automorphism of order 3 of PGO⁺(n) and $\rho^2_{\star}[f] = [h].$

Proof : With Clifford algebras, see [KMRT].

Remark : "Like" Cartan, but more symmetric !

More trialitarian automorphisms

There is a split exact sequence

$$
1 \rightarrow PGO^+(\mathfrak{n}) \rightarrow Aut \left (PGO^+(\mathfrak{n}) \right) \rightarrow S_3 \rightarrow 1
$$

Consequence

- ρ_{\star} a fixed trialitarian automorphism of PGO⁺(n)
- $ρ$ any trialitarian automorphism of PGO⁺(n).

Then there exists $f \in GO^+(n)$ such that

$$
\boxed{\rho \text{ or } \rho^{-1} = \text{Int}([f]^{-1}) \circ \rho_\star} \quad \text{and} \quad \boxed{f^{-1} \, \rho_\star(f^{-1}) \, \rho_\star^2(f^{-1}) = 1}.
$$

K ロ ▶ K @ ▶ K ミ X K E X E → Y Q Q Q

Theorem (CKT, 2011) : The rule $\star \mapsto \rho_{\star}$ defines a bijection

Sym. comp. on (S, n) up to scalars \Rightarrow Trialit. aut. of PGO⁺(n)

Proof of surjectivity

Given : ρ a trialitarian automorphism.

1) Choose a fixed symmetric composition \star .

2) Take $f\in GO^{+}({\mathfrak n})$ such that ρ or $\rho^{-1}=\mathsf{Int}([f]^{-1})\circ\rho_\star$ and $f^{-1}\rho_\star(f^{-1})\rho_\star^2(f^{-1})=1$ as above.

3) Pick $g \in \mathsf{PGO}^+(\mathfrak{n})$ such that $[g] = \rho_\star^2 [f^{-1}].$

Then $x \diamond y = f(x) \star g(y)$ is such that ρ or $\rho^{-1} = \rho_{\diamond}.$

KO K KO K K E K K E K K K K K K K K K

Trialititarian automorphisms up to conjugacy

Theorem (Chernousov, Tignol, K., 2011):

Isomorphism classes of symmetric compositions with norm n

⇔

Conjugacy classes of trialitarian automorphisms of $PGO^+(n)$

K ロ > K @ ▶ K ミ > K ミ > → ミ → K Q Q Q

Consequences

- 1. The classification of 8-dimensional symmetric compositions (Elduque-Myung, 1993) yields the classification of conjugacy classes of trialitarian automorphisms of groups $PGO^+(n)$.
- 2. Conversely one can first classify conjugacy classes of trialitarian automorphisms of groups $PGO^{+}(n)$ (Chernousov, Tignol, K., 201?) and deduce from it the classification of 8-dimensional symmetric compositions.

KO K KO K K E K K E K Y K K K K K K K K

Symmetric compositions and geometric triality

Theorem

Given : (S, \star, n) a 8-dimensional symmetric composition with hyperbolic norm.

Claim :

I All solids of one kind are of the form $x \star S$ and those of the other kind of the form $S \star \gamma$, $x, y \in S$.

II The rule

$$
\tau_{\star} \; : \; x \mapsto x \star S \mapsto S \star x \mapsto x
$$

is a geometric triality.

III the rule $\star \mapsto \tau_{\star}$ defines a bijection

Sym. comp. on (S, \mathfrak{n}) up to scal. \Rightarrow Geom. trialit. on $\{\mathfrak{n} = 0\}$

イロト イ押 トイヨ トイヨ トー

÷. QQQ

Automorphisms of symmetric compositions

 $\mathsf{Theorem:} \ \ \left[\mathsf{PGO}^+(\mathfrak{n})\right]^{\rho_\star}=\mathsf{Aut}(\mathcal{S},\star)$

- ► (S, \star) para-octonions \Rightarrow $\big[\operatorname{\mathsf{PGO}^+(n)}\big]^{\rho_\star}$ of type $G_2.$
- \blacktriangleright (S, \star) Okubo, Char $\mathsf{F} \neq 3 \Rightarrow \big[\operatorname{\mathsf{PGO}}^+(\mathfrak{n})\big]^{\rho_\star}$ of type $\mathsf{A}_2.$

(ロ) (O) (E) (E) (E) 990

 \blacktriangleright (S, \star) Okubo, Char $F = 3$, is still mysterious !

Groups with triality of outer type ³,⁶*D*⁴

"Outer types" are related with

- \triangleright Semilinear trialities (in projective geometry)
- \triangleright Generalized hexagons (incidence geometry, Tits, Schellekens, ...)

KO K KO K K E K K E K K K K K K K K K

- \triangleright Twisted compositions (F_4 , Springer)
- \blacktriangleright Trialitarian algebras (KMRT)

III. Triality over \mathbb{F}_1

(with J-P. Tignol, 2012)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 O

Tits, le corps de caractéristique 1

Sur les analogues algébriques des groupes semi-simples complexes,1957

"Nous désignerons par $K = K_1$ le « corps de caractéristique 1» formé du seul élément $1 = 0$ (¹⁹). Il est naturel d'appeler *espace projectif à n dimensions sur K*, un ensemble P_n of $n+1$ points dont tous les sous-ensembles sont considérés comme des variétés linéaires {...}.

(¹⁹) *K*¹ n'est généralement pas considéré comme un corps."

KO K KO K K E K K E K K K K K K K K K

Vector spaces over \mathbb{F}_1

Since there is only one scalar, one has to work only with bases !

- \triangleright *n*-dimensional vector space : $\mathcal{V} = \{x_1, \ldots, x_n, 0\}$
- **►** *n* − 1-dimensional projective space :

$$
\mathbb{P}(\mathcal{V})=\langle \mathcal{V}\rangle=\{x_1,\ldots,x_n\}
$$

$$
\Rightarrow Aut(\mathcal{V}) = Aut(\langle \mathcal{V} \rangle) = GL_n(\mathbb{F}_1) = PGL_n(\mathbb{F}_1) = S_n.
$$

Tits' motivation There are algebraic (or geometric) objects whose automorphism groups are the simple algebraic groups. Tits wanted algebraic (or geometric) objects whose automorphism groups are the **Weyl groups** of these simple algebraic groups.

Quadratic spaces over \mathbb{F}_1

- A 2*n*-dimensional quadratic space is a pair $Q = (V, \tilde{\ })$ where V is a 2*n*-dimensional vector space over \mathbb{F}_1 and $\tilde{}$: $\mathcal{V} \rightarrow \mathcal{V}$ is a bijective self-map of order 2 such that $\ddot{0} = 0$ and without other fixed points : $\mathcal{V} = \{x_1, \ldots, x_n, y_1, \ldots, y_n, 0\}, \, \tilde{x}_i = y_i, \, \tilde{y}_i = x_i, 0 = 0.$
- $\langle Q \rangle = Q \setminus \{0\}$ is the **quadric** associated to Q.
- $\blacktriangleright \langle \mathcal{Q} \rangle$ is a double covering !

Example : (*V*, *q*) "classical" hyperbolic space with hyperbolic basis

$$
\{e_i, f_i, i \leq i \leq n \mid q(e_i) = q(f_i) = 0, b(e_i, f_j) = \delta_{ij}\}.
$$

Set $\widetilde{e}_i = f_i$, $\widetilde{f}_i = e_i$.

Let $Q = (V, \tilde{\ })$ be a 2*n*-dimensional quadratic space over \mathbb{F}_1 and let U be a linear subspace of V .

$$
\blacktriangleright \mathcal{U}^{\perp} = \{x \in \mathcal{V} \mid \widetilde{x} \notin \mathcal{U}\} \sqcup \{0\};
$$

- \blacktriangleright $\mathcal U$ is **isotropic** if $\mathcal U \subset \mathcal U^{\perp}$ and **maximal isotropic** if $\mathcal U = \mathcal U^{\perp};$
- \triangleright U isotropic \Rightarrow dim $\mathcal{U} \leq n$;
- \triangleright Two kinds of maximal isotropic spaces : two maximal isotropic spaces $\mathcal U$ and $\mathcal U'$ are of the **same kind** if dim $(\mathcal{U} \cap \mathcal{U}')$ has the same parity as $\frac{\dim \mathcal{V}}{2}$;
- If U maximal isotropic $\Leftrightarrow \langle U \rangle$ is a section of the double covering $\langle \mathcal{Q} \rangle$;

Orthogonal groups over \mathbb{F}_1

$$
O(Q) = PGO(\langle Q \rangle) = PGO_{2n}(\mathbb{F}_1) = S_2^n \rtimes S_n,
$$

$$
O^+(Q) = PGO^+(\langle Q \rangle) = PGO_{2n}^+(\mathbb{F}_1) = S_2^{n-1} \rtimes S_n
$$

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 「重 」 約 9 (9)

Trialitarian automorphisms of $\mathsf{PGO}^+_8(\mathbb{F}_1)$

Known facts:

- I The Weyl group $S^3_2 \rtimes S_4$ of type D_4 (which is $\mathsf{PGO}^+_8(\mathbb{F}_1))$ admits outer automorphisms of order 3.
- II If α , β are trialitarian automorphisms of PGO $^+_8(\mathbb{F}_1)$, then $\alpha \circ \beta^{-1}$ or $\alpha \circ \beta^{-2}$ is an inner automorphism.

Aim : Describe trialitarian automorphisms and geometric triality over \mathbb{F}_1 with symmetric compositions over \mathbb{F}_1 !

KO KARK KEK KEK LE 1990

A finite-dimensional **algebra** (S, \star) over \mathbb{F}_1 is a finite-dimensional \mathbb{F}_1 -vector space S together with a map

$$
\star\colon \mathcal{S}\times\mathcal{S}\to\mathcal{S},\quad (x,y)\mapsto x\star y,
$$

called the **multiplication**, such that $0 \times x = x \times 0 = 0$ for all $x \in \mathcal{S}$.

KO KA KEKKEK E 1990

Symmetric compositions over \mathbb{F}_1

A **symmetric composition** is a quadratic space $(S, \tilde{\ })$ with an algebra multiplication \star satisfying the following properties for all

x, $v \in S$:

 $(\text{SC1}) \ \widetilde{X \star V} = \widetilde{X} \star \widetilde{V}.$

(SC2) If $x, y \neq 0$, then $x * v = 0 \iff x * \widetilde{v} \neq 0 \iff \widetilde{x} * v \neq 0 \iff \widetilde{x} * \widetilde{v} = 0.$ (SC3) If $x \star y \neq 0$, then $(x \star y) \star \tilde{x} = y$ and $\tilde{y} \star (x \star y) = x$. (SC4) If $x \star y = 0$, then $(x^{\perp} \star y) \star x = y \star (x \star y^{\perp}) = \{0\}$; i.e., $(u \star v) \star x = v \star (x \star v) = 0$ for all $u \neq \tilde{x}$ and $v \neq \tilde{y}$.

KO K KO K K E K K E K K K K K K K K K

Maximal isotropic spaces = solids

Theorem

I The sets $x \star S$ and $S \star y$, $x, y \in S$ are solids of $\langle S \rangle$ of different kinds;

KO KA KEKKEK E 1990

- II Any solid is of the form $x \star S$ or $S \star y$.
- III dim $S = 2$, 4 or 8.

Proof of III : $2^n \leq 4n$, so $n \leq 4$!

Examples in dimension 8

We use a "monomial" multiplication table for a "classical symmetric composition" and forget scalars !

For para-octonions:

For the split Petersson algebra:

メロメメ 御きメモ メモ きっと 悪い

 2990

Symmetric compositions, trialitarian automorphisms and geometric triality over \mathbb{F}_1

Theorem (Tignol, K., 2012) : The rules

$$
\star \mapsto \rho_{\star}, \ \rho_{\star}[f] = [g], \text{if} \ \ f(x \star y) = g(x) \star h(y)
$$

and

$$
\star \mapsto \tau_{\star} \text{ where } \tau_{\star} : X \mapsto X \star S \mapsto S \star X \mapsto X
$$

define bijections

Trialit. aut. of
$$
PGO_8^+(\mathbb{F}_1) \Big| \Leftrightarrow \Big[8\text{-dim. sym. comp.}\Big]
$$

$$
\Leftrightarrow \quad \boxed{\text{Geom. trialities}}
$$

イロト イ押 トイヨ トイヨ トー

 QQQ

Let $\langle Q \rangle$ be the quadric associated to an 8-dimensional quadratic space $\mathcal Q$ over $\mathbb F_1$.

- \blacktriangleright *C* = {solids of $\langle \mathcal{Q} \rangle$ };
- In The choice of a decomposition $C = C_1 \sqcup C_2$ into the two kinds of solids is an **orientation** of $\langle \mathcal{Q} \rangle$;

A **geometric triality** on $\langle \mathcal{Q} \rangle$ is a pair (τ, ∂) , where ∂ is an orientation $C = C_1 \sqcup C_2$ of *Z* and τ is a map

 $\tau: Z \sqcup C_1 \sqcup C_2 \rightarrow Z \sqcup C_1 \sqcup C_2$

with the following properties:

(GT1) τ commutes with the structure map $\tilde{r}: x \mapsto \tilde{x}$; (GT2) τ preserves the incidence relations; (GT3) $\tau(\langle \mathcal{Q} \rangle) = C_1$, $\tau(C_1) = C_2$, and $\tau(C_2) = \langle \mathcal{Q} \rangle$; (GT4) $\tau^3 = I$.

The image of a line under τ is again a line !

Absolute points

An **absolute point** of a geometric triality (τ, ∂) is a point $x \in \langle Q \rangle$ such that $x \in \tau(x)$.

Theorem (Tignol, K.)

1) Suppose (τ, ∂) is a triality on $\langle \mathcal{Q} \rangle$ for which there exists an absolute point. Then the pair (V, E) where V is the set of absolute points of $\langle Q \rangle$ and *E* is the set of lines fixed under τ is an hexagon:

(absolute points, fixed lines) = $(V,E) =$

Moreover, for every hexagon (*V*, *E*) in $\langle \mathcal{Q} \rangle$ and any orientation ∂ there is a unique geometric triality (τ, ∂) on $\langle \mathcal{Q} \rangle$ such that *V* is the set of absolute points of τ and *E* is the set of fixed lines under τ .

2) Let (τ, ∂) be a geometric triality on $\langle \mathcal{Q} \rangle$ without absolute points. There are four hexagons (V_1, E_1) , ..., (V_4, E_4) with disjoint edge sets such that each edge set *Eⁱ* is preserved under τ and $E_1 \sqcup E_2 \sqcup E_3 \sqcup E_4$ is the set of all lines in $\langle \mathcal{Q} \rangle$.

Any one of these hexagons determines the triality uniquely if the order in which the edges are permuted is given. More precisely, given an orientation ∂ of $\langle \mathcal{Q} \rangle$, an hexagon (*V*, *E*) in $\langle \mathcal{Q} \rangle$ and an orientation of the circuit of edges of *E*, there is a unique triality (τ, ∂) on $\langle \mathcal{Q} \rangle$ without absolute points that permutes the edges in *E* in the prescribed direction.

All geometric trialities

Theorem Let ∂ be a fixed orientation of $\langle \mathcal{Q} \rangle$.

- I There are 16 trialities (τ , ∂) with absolute points on $\langle \mathcal{Q} \rangle$. All these trialities are conjugate under $PGO^+(\langle Q \rangle)$.
- II There are 8 geometric trialities (τ, ∂) on $\langle \mathcal{Q} \rangle$ without absolute points. These trialities are conjugate under the group $PGO^+(\langle \mathcal{Q} \rangle)$.

Consequence :

- \triangleright 2 isomorphism classes of geometric trialities;
- \triangleright 2 isomorphism classes of 8-dimensional symmetric compositions;
- \triangleright 2 conjugacy classes of trialitarian automorphisms;

Theorem (τ, ∂) a geometric triality.

1) With absolute points.

$$
Aut(\tau,\partial)=D_{12}=S_2\times S_3.
$$

2) Without absolute points.

$$
Aut(\tau,\partial)=\widetilde{A}_4(\simeq SL_2(\mathbb{F}_3)).
$$

KID KARK KERKER E 1990

Thank you for your attention !

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 익 (N