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I. Some history
Wikipedia:

“There is a geometrical version of triality, analogous to duality in

projective geometry.

... one finds a curious phenomenon involving 1, 2, and 4

dimensional subspaces of 8-dimensional space ...”



Geometric triality

I (V ,q) : Quadratic space of dimension 8 of maximal index.

Ui : Set of isotropic subspaces of V of dimension i , i ≤ 4.

I “Projective” terminology :

Q = {q = 0} defines a 6-dimensional quadric in P7, the

elements of Ui , i = 1,2,3,4, are points, lines, planes

and solids of Q.

I Two solids are of the same kind if their intersection is of

even dimension. Two solids are of the same kind if and

only if one can be transformed in the other by a rotation.

⇒ 2 kinds of solids !



Eduard Study

Grundlagen und Ziele der analytischen Kinematik, 1913

I The variety of solids of a fixed kind in Q6 is isomorphic to a

quadric Q6.

II Any proposition in the geometry of Q6 [about incidence

relations] remains true if the concepts points, solids of one

kind and solids of the other kind are cyclically permuted.



In other words, geometric triality is a geometric correspondence

of order 3

Points → Solids 1 → Solids 2 → Points

which is compatible with incidence relations.

In analogy to geometric duality which is a geometric

correspondence Points → Hyperplanes

in projective space.

The word triality goes back to Élie Cartan : “On peut dire que

le principe de dualité de la géométrie projective est remplacé ici

par un principe de trialité”.



Élie Cartan

Le principe de dualité et la théorie des groupes simples et

semi-simples, 1925

I The group PGO+
8 admits a group of outer automorphisms

isomorphic to S3.

I Outer automorphisms are related to “Cayley octaves”.

Outer automorphisms of order 3 will be called

trialitarian automorphisms.



Cayley octaves or Octonions

I Octonions are a 8-dimensional algebra O with unit, norm n

and conjugation x 7→ x such that

I n(x) = x · x = x · x , n(x · y) = n(x)n(y).

I Cartan :

Given A ∈ SO(n) there exist B, C ∈ SO(n) such that

C(x · y) = Ax · By .

σ : A 7→ B, τ : A 7→ C induce σ̂, τ̂ ∈ Aut
(

PGO+(n)
)

such

that

σ̂3 = 1, τ̂2 = 1, 〈σ̂, τ̂〉 = S3 in Aut
(

PGO+(n)
)
.



The orthogonal projective group

I PGO(n) = GO(n)/F×,

GO(n) = {f ∈ GL(O) | n
(
f (x)

)
= µ(f )n(x)}, µ(f ) ∈ F×.

I PGO+(n) = GO+ /F×, where GO+(n) is the subgroup of

GO(n) of direct similitudes (or projectively, of similitudes

which respect the two kinds of solids).

Notation : f ∈ GO(n) 7→ [f ] ∈ PGO(n)



Octaves and geometric triality

Félix Vaney, Professeur au Collège cantonal, Lausanne,

PhD-Student of É. Cartan, 1929 :

I Solids are of the form

1. Ka = {x ∈ O | a·x = 0} and 2. Ra = {x ∈ O | x ·a = 0}.

II Geometric triality can be described as

a 7→ Ka 7→ Ra 7→ a.

for all a ∈ O with n(a) = 0.



A selection of later works

E. A. Weiss (1938,1939) : More (classical) projective geometry

É. Cartan (1938) : Leçons sur la théorie des spineurs

N. Kuiper (1950) : Complex algebraic geometry

H. Freudenthal (1951) : Local and global triality

C. Chevalley (1954) : The algebraic theory of spinors

J. Tits (1958) : Triality for loops

J. Tits (1959) : Classification of geometric trialities over arbitrary fields

F. van der Blij, T. A. Springer (1960) : Octaves and triality

T. A. Springer (1963) : Octonions, Jordan algebras and exceptional
groups

N. Jacobson (1964) : Triality for Lie algebras over arbitrary fields.

Books (Porteous, Lounesto, [KMRT], Springer-Veldkamp).



II. Triality over arbitrary fields
with V. Chernousov and J-P. Tignol



Simple groups with trialitarian automorphisms

G simple algebraic group with a trialitarian automorphism

⇒
G of type D4

Reason D4 is the only Dynkin diagram with an automorphism

of order 3

d
α1

d
α2

dα3

dα4

��
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Theorem G of classical type 1,2D4 with a trialitarian

automorphism

⇒ G = PGO+(n) or G = Spin(n), n a 3-Pfister form.



Aim

I Classify all trialitarian automorphisms of PGO+(n), up to

conjugacy.

I Classify all geometric trialities up to isomorphism.

Method Reduce to the (known) classification of a certain

class of composition algebras.

Remark Similar results for Spin(n).



M. Rost (∼1994)

There is a class of composition algebras well suited for triality,

which Rost called symmetric compositions.



Symmetric compositions

A composition algebra is a quadratic space (S, n) with a

bilinear multiplication ? such that the norm of multiplicative :

n(x ? y) = n(x) ? n(y)

They exist only in dimension 1, 2, 4 and 8 (Hurwitz).

A symmetric composition satisfies

x ? (y ? x) = (x ? y) ? x = n(x)y and b(x ? y , z) = b(x , y ? z) .

Remark For octonions the relations are

x(xy) = (yx)x = n(x)y and b(xy , z) = b(x , zy) .



Some history

Symmetric compositions existed already !

I Petersson (1969) : Einfach involutorische Algebren
The product x ? y = x y on an octonion algebra defines
a symmetric composition (“para-octonions”).

I Okubo (1978) : Pseudo-octonions algebras

S = M3(F )0, x ? y = yx−ωxy
1−ω − 1

3 tr(xy), Char F 6= 3, ω3 = 1.

I Faulkner (1988) : Trace zero elements in cubic separable
alternative algebras.

Classification (Elduque-Myung, 1993) Over fields of character-
istic different from 3 8-dimensional symmetric compositions are
either para-octonions or Okubo algebras attached to central sim-
ple algebras of degree 3.



Zorn matrices

The para-Zorn algebra Z =

{(
α a
b β

)∣∣∣∣α, β ∈ F , a,b ∈ F 3
}

(
α a
b β

)
∗
(
γ c
d δ

)
=

(
βδ + a • d −βc − γa− b × d

−δb − αd + a× c αγ + b • c

)
,

The Petersson twist x ?θ y = θ(x) ? θ−1(y)

θ
((α a

b β

))
=

(
α aϕ

bϕ β

)
, ϕ : (a1,a2,a3) 7→ (a2,a3,a1)

Theorem (Petersson, Elduque-Perez) Symmetric compositions
are forms of the para-Zorn algebra and its Petersson twist.



A variation (Chernousov, Tignol, K., 2011)

(S, n) : 3-fold Pfister form (⇔ norm of an octonion algebra)

Symmetric composition : ? : S × S → S such that

I n(x ? y) = λ?n(x)n(y), λ? ∈ F× (λ? is the multiplier of ? )

I b(x ? y , z) = b(x , y ? z)

Explanation This definition is more suited to deal with

similitudes, λ? = 1, “normalized symmetric composition”



Symmetric compositions and triality

Theorem

(S, ?, n) a symmetric composition of dimension 8,

I Given f ∈ GO+(n), there exists g,h ∈ GO+(n), such that

f (x ? y) = g(x) ? h(y).

II the map ρ? : [f ] 7→ [g] is an outer automorphism of order 3

of PGO+(n) and ρ2
?[f ] = [h].

Proof : With Clifford algebras, see [KMRT].

Remark : “Like” Cartan, but more symmetric !



More trialitarian automorphisms

There is a split exact sequence

1→ PGO+(n)→ Aut
(

PGO+(n)
)
→ S3 → 1

Consequence

ρ? a fixed trialitarian automorphism of PGO+(n)

ρ any trialitarian automorphism of PGO+(n).

Then there exists f ∈ GO+(n) such that

ρ or ρ−1 = Int([f ]−1) ◦ ρ? and f−1 ρ?(f−1) ρ2
?(f−1) = 1 .



Theorem (CKT, 2011) : The rule ? 7→ ρ? defines a bijection

Sym. comp. on (S, n) up to scalars ⇔ Trialit. aut. of PGO+(n)

Proof of surjectivity

Given : ρ a trialitarian automorphism.

1) Choose a fixed symmetric composition ?.

2) Take f ∈ GO+(n) such that ρ or ρ−1 = Int([f ]−1) ◦ ρ? and

f−1ρ?(f−1)ρ2
?(f−1) = 1 as above.

3) Pick g ∈ PGO+(n) such that [g] = ρ2
?[f−1]].

Then x � y = f (x) ? g(y) is such that ρ or ρ−1 = ρ�.



Trialititarian automorphisms up to conjugacy

Theorem (Chernousov, Tignol, K., 2011):

Isomorphism classes of symmetric compositions with norm n

⇔
Conjugacy classes of trialitarian automorphisms of PGO+(n)



Consequences

1. The classification of 8-dimensional symmetric

compositions (Elduque-Myung, 1993) yields the

classification of conjugacy classes of trialitarian

automorphisms of groups PGO+(n).

2. Conversely one can first classify conjugacy classes of

trialitarian automorphisms of groups PGO+(n)

(Chernousov, Tignol, K., 201?) and deduce from it the

classification of 8-dimensional symmetric compositions.



Symmetric compositions and geometric triality
Theorem

Given : (S, ?, n) a 8-dimensional symmetric composition with

hyperbolic norm.

Claim :

I All solids of one kind are of the form x ? S and those of the

other kind of the form S ? y , x , y ∈ S.

II The rule

τ? : x 7→ x ? S 7→ S ? x 7→ x

is a geometric triality.

III the rule ? 7→ τ? defines a bijection

Sym. comp. on (S, n) up to scal. ⇔ Geom. trialit. on {n = 0}



Automorphisms of symmetric compositions

Theorem :
[

PGO+(n)
]ρ? = Aut(S, ?)

I (S, ?) para-octonions⇒
[

PGO+(n)
]ρ? of type G2.

I (S, ?) Okubo, Char F 6= 3⇒
[

PGO+(n)
]ρ? of type A2.

I (S, ?) Okubo, Char F = 3, is still mysterious !



Groups with triality of outer type 3,6D4

“Outer types” are related with

I Semilinear trialities (in projective geometry)

I Generalized hexagons (incidence geometry, Tits,

Schellekens, ...)

I Twisted compositions (F4, Springer)

I Trialitarian algebras (KMRT)



III. Triality over F1

(with J-P. Tignol, 2012)



Tits, le corps de caractéristique 1

Sur les analogues algébriques des groupes semi-simples

complexes,1957

”Nous désignerons par K = K1 le « corps de caractéristique 1»

formé du seul élément 1 = 0 (19). Il est naturel d’appeler

espace projectif à n dimensions sur K , un ensemble Pn of n + 1

points dont tous les sous-ensembles sont considérés comme

des variétés linéaires {...}.

(19) K1 n’est généralement pas considéré comme un corps.”



Vector spaces over F1

Since there is only one scalar, one has to work only with bases !

I n-dimensional vector space : V = {x1, . . . , xn,0}

I n − 1-dimensional projective space :

P(V) = 〈V〉 = {x1, . . . , xn}

⇒ Aut(V) = Aut(〈V〉) = GLn(F1) = PGLn(F1) = Sn.

Tits’ motivation There are algebraic (or geometric) objects

whose automorphism groups are the simple algebraic groups.

Tits wanted algebraic (or geometric) objects whose

automorphism groups are the Weyl groups of these simple

algebraic groups.



Quadratic spaces over F1

I A 2n-dimensional quadratic space is a pair Q = (V, ˜)
where V is a 2n-dimensional vector space over F1 and˜ : V → V is a bijective self-map of order 2 such that

0̃ = 0 and without other fixed points :

V = {x1, . . . , xn, y1, . . . yn,0}, x̃i = yi , ỹi = xi , 0̃ = 0.

I 〈Q〉 = Q\{0} is the quadric associated to Q.

I 〈Q〉 is a double covering !

Example : (V ,q) “classical” hyperbolic space with hyperbolic

basis

{ei , fi , i ≤ i ≤ n | q(ei) = q(fi) = 0, b(ei , fj) = δij}.
Set ẽi = fi , f̃i = ei .



Let Q = (V, ˜) be a 2n-dimensional quadratic space over F1

and let U be a linear subspace of V.

I U⊥ = {x ∈ V | x̃ /∈ U} t {0};

I U is isotropic if U ⊂ U⊥ and maximal isotropic if U = U⊥;

I U isotropic⇒ dimU ≤ n;

I Two kinds of maximal isotropic spaces : two maximal

isotropic spaces U and U ′ are of the same kind if

dim(U ∩U ′) has the same parity as dimV
2 ;

I U maximal isotropic ⇔ 〈U〉 is a section of the double

covering 〈Q〉;



Orthogonal groups over F1

O(Q) = PGO(〈Q〉) = PGO2n(F1) = Sn
2 o Sn,

O+(Q) = PGO+(〈Q〉) = PGO+
2n(F1) = Sn−1

2 o Sn



Trialitarian automorphisms of PGO+
8 (F1)

Known facts:

I The Weyl group S3
2 o S4 of type D4 (which is PGO+

8 (F1))

admits outer automorphisms of order 3.

II If α, β are trialitarian automorphisms of PGO+
8 (F1), then

α ◦ β−1 or α ◦ β−2 is an inner automorphism.

Aim : Describe trialitarian automorphisms and geometric

triality over F1 with symmetric compositions over F1 !



Algebras over F1

A finite-dimensional algebra (S, ?) over F1 is a

finite-dimensional F1-vector space S together with a map

? : S × S → S, (x , y) 7→ x ? y ,

called the multiplication, such that 0 ? x = x ? 0 = 0 for all

x ∈ S.



Symmetric compositions over F1

A symmetric composition is a quadratic space (S, ˜) with an

algebra multiplication ? satisfying the following properties for all

x , y ∈ S:

(SC1) x̃ ? y = x̃ ? ỹ .

(SC2) If x , y 6= 0, then

x ? y = 0 ⇐⇒ x ? ỹ 6= 0 ⇐⇒ x̃ ? y 6= 0 ⇐⇒ x̃ ? ỹ = 0.

(SC3) If x ? y 6= 0, then (x ? y) ? x̃ = y and ỹ ? (x ? y) = x .

(SC4) If x ? y = 0, then (x⊥ ? y) ? x = y ? (x ? y⊥) = {0}; i.e.,

(u ? y) ? x = y ? (x ? v) = 0 for all u 6= x̃ and v 6= ỹ .



Maximal isotropic spaces = solids

Theorem

I The sets x ? S and S ? y , x , y ∈ S are solids of 〈S〉 of

different kinds;

II Any solid is of the form x ? S or S ? y .

III dimS = 2, 4 or 8.

Proof of III : 2n ≤ 4n, so n ≤ 4 !



Examples in dimension 8

We use a “monomial” multiplication table for a “classical

symmetric composition” and forget scalars !

For para-octonions:

∗ e1 f1 e2 f2 e3 f3 e4 f4
e1 0 e4 f3 0 −f2 0 −e1 0
f1 f4 0 0 −e3 0 e2 0 −f1
e2 −f3 0 0 e4 f1 0 −e2 0
f2 0 e3 f4 0 0 −e1 0 −f2
e3 f2 0 −f1 0 0 e4 −e3 0
f3 0 −e2 0 e1 f4 0 0 −f3
e4 0 −f1 0 −f2 0 −f3 f4 0
f4 −e1 0 −e2 0 −e3 0 0 e4



For the split Petersson algebra:

? e1 f1 e2 f2 e3 f3 e4 f4
e1 f1 0 −f3 0 0 e4 −e2 0
f1 0 −e1 0 e3 f4 0 0 −f2
e2 0 e4 f2 0 −f1 0 −e3 0
f2 f4 0 0 −e2 0 e1 0 −f3
e3 −f2 0 0 e4 f3 0 −e1 0
f3 0 e2 f4 0 0 −e3 0 −f1
e4 0 −f3 0 −f1 0 −f2 f4 0
f4 −e3 0 −e1 0 −e2 0 0 e4



Symmetric compositions, trialitarian automorphisms
and geometric triality over F1

Theorem (Tignol, K., 2012) : The rules

? 7→ ρ?, ρ?[f ] = [g], if f (x ? y) = g(x) ? h(y)

and

? 7→ τ? where τ? : x 7→ x ? S 7→ S ? x 7→ x

define bijections

Trialit. aut. of PGO+
8 (F1) ⇔ 8-dim. sym. comp.

⇔ Geom. trialities



Back to geometric trialities

Let 〈Q〉 be the quadric associated to an 8-dimensional

quadratic space Q over F1.

I C = {solids of 〈Q〉};

I The choice of a decomposition C = C1 t C2 into the two

kinds of solids is an orientation of 〈Q〉;



A geometric triality on 〈Q〉 is a pair (τ, ∂), where ∂ is an

orientation C = C1 t C2 of Z and τ is a map

τ : Z t C1 t C2 → Z t C1 t C2

with the following properties:

(GT1) τ commutes with the structure map ˜ : x 7→ x̃ ;

(GT2) τ preserves the incidence relations;

(GT3) τ(〈Q〉) = C1, τ(C1) = C2, and τ(C2) = 〈Q〉;

(GT4) τ3 = I.

The image of a line under τ is again a line !



Absolute points

An absolute point of a geometric triality (τ, ∂) is a point

x ∈ 〈Q〉 such that x ∈ τ(x).

Theorem (Tignol, K.)

1) Suppose (τ, ∂) is a triality on 〈Q〉 for which there exists an ab-
solute point. Then the pair (V ,E) where V is the set of absolute
points of 〈Q〉 and E is the set of lines fixed under τ is an hexagon:

(absolute points, fixed lines) = (V,E) =

Moreover, for every hexagon (V ,E) in 〈Q〉 and any orientation ∂
there is a unique geometric triality (τ, ∂) on 〈Q〉 such that V is the
set of absolute points of τ and E is the set of fixed lines under τ .



2) Let (τ, ∂) be a geometric triality on 〈Q〉 without absolute
points. There are four hexagons (V1,E1), . . . , (V4,E4) with
disjoint edge sets such that each edge set Ei is preserved under
τ and E1 t E2 t E3 t E4 is the set of all lines in 〈Q〉.

{lines} = t t t

Any one of these hexagons determines the triality uniquely if the
order in which the edges are permuted is given. More precisely,
given an orientation ∂ of 〈Q〉, an hexagon (V ,E) in 〈Q〉 and an
orientation of the circuit of edges of E , there is a unique triality
(τ, ∂) on 〈Q〉 without absolute points that permutes the edges in
E in the prescribed direction.



All geometric trialities

Theorem Let ∂ be a fixed orientation of 〈Q〉.

I There are 16 trialities (τ, ∂) with absolute points on 〈Q〉. All

these trialities are conjugate under PGO+(〈Q〉).

II There are 8 geometric trialities (τ, ∂) on 〈Q〉 without

absolute points. These trialities are conjugate under the

group PGO+(〈Q〉).

Consequence :

I 2 isomorphism classes of geometric trialities;

I 2 isomorphism classes of 8-dimensional symmetric

compositions;

I 2 conjugacy classes of trialitarian automorphisms;



Automorphisms

Theorem (τ, ∂) a geometric triality.

1) With absolute points.

Aut(τ, ∂) = D12 = S2 × S3.

2) Without absolute points.

Aut(τ, ∂) = Ã4(' SL2(F3)).



Thank you for your attention !


