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BRAIN–TUMOR INTERACTION BIOPHYSICAL MODELS FOR
MEDICAL IMAGE REGISTRATION∗

COSMINA HOGEA† , CHRISTOS DAVATZIKOS† , AND GEORGE BIROS‡

Abstract. State-of-the art algorithms for deformable image registration are based on the min-
imization of an image similarity functional that is regularized by adding a penalty term on the
deformation map. The penalty function typically represents a smoothness regularization. In this
article, we use a constrained optimization formulation in which the image similarity functional is
coupled to a biophysical model. This formulation is pertinent when the data have been generated by
imaging tissue that undergoes deformations due to an actual biophysical phenomenon. Such is the
case of coregistering tumor-bearing brain images from the same individual. We present an approxi-
mate model that couples tumor growth with the mechanical deformations of the surrounding brain
tissue. We consider primary brain tumors—in particular, gliomas. Glioma growth is modeled by a
reaction-advection-diffusion PDE, with a two-way coupling with the underlying tissue elastic defor-
mation. Tumor bulk, infiltration, and subsequent mass effects are not regarded separately but are
captured by the model itself in the course of its evolution. Our formulation allows for updating the
tumor diffusion coefficient following structural displacements caused by tumor growth/infiltration.
Our forward problem implementation builds on the PETSc library of Argonne National Laboratory.
Our reformulation results in a very small parameter space, and we use the derivative-free optimization
library APPSPACK of Sandia National Laboratories. We test the forward model and the optimization
framework by using landmark-based similarity functions and by applying it to brain tumor data
from clinical and animal studies. State-of-the-art registration algorithms fail in such problems due to
excessive deformations. We compare our results with previous work in our group, and we observed
up to 50% improvement in landmark deformation prediction. We present preliminary validation
results in which we were able to reconstruct deformation fields using four degrees of freedom. Our
study demonstrates the validity of our formulation and points to the need for richer datasets and
fast optimization algorithms.

Key words. medical image registration, tumor growth, deformable registration, soft-tissue
simulations
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1. Introduction. Medical image registration (see Figure 2) involves the con-
struction of point-correspondences between a set of images: given a target image τ ,
a series of images σ(t) parametrized by time t, and an image similarity functional
J (τ, σ), we would like to construct a deformation map ψ∗(t) such that

(1.1) ψ∗ = arg min
ψ

J (σ ◦ ψ, τ) + R(ψ).

The penalty term R is introduced to generate anatomy-preserving deformations.
Typically, R represents an energy term that ensures that ψ is a diffeomorphism
[6, 11, 18, 43]. We do not attempt to review the extensive literature on formulations
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and solution methodologies for (1.1). An excellent introduction on this topic can be
found in [44].

In this article, we expand our work in [29] and discuss a formulation for the case
in which ψ is related to a biophysical phenomenon, the so-called mass effect: the
mechanical deformation of healthy brain tissue due to cancerous tumor growth. We
reformulate (1.1) by replacing R with biophysical constraints on ψ:

(1.2) (ψ∗,φ∗, g∗) = arg min
ψ,φ,g

J (σ ◦ ψ, τ) subject to F (φ,ψ, g) = 0.

In addition to the map ψ, we have introduced the biophysical variables φ and un-
known parameters g . The nonlinear map F represents the biophysical model, a
reaction-advection-diffusion tumor growth model coupled to elasticity. In the brain–
tumor interaction case, φ comprises two components: the tumor concentration and
the displacement. g consists of the diffusion and reaction coefficients, parametriza-
tions of the initial tumor concentration, and the force coupling between the tumor and
the tissue. We use a landmark-based similarity functional J , which is mathematically
equivalent to having discrete observations on ψ.

The main advantage of the constrained optimization formulation is that it incor-
porates problem-specific prior information—instead of a generic R—related to the
underlying biophysical phenomenon. By using more informed priors, we can produce
complex deformation maps using small parameter spaces (in the case we discuss in
this paper, we use only four parameters).1

The main drawback of our approach is that strong priors may lead to strong bias—
that is, if they are wrong. Indeed, there is significant uncertainty associated with
the exact form of F and its interindividual variability. Additional drawbacks of our
approach over standard regularization techniques include computational challenges in
simulating F and the fact that our formulation is not applicable to image registration
across different individuals since there is no underlying physical deformation that
follows a biophysical law. In the following, we describe the clinical problem, the
biophysical model, the related work, our contributions, and the limitations in our
approach.

Motivation. More than 50% of primary brain tumors are gliomas, which are sel-
dom treatable with resection, and which ultimately progress to high-grade tumors,
leading to death in only 6–12 months [1]. A better understanding of the characteristics
of the progression of brain cancer, based on phenotypic cancer profiles derived from
imaging, histopathology, and other sources, can help to determine predictive factors
for cancer invasion. A significant tool for understanding such cancer profiles is the
construction of statistical atlases (“an average brain”).

Statistical atlases of brain function and structure have been widely used as a
means of integrating diverse information about anatomical and functional variabil-
ity into a canonical coordinate space (often called a stereotactic space) for better
understanding and diagnosing of brain diseases [5, 13]. In the case of brain tumor
patients, such atlases have the potential to assist surgical and treatment planning. In
order to construct and use brain tumor atlases, tumor-bearing patient images must
be coregistered to normal brain images or a statistical atlas; i.e., a transformation

1The constrained formulation can be viewed as a nonlinear transformation on ψ. Instead of
solving for ψ, we solve for g . If we knew the Lagrange multipliers associated with the Euler–
Lagrange optimality conditions for (1), then (1.2) would be just a special case of (1.1). But the
Lagrange multipliers are not known. Thus, (1.2) is different from (1.1) in both analytical and
computational aspects.
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(a) (b) (c)

Fig. 1. Image registration. Given two images (a) and (b) we would like to find anatomical
correspondences between them. Image (a) is an axial slice from an MR (magnetic resonance) image
of a patient with tumor. Image (b) can be a statistical atlas, or an MR image of the patient before
the tumor occurrence. Mapping image (a) to image (b) is unusually hard because of the topological
differences and the large deformations due to the presence of the tumor. If one uses standard
deformable registration methods, there will be significant errors, particularly in areas near the tumor.
In image (c), we show a second example, an axial slice from an MR image of a patient diagnosed
with Glioblastoma multiforme grade IV. This image illustrates the highly infiltrative nature of such
tumors which leads to a poorly defined brain–tumor interface and a strong mass effect.

(a) (b) (c) (d)

Fig. 2. Biophysically constrained registration of tumor-bearing brain images.

Schematic illustration of a multistep simulation designed to improve the deformable registration
process from tumor-bearing patient images to normal brain templates. Instead of attempting to di-
rectly register two highly dissimilar images (images (a) and (d)), we construct a tumor-bearing brain
atlas (image (b)) and then register the tumor-bearing template to the actual patient image to obtain
image (c). In this way, the original problem of constructing a map between two highly dissimilar
images is the composition of two deformations: (a) to (b) and (b) to (d). In this article, we consider
the simpler problem of constructing a deformation map between images of a single individual taken
at different points in time.

must be constructed between the image with the brain tumor and a given normal
brain template. Existing brain image registration methods that attempt to directly
register two such objects typically come up short in the presence of large tumors and
subsequent mass effect, such as the case depicted in Figure 1.

Here, we present a scheme that couples a mass-effect model with image registra-
tion, as depicted in Figure 2. To aid the registration process, particularly in areas
close to the tumor, it is helpful to first construct a brain atlas that has tumor and
mass effects similar to the images of the patients in our study. Subsequent deformable
registration is than more likely to better match the atlas to the patient’s images, since
it has to solve a problem involving two brains that are relatively similar, compared
to matching a normal atlas with a highly deformed brain [12, 15, 37]. This involves a
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simulation pipeline in which tumor simulation is the first step, followed by registration,
as illustrated schematically in Figure 2.2

1.1. Related work. Biophysically induced deformations have motivated the
form of the smoothness regularization term in (1.1). Indeed, researchers often inject
biomechanical information, such as elastic constants and anisotropy directions, into R
[16,33,40,48,55]. This, however, is not equivalent to having the correct biophysics, as
multiphysics couplings, boundary conditions, and distributed forces are not included
in R. To our knowledge, the only work similar to ours is [38], the authors of which
consider a mechanical model (without tumors) for parenchymal shift. The inversion
parameters are distributed forces.

Tumor growth models. Most of the work in tumor growth models has involved
in vitro experimental setups (to allow for validation). The two main approaches are
discrete [34] and continuous [3]. Cellular automata (CA), or lattice-based models,
belong to the discrete setting. Probabilistic phenomenological rules are used for the
spatiotemporal evolution of each cell (e.g., mitosis, apoptosis, chemotaxis, random
motion). The continuous approach is typically based on macroscopic conservation laws
expressed via PDEs [14]. Another approach involves reaction-diffusion models [50,52].
More complex models have multiple species, take into account cellular heterogeneity,
and incorporate mechanical effects in tissues [4, 10,52].

Brain–tumor interaction. In [26, 28, 46], a purely mechanical model was used to
simulate the tumor–brain interface evolution and the mass effect. The brain tissue
was modeled as a nonlinearly elastic material. A cavity representing the tumor was
introduced and a pressure-like Neumann condition was used to model tumor-induced
interface forces. This method has two main limitations: (1) it has difficulty capturing
more irregularly shaped tumors (the simulated tumors are generally quasi-spherical);
and (2) it provides no information about the actual tumor evolution and its infiltration
into healthy tissue. In [12], the authors have used an approach similar to ours: they
modeled the mass effect caused by the tumor bulk and added a separate reaction-
diffusion model (similarly to [24, 50, 52]) to account for the tumor infiltrative part
only. In their method the tumor reaction-diffusion equation is decoupled from the
elasticity equations and the diffusion coefficient. No optimization framework was
used in that work.

1.2. Contributions and limitations. Given a time sequence of tumor-bearing
images from the same individual we seek to coregister them. Toward that goal, we
propose a model that couples glioma growth with the deformation of the brain tissue.
Building upon the work of [50] and our own work [29], glioma growth is modeled via
a nonlinear reaction-advection-diffusion equation coupled to an elastic deformation
model (ten variables per grid point). The overall modeling framework results in a
strongly coupled nonlinear system of PDEs. The main differences compared to prior
work are that (1) there is no sharp-interface separation between a tumor bulk and an
infiltrative part; (2) the tissue deformation causes spatial changes in the distribution
of the diffusion coefficient and advects the tumor concentration; and (3) the solver is
coupled with the image-registration optimization problem. Besides synthetic datasets,
we use data from clinical and animal studies for the preliminary validation of our
model.

2Due to its complexity and high computational cost, our approach is more appropriate for at-
las construction and pre- and postoperative analysis rather than for open MR-type intraoperative
registration (see [55]).
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In a nutshell, the main contributions of this paper are as follows:

• A forward problem formulation and numerical scheme for image-driven mul-
tiphysics deformations;

• a numerical study of the constrained-optimization formulation for the case of
landmark registration;

• application of the scheme to images of tumor-bearing brains, and its prelim-
inary validation.

The forward problem solver is based on an operator-split semi-implicit scheme,
which is first-order accurate in space and time. In general, we expect large deforma-
tions. To avoid bottlenecks associated with unstructured meshes, we use a structured
grid approach and employ a penalty approach to impose boundary conditions on
internal boundaries.

We solve (1.2) for a parametrization of the tumor initial condition, the diffusion
and reaction coefficients, and a parametrization of the distributed pressure exerted on
the parenchyma due to the gradient of the tumor concentration. To our knowledge,
the proposed model is not only one of the first attempts to directly couple mechanics
with diffusion-reaction transport models for tumor growth but also the first one that
states an image-driven constrained optimization problem. We have opted to postpone
the integration of our model with a gradient-descent-based optimization. Instead, we
use a derivative-free algorithm. Our main goal is a preliminary validation of our
methodology on real data. The overall results are encouraging.

Limitations. Our goal is to develop tools for registration of tumor-bearing brain
images to templates. Here, we consider the simpler problem of intraindividual reg-
istration, which requires images of the same patient acquired at different points in
time (also called longitudinal images). The requirement of longitudinal datasets is a
limitation because in the majority of clinical cases, early stage scans are not available
(typically, the patients are immediately treated with surgery, chemotherapy, and/or
radiation).

We employ a landmark-based registration approach. We identify the landmarks
by manually preprocessing the images. A more general approach would employ
intensity-based registration methods; this is part of ongoing work. One difficulty
is that the biophysical model requires segmentation of the images in order to assign
material properties. Automatic segmentation, especially for tumor-bearing images, is
an open problem. Overall, our current implementation requires landmark extraction
and segmentation. We have quantified rater variability for the landmark extraction.
Quantification of rater variability for the segmentation is part of our ongoing investi-
gation.

Currently, we parametrize the motion using only four parameters. In particular,
we assume that the location of the center of the tumor is known. In general, this is a
strong assumption. The center is ill-defined and requires further manual processing.
In [32], we discuss a solution algorithm (applied in a synthetic 1D problem) in which
we do not parametrize the initial concentration of the tumor but instead solve for it
at every point in space. In this paper, our first attempt to couple optimization with
real datasets, we decided to use the simplest possible formulation, and we assume
that the center of the tumor in the initial frame is given.

Let us reiterate that the purpose of the proposed method is image registration.
The chosen biomechanical model cannot be used to predict either tumor growth
or mechanical deformations without image information because it is too simplified.
More complex models typically include several undetermined parameters that render
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calibration, validation, and sensitivity analysis difficult. As we acquire additional
datasets from clinical and animal studies, more complex models can be introduced
and validated.

1.3. Organization of the paper. In section 2 we introduce the biophysical
model (forward problem) and the associated registration problem. The problem solved
in this work is stated in (2.6). We discuss discretization and numerics in section 3. In
section 4 we apply our method to synthetic and clinical data. We perform a parametric
study to experimentally assess the nonconvexity of the optimization problem. We also
employ cross validation to assess the predictive capabilities and shortcomings of our
approach.

2. Biophsysical model. In this section, we discuss the tumor growth model,
the mechanical deformation model for the brain tissue, and their coupling. In all
cases, the domain of interest is the intracranial space. All equations are expressed in
an Eulerian (or spatial) frame of reference [23].

Tumor growth model. To our knowledge, there exist no tumor growth models
that are quantitatively predictive. This fact, along with computational efficiency
considerations and limited in vivo data (typically, two to three preoperative images
per patient), has led us to opt for models that are as simple as possible.

The main effects that we are interested in capturing are spatiotemporal spread
of gliomas and the subsequent mass effects. This model is based on the following
assumptions:

• The tumor is regarded as a single species described by its concentration (num-
ber of cells in a control volume); we do not account for tumor cell heterogene-
ity (e.g., living tumor cells, dead cells, endothelial cells).

• Tumor cells undergo mitosis, random motion (diffusion), and transport mo-
tion (advection); tumor cell death occurs once the concentration reaches a
saturation value.

Under these assumptions, we adopt a scalar reaction-advection-diffusion tumor growth
model [12,50,51] as follows:

∂c

∂t
= ∇ · (D∇c) −∇ · (cv) + ρ

c(cs − c)

cs
in U.

Here U = ω×(0, T ), with ω being the interior of the skull; c is the tumor concentration,
v is the velocity, ρ and D are reaction and diffusion coefficients, and cs is the tumor
saturation level (bulk tumor) and is normalized to cs = 1. We assume an isotropic and
inhomogeneous (piecewise-constant) diffusion coefficient derived from the segmented
MR image (see Figure 3).3 Typically, we segment three regions: white matter, gray
matter, and cerebrospinal fluid which includes the ventricles.

Following [50], the tumor diffusivity in the white matter was set five times higher
than in the gray matter. The diffusivity in the ventricles and cerebrospinal fluid is set
to zero. In the bulk tumor we have c ≈ cs; in regions where c � cs (infiltration), a
proliferation term ρc corresponding to exponential growth at rate ρ is retrieved [50].
Proliferation is assumed to slow down when c ≈ cs, and it eventually becomes a
death term if c becomes larger than cs. The tumor cell drift velocity v depends

3Experimental evidence [20] suggests that tumor diffusion may be transversely isotropic in the
white matter and isotropic in the gray matter. Here, for simplicity, we shall consider the case of
isotropic diffusion in both the white and the gray matter, with diffusion coefficients Dw and Dg ,
respectively.
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Fig. 3. Segmentation. Segmented MR image: Axial slice, illustrating different structures
(white matter, gray matter, ventricles, cerebrospinal fluid) in the brain, with an initial tumor seed
overlaid. In our simulations we use a segmented MR image to define material properties (here, elas-
tic parameters and tumor cell diffusivity). Each segmentation label is converted to the corresponding
material property via a look-up table.

on chemotaxis and other unmodeled tumor-specific mechanisms. Our model only
accounts for the tumor cells being displaced as a consequence of the underlying tissue
mechanical deformation. The tumor model is augmented by initial and boundary
conditions. The initial condition for the tumor depends on the problem at hand.
In [30], we solve for a distributed parametrization of the initial conditions by using
a PDE-constrained optimization algorithm (in one dimension). Here we assume a
Gaussian initial tumor profile

c(x, 0) = c0e
− |x−x0|2

2σ2 , c0 > 0.

The center and support of the Gaussian are determined manually by inspecting the
input image; c0 is one of the variables in the parameter estimation problem. We use
a zero-flux boundary condition at the skull.

Deformation model. Roughly speaking, the brain behaves as a nonlinear viscoelas-
tic, anisotropic, and inhomogeneous material. An excellent review of the related lit-
erature on constitutive models for the brain parenchyma can be found in [45]. More
detailed discussions can be found in [19,41,42]. We have adopted a simpler model for
various reasons. First, there are no known techniques for determining noninvasively
the mechanical properties of the brain tissue. So a generic model for all individu-
als must be assumed. Second, there is no consensus on a constitutive model for the
brain [45]. Third, the presence of a tumor significantly alters the material properties
of the tissue due to infiltration and proliferation, introducing additional uncertainties.

So, given the multiple sources of uncertainty, we make the following assumptions:

• We approximate the mechanics of the brain tissue (including tumor) using a
linear elastic inhomogeneous material. Various values for the elastic material
properties E and ν of the brain have been proposed [25].

• Although these elastic constants cannot be used for the tumor, we assume
that the tumor does not alter the mechanical properties of the background
tissue. This assumption is known to be invalid in practice.
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• Given the tumor growth time scales (months), we use a quasi-static approxi-
mation and neglect inertial terms. Simple modal analysis can show that this
is a quite reasonable assumption.

• We assume that the parenchyma behaves as a Maxwell viscoelastic solid. We
assume that the strain relaxation time scale is much smaller than the tumor
growth scale; therefore, the residual stresses and strains are zero. Brain tissue
is viscoelastic, but there are no experiments that support our assumption.

Under these assumptions, in an Eulerian frame of reference the motion is described
by

ρv̇ = ∇ · T + b in U (momentum), T = T̂(F, Ḟ) in U (constitutive),

Ḟ = ∇vF,v = u̇ in U (kinematics), ṁ = 0 in U (material properties).

Here v is the velocity field, u is the displacement field, b is a distributed force, T
is the Cauchy stress tensor, and T̂ denotes the constitutive law depending on the
deformation tensor F = I + ∇u and its material time derivative Ḟ.4 Here m denotes
material properties that are advected with the underlying material motion. Here we
employ the linear elasticity theory and approximate the brain tissue as a linear elastic
inhomogeneous material T = λ∇ ·u+μ(∇u+∇uT ), where λ and μ are the spatially
varying Lamé’s coefficients.5

The equations of motion need to be augmented with appropriate initial and
boundary conditions. The initial conditions are easy; the initial velocity and displace-
ment fields are zero.6 We have imposed zero Dirichlet conditions on the boundary of
ω (skull); this is not the most accurate choice; a better one would have been a mixed
condition with zero displacements in the normal direction, and zero stresses in the
tangential direction, to allow for sliding over the brain surface [46]. Given the multiple
sources of error in the model, however, the boundary conditions play a secondary role.
In [29], we conducted parametric studies that show that the errors in the boundary
conditions do not play a significant role in the quality of registration.

While for white and gray matter there is a range of values frequently employed
in the biomechanics community [25], there is no established approach for the tu-
mor (studies have shown that the tumor is stiffer). The ventricles are filled with
cerebrospinal fluid. A physically sound approach would be to use a fluid-structure
interaction approach, with a Stokesian fluid for the ventricles. Given the overall
uncertainty in the model, and to maintain reduced computational complexity, we
approximate the ventricles by a very soft and compressible elastic material.

In all of our experiments, we use Ewhite = 2100 Pa and Eventricles = 500 Pa for
the Young’s modulus for the white matter and ventricles, respectively, and we use
νwhite = 0.45 and νventricles = 0.1 for the Poisson’s ratio for the white matter and
ventricles, respectively. The values of the Young’s modulus and the Poisson’s ratio in
the gray matter are exactly the same as those values in the white matter.

Brain–tumor coupling. We assume that the tumor is exerting a distributed (vol-
umetric) body force b to the brain parenchyma; this force is assumed to be a pressure
proportional to the gradient of the tumor concentration. This pressure causes the

4The material time derivative operator of a field (scalar, vector, tensor) f is defined as ḟ =
∂f
∂t

+ (∇f)v.
5Lamé’s constants are related to Young’s modulus E (stiffness) and Poisson’s ratio ν (compress-

ibility) by λ = Eν
(1−2ν)(1+ν)

and μ = E
2(1+ν)

.
6One has first to write the equations of motion and then invoke the quasi-static approximation.
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tissue to deform. Following [12] and [56], we assume that b = −f(c)∇c, where

f(c) = p1e
− p2

(c/cs)2 e
− p2

(2−c/cs)2 ,

and p1, p2 are positive constants. This function is monotonically increasing for 0 <
c ≤ cs and has a maximum at c = cs; p1 controls the magnitude, whereas p2 controls
the nonlinear term in f . We discuss the effect of p1 and p2 in later sections.

Overall formulation of the forward problem. Let us summarize as follows the
coupled system of PDEs governing our deformable model for simulating glioma growth
and the subsequent mass effects:

∂c

∂t
−∇ · (D∇c) + ∇ · (cv) − ρc

(
cs − c

cs

)
= 0,(2.1)

∇ · ((λ∇ · u) + μ(∇u + ∇uT )) − f∇c = 0,(2.2)

v =
∂u

∂t
,(2.3)

∂m

∂t
+ (∇m)v = 0.(2.4)

The expression (2.3) of the velocity field v holds under the assumption of small strains;
m = (λ, μ,D). Since we are using an Eulerian frame of reference, inhomogeneous
material properties like λ, μ, and the tumor cell diffusivity D need to be updated
(advected) to follow the motion of the underlying tissue. For brevity, we write (2.1)–
(2.4) as

(2.5)
∂φ

∂t
+ F(φ, g) = 0,

where φ = (c,u,v,m) denotes the state variables. Also, we have introduced the vector
of parameters g that will be determined by solving the image-registration problem.

2.1. Image registration. We propose a biomechanically constrained optimiza-
tion approach, which we solve to estimate the deformation parameters. As we dis-
cussed in the introduction, instead of an intensity-based functional [44], in this initial
implementation we follow a landmark-based registration method.

We consider the case of longitudinal data (i.e., serial scans over a period of time)
for a brain tumor subject. We use landmark registration [8]. Given model-generated
landmarks and manually tracked landmarks, we seek to find a deformation that mini-
mizes the mismatch between the predicted and the actual deformation (see Figure 4).
Let {xk

l }l=1,...,L; k=1,...,N be the manually placed landmarks at times 0 < {tk}Nk=1 ≤ T .

Then, (1.2) becomes

min
φ,ψ,g

J :=

N∑
k=1

L∑
l=1

∣∣ψ(xk
l , t) − xk

l

∣∣
subject to

∂φ

∂t
+ F(φ, g) = 0;

∂ψ

∂t
+ (∇ψ)v = 0, ψ(x, t = 0) = x;

gL ≤ g ≤ gU .

(2.6)
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Fig. 4. Landmark Registration. Two serial scans of a human subject with progressive
low-grade glioma that are approximately 2.5 years apart. From left to right: the first column two
landmarks manually placed by an expert in the early scan; the second column shows the two land-
marks manually tracked by the same expert in the later scan. Finally, the third column shows the
corresponding model-generated landmarks, for a given choice of the model parameters.

The Eulerian description of the deformation field is denoted by ψ. Using ψ, we
can track the target landmarks, or we can use it for an intensity-based registration
function [8].

As mentioned, we optimize for a small number of parameters given the very
sparse data. We solve for four parameters: the control of the initial tumor, the
white matter tumor diffusivity and reactivity, and the force-coupling constant. Thus,
g = (c0, Dw, ρ, p1). Also, white matter diffusivity changes the gray matter value, since
we set the white matter diffusivity five times higher than that of the gray matter [50].

Notice that we are using an l1-tracking functional. We do so because we compare
our work to prior work in which the l1 norm was used [26, 46]. We can solve this
constrained-optimization problem by deriving the Euler–Lagrange optimality condi-
tions of (2.6) and arrive at a set of PDEs for the forward, adjoint, and inversion
parameters. (We also need to appropriately reformulate the nondifferentiable l1-
tracking.) We have used such an approach in a study for the 1D case [30], in which
we solved a distributed parameter problem for the initial condition of the tumor using
PDE-constrained optimization algorithms [9]. Since we optimize for four parameters
only, we have opted for a derivative-free optimization method that requires only func-
tion evaluations. Every evaluation of the objective function requires a forward solve.
We have used APPSPACK, a derivative-free optimization library from Sandia National
Laboratories [22, 35, 36]. APPSPACK allows for bound constrains on the optimization
variables and is suitable for our problem. In all of our experiments we used APPSPACK

solver version 5.0.

The optimization variables should lie within a physiological range. Their pre-
cise range, however, is unknown. For example, the reaction term in our tumor
model is a simple qualitative approximation of tumor growth that does not have
predictive capabilities. Also, even if the model were correct, there would be significant
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interindividual variability. We used values from existing literature for the tumor cell
diffusivity in white and gray matter. We use numerical experiments to determine
acceptable ranges for ρ and p1.

3. Numerical scheme for the forward problem. The forward problem cou-
ples linear elasticity coupled to reaction-advection-diffusion equations. Besides the
nonlinear coupling, the problem is also complicated by the brain’s complex geometry
and the inhomogeneous material properties. We selected a scheme that is relatively
easy to implement and is reasonably fast. Its basic components are (1) an operator-
splitting for (2.1); (2) a semi-implicit scheme for the coupling between (2.1) and (2.2);
(3) an explicit scheme for (2.4); (4) a penalty method to approximate the boundary
conditions for (2.1) and (2.2); and (5) a geometric multigrid scheme for the scalar and
vector elliptic solvers. Next, we give details first on the overall time-stepping scheme
and then on the elliptic solvers.

Time stepping. To decouple the nonlinearities and simplify the implementation
we time-split the tumor equation (2.1) into advection, diffusion, and reaction steps
[53, 54]. We have implemented one scalar and vector elliptic solver, two hyperbolic
solvers (one for the conservative mass transport and another for the nonconservative
advection of material properties), and the reaction step.

Let T be the total simulation time and Δt the time step. Given cn,un,vn,mn,
the update cn+1,un+1,vn+1,mn+1 is computed as follows:

(1) mn+1 = mn − Δt(∇mn)vn;

(2) c∗ = cn − Δt∇·(cnvn);

(3) c∗∗ + Δt∇·(Dn+1∇c∗∗) = c∗;

(4) cn+1 + Δtρcn+1 (1 − cn+1) = c∗∗;

(5) ∇ · ((λn+1∇ · un+1) + μn+1(∇un+1 + (∇un+1)T )) = f(cn+1)cn+1;

(6) vn+1 =
un+1 − un

Δt
.

In the case of small diffusion, step (3) can be carried out explicitly. In step (1), the
material properties are advected using a first-order upwind finite difference scheme
(see [49, p. 29]; we use a staggered grid approach, since the material properties are
constant at each voxel. In step (2) the divergence is discretized using a conservative
finite-difference scheme; the diffusion and elasticity operators are discretized by finite
elements. Our scheme has a CFL time-step restriction, due to the operator split, and
explicit marching [47]. Overall we have 10 unknowns per grid point, if we include the
deformation map ψ, and the accuracy of the scheme is first order in time and second
order in space.

Elliptic solvers and boundary conditions. Since we are interested in the large-
deformations case, we have opted for a regular grid imposed on the image, and an
Eulerian formulation that does not require remeshing. One complication, however,
is that we need to impose Neumann conditions (diffusion) and Dirichlet conditions
(elasticity) at the skull. Following [2, 21, 28], we use a penalty approach in which the
target domain (brain) ω is embedded on a larger computational rectangular domain
(box). We approximate diffusion Neumann conditions using a material with very low
diffusivity in the exterior of the skull, and we approximate Dirichlet conditions by
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Fig. 5. Multigrid performance for linear elasticity. To demonstrate the performance of
the solver we reproduce this figure from [27]. We solved an elasticity problem with inhomogeneous
material properties. The top row depicts the relative residual convergence history for the single-level
incomplete LU preconditioned case for the mesh sizes of 17 (discretization 1), 35 (discretization 2),
and 65 (discretization 3) nodes per dimension (from left to right); the bottom row depicts results
for the multigrid case. We observe good algorithmic scalability for high contrasts; the number of
multigrid iterations is mesh independent.

using a very stiff material in the exterior of the skull as follows:

Dε =

{
D in ω
εD in Ω\ ω

}
and (λ, μ)ε =

{
(λ, μ) in ω
1
ε (λ, μ) in Ω\ ω

}
.

Here ε > 0 is a “small” positive number, regarded as a penalty parameter. Then, the
diffusion equation (2.1) on ω is replaced by its extension to Ω, with D replaced by Dε

and v = 0, ρ = 0 in Ω\ ω. A zero-flux boundary condition is imposed on ∂Ω. The
elasticity equation (2.2) on ω is replaced by its extension to Ω, with (λ, μ) replaced
by (λ, μ)ε and f ≡ 0 in Ω\ ω. A zero displacement boundary condition is imposed
on ∂Ω. The convergence to the solution of the original problem in the limit ε → 0 is
shown in [57]. The expected order of convergence is at least O(

√
ε) (in H1) [17]. The

resulting linear systems for the diffusion and elasticity are solved by flexible GMRES,
preconditioned by a multigrid method. We use geometric multigrid with classical
full-weighting and linear interpolation intergrid transfers. We smooth with a few
conjugate gradient iterations preconditioned by a damped matrix-free block Jacobi.
Representative results are depicted in Figure 5. We used four levels of a V-cycle
for the elasticity solver. We used a single-level diagonal scaling preconditioner for
the diffusion equation. The diffusion coefficient is quite small, so the elliptic solve is
cheap. Our code is developed on top of PETSc [7], a scientific computing library from
Argonne National Laboratory.7

As a simple verification of the algorithm, next we consider a synthetic test case.
Consider the case of a 3D regular domain [0, Lx]× [0, Ly]× [0, Lz], occupied by a ma-
terial characterized by inhomogeneous diffusivity D and constant Lamé’s coefficients.

7All restriction and prolongation operators as well as the smoothers were developed from scratch,
as the default PETSc solvers assume assembled matrices.
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Table 3.1

Convergence study for the proposed numerical scheme. The relative l∞ error of the
numerical solution with respect to the synthetic closed-form solution at the final time T = 1 shown.
The results indicate first-order convergence.

‖can‖rel∞ ‖uan‖rel∞ ‖Dan‖rel∞
h = 1/16,Δt = 1/2 0.0263 0.2069 0.0630
h = 1/32,Δt = 1/4 0.0099 0.1080 0.0460
h = 1/64,Δt = 1/8 0.0048 0.0533 0.0271

h = 1/128,Δt = 1/16 0.0037 0.0271 0.0145

We assume the following expressions for the tumor concentration can , displacement
field uan , velocity van , and diffusion coefficient Dan :

can(x, y, z, t) =
1

4
c0

(
1 +

t

T

)
(cos(axx) + 1) and uan(x, y, z, t) = (ux, 0, 0);

ux(x, y, z, t) = u0

(
t

T

)2
x(Lx − x) sin(axx)

L2
x

y(Ly − y) sin(ayy)

L2
y

z(Lz − z) sin(azz)

L2
z

;

van(x, y, z, t) =

(
∂ux

∂t
, 0, 0

)
;

Dan(x, y, z, t) = D0
t

T

y(Ly − y)

L2
y

z(Lz − z)

L2
z

for (x, y, z, t) ∈ [0, Lx] × [0, Ly] × [0, Lz] × [0, T ], with ax = π
Lx

, ay = π
Ly

, az = π
Lz

chosen such that can and uan satisfy initial and boundary conditions. The results are
summarized in Table 3.1; here we used the following parameter values: Lx = Ly =
Lz = 1, T = 1; c0 = 1, u0 = 0.1, D0 = 0.01; ρ = 0.1, λ = 0.4, μ = 0.2, p1 = 0.1, p2 =
0. A uniform discretization was used in both space and time, with size h and Δt,
respectively. First-order convergence rates are observed.

4. Application to 3D MR brain images. In this section, we report results
from numerical experiments on synthetic and real datasets. In section 4.1, we demon-
strate the ability of the method to produce complex deformation fields while varying
only a few parameters. In section 4.1.1, we conduct numerical experiments in which
we detect multiple minima that show that the optimization problem is nonconvex,
independently of the number of landmarks. In section 4.2, we apply the method to
real datasets, in which we measure errors by comparing the computed displacements
to manually reconstructed landmark displacements, and we compare the method with
simpler models previously developed in our group. Also, we conduct a simple cross-
validation study.

For each experiment, we are given a longitudinal set of images with progressively
higher tumor concentration. This set is segmented to white and gray matter, ventri-
cles, and cerebrospinal fluid. Also, we assume that a set of landmarks is tracked in
each image in the dataset, and thus displacements at certain positions are recovered.
Finally, we assume that the tumor center is given in the initial frame only. In our real
datasets, the tumors are almost spherical; detecting the tumor center is quite easy
(1–2 voxels rater variability) by detecting the slice of maximum tumor diameter in
the three coordinate planes.8

8This approach, however, is not general, as in practice most tumors have rather complicated
shapes and the notion of a “tumor center” is not well defined.
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Fig. 6. Synthetic simulations of glioma growth. In this figure, we depict results from
synthetic simulations of glioma growth located at the right frontal lobe. We report three different
case scenarios starting from the same initial tumor seed. Left to right: The first column illustrates
the 3D MRI of a normal brain image—axial, sagittal, and coronal section, respectively. The second
column shows the deformed image, with simulated tumor corresponding to low tumor diffusivity
and long-range mass effect (p2 = 0). The third column shows the deformed image, with simulated
tumor corresponding to high tumor diffusivity (10 times higher) and long-range mass effect (p2 = 0).
Finally, the fourth column shows the deformed image, with simulated tumor corresponding to high
tumor diffusivity and short-range mass effect (p2 = 0.1). The tumor maps are overlaid on the
deformed template. In all three case scenarios, the run time is about 500 seconds on a 2.2GHz AMD
Opteron.

Given the segmented image labels, we assign piecewise constant material proper-
ties accordingly (white matter, gray matter, ventricles, cerebrospinal fluid) for each
voxel. These values are used as the initial condition in the transport equations (2.4).
The 3D computational domain in this case is the underlying domain of the image.
In all of our experiments, we use Ewhite = 2100 Pa and Eventricles = 500 Pa for the
Young’s modulus for the white matter and ventricles, respectively, and νwhite = 0.45
and νventricles = 0.1 for the Poisson’s ratio for the white matter and ventricles, re-
spectively.

The goal of all our simulations is to reproduce the displacement field and not to
reproduce the tumor dynamics. The tumor model we use is too simplistic and serves
as a coarse qualitative approximation to the tumor growth.

4.1. Synthetic brain-tumor images. Consider a normal brain template, as
shown in Figure 6 (leftmost column). The segmented brain here consists of white
matter, gray matter, cerebrospinal fluid, and the ventricles (also filled with cere-
brospinal fluid). The tumor diffusivity in the white matter was set five times higher
than in the gray matter [50], while the diffusivity in the ventricles and cerebrospinal
fluid was set to zero. (The elastic parameters are discussed in the beginning of this
section.) These simulations correspond to an aggressive physical tumor growth over
T = 365 days, starting from the same Gaussian initial tumor seed of center
x0 = (x, y, z) = (0.095, 0.07, 0.093) (m) in the right frontal lobe. The numeri-
cal solution was obtained using 10 time steps and 653 grid points. The tumor
growth illustrated in the second column (left to right) of Figure 6 is less diffusive
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(Dw = 7.5×10−8 m2/day; Dg = 1.5×10−8 m2/day) and more regularly shaped, while
in the other two case scenarios depicted in the third and fourth columns (left to right),
respectively, we increased the diffusivity by a factor of 10 (Dw = 7.5× 10−7 m2/day;
Dg = 1.5 × 10−7 m2/day). This case corresponds to a scenario where strong mass
effects are present, but far from the tumor core. These long-range effects can be well
observed by examining the ventricle deformation in the corresponding axial slices.
If p2 is increased, the mass effects are more localized to areas close to the tumor
core. This can be observed in the fourth column of Figure 6; we refer to such
mass effects as “short-range.” The rest of the model parameters are kept fixed to
ρ = 0.036 day−1, p1 = 15kPa, p2 = 2. More complex tumor patterns could be
obtained by using more complicated initial tumor profiles and anisotropic diffusion,
which can be achieved by utilizing information from diffusion tensor MRI. In conjunc-
tion with the reduced computational cost, this translates into a versatile and robust
simulation tool.

4.1.1. Analysis of the parameter estimation problem on synthetic brain
data. Consider now a parameter estimation problem associated with the above syn-
thetic brain tumor simulations in a normal brain template. We conduct a numerical
study to illustrate the nonconvexity of the registration problem as a function of the
number of landmarks and the effect of imposing bound constraints. The initial tu-
mor volume is roughly 900 voxels. The total brain volume is approximately 953K
voxels. The total simulation time is Tl = 180 days. The original MR image (nor-
mal brain template) in this case is 2562 × 124 voxels, with a physical voxel size of
0.93753mm×1.5 mm. The tumor cell diffusivity in the gray matter is assumed to be
five times slower than in that of the white matter and equal to zero in the ventricles
and the cerebrospinal fluid.

We use 653 grid points and three time steps.9 We generate a number of synthetic
landmarks (20, 80, and 160) by running the forward problem with a set of fixed
values of the optimization parameters. The results were generated setting c0 = 0.2,
p1 = 5, Dw = 1.0×10−7, and ρ = 0.1/day—an “aggressive” tumor growth scenario—
to simulate a pronounced mass effect. The bounds on the optimization parameters
are selected based on physiological correctness (positive diffusion), on values reported
in the literature, and by numerical experimentation for different images and tumor
sizes. In Figure 7, we report the value of the landmark mismatch functional for
different values of Dw (different curves) and ρ (points within each curve) and for
different numbers of landmarks. The point of this figure is not so much the precise
values, but rather the existence of multiple minima. Given this parametric study, we
then use those values to test the optimizer by considering two scenarios. In the first
scenario, the imposed bounds are relatively tight with respect to the diffusion and
growth parameters Dw and ρ, respectively, corresponding to actual tumor physical
parameters Dw ∈ [1.0 × 10−7, 5.0 × 10−7] m2/day and ρ ∈ [0.05, 0.15] day−1. In the
second scenario, these bounds were relaxed to Dw ∈ [1.0 × 10−8, 5.0 × 10−6] m2/day
and ρ ∈ [0.05, 0.5] day−1. All other APPSPACK solver options (e.g., initial guess, step
tolerance) were kept fixed at their default values. The number of function evaluations
(and thus, forward solves) was between 88 (20 landmarks) and 271 (160 landmarks).

The results show that in the tight-bounds case the original set of four model pa-
rameters was correctly retrieved by the optimizer—even when using only 20

9Increasing the number of time steps did not show any significant impact on the solution of the
parameter-estimation problem.
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Fig. 7. Nonconvexity. Here we conduct a parametric study of the objective function landscape
for 20, 80, and 160 landmarks, respectively. In each curve, we vary ρ and Dw across different curves.
We have observed two distinct minima that are insensitive to the number of landmarks. In the set
of experiments in which the g bounds were relatively tight with respect to the diffusion and growth
parameters Dw and ρ (Dw ∈ [1.0×10−7, 5.0×10−7] m2/day and ρ ∈ [0.05, 0.15] day−1), the correct
solution was recovered by the optimizer—even with the minimum number of 20 target landmarks. In
a second set of experiments, with Dw ∈ [1.0 × 10−8, 5.0 × 10−6] m2/day and ρ ∈ [0.05, 0.5] day−1,
the optimizer converged to a solution with c0 and p1 close to their true values, but with Dw and ρ
quite different.

landmarks. However, when the bounds were relaxed, the optimizer consistently con-
verged to a different solution, independently of the number of landmarks used. In this
second local minimum, the diffusivity is about 10 times lower, while the growth rate is
about two times higher. Thus, it appears that, based on landmark information only,
we get different local minima corresponding to different physical tumor growth sce-
narios, such as high diffusivity/low growth rate versus lower diffusivity/higher growth
rate. In such cases, additional information is needed to select the right physical
solution. In conclusion, unless richer datasets become available, more complex tumor–
brain models cannot be validated.

4.2. Landmark-based parameter estimation on real datasets. In [28]
and [26], we tested a strictly mechanical model to reproduce mass effects caused
by actual brain tumors in two dog cases with surgically transplanted glioma cells and
in a human case with progressive low-grade glioma. Here, we use the same datasets
for validation and comparison purposes. For the two dogs (DC1 and DC2), a base-
line scan was acquired before tumor growth, followed by scans on the 6th and 10th
days postimplantation. Gadolinium-enhanced T1 MR images were acquired. By the
10th day, tumors grew rapidly to a diameter of 1–2 cm, and then the animals were
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Table 4.1

Landmark registration errors. Landmark errors for the two dog cases (DC1, DC2) and for
the human case (HC) with the new model (optimized). The errors reported here were computed with
respect to the deformations of landmarks that were manually placed and tracked by an experienced
human rater. Both the incremental pressure model and the new model were numerically solved using
a spatial discretization with 653 nodes; five pressure increments were applied in the simple pressure
model; four time steps were used in the new model for the two dog cases and five equal time steps
were used for the human case.

Landmark error Median Min Max Run time
(mm) (sec)

New model DC1 0.89564 0.0511 1.9377 200
Incremental pressure model 1.6536 0.3176 2.6491 300
Inter-rater variability DC1 0.8484 0.1304 2.8568

New model DC2 1.2980 0.3803 2.6577 200
Incremental pressure model 1.8912 0.4795 3.7458 300
Inter-rater variability DC2 1.3767 0.1226 2.7555

New model HC 1.8457 0.5415 4.1451 250
Incremental pressure model 5.23 1.15 8.9 300

sacrificed (prior to any neurological complications). For the human case (HC), two T1
MRI scans taken 2.5 years apart were available (Figure 10). In all three cases, pairs
of corresponding landmark points were manually identified by human raters in the
starting and target images. The landmarks were nearly uniformly distributed outside
the core of the tumor and within a distance of two tumor diameters. For the dog cases,
two human raters placed independent sets of landmarks. All the results reported here
are with respect to the most experienced rater of the two; the inter-rater variability
is included in Table 4.1. For the human case, only one human rater was available.

The initial tumor location (its center and approximate size) can be estimated from
the early scan. We report the aggregate landmark registration error in mm in Table
4.1. Relative landmark errors with respect to the maximum landmark displacement
for both the simplified incremental pressure approach and the new model are shown for
comparison in Figure 8. The corresponding average relative improvements achieved
by the new (optimized) model are 17%, 20%, and 51% for DC1, DC2, and HC,
respectively. A visual illustration of simulations via the two different approaches (new
model versus incremental pressure) is shown in Figure 9, highlighting the potential
of the new model to capture more information about the tumor compared to our
previous approach.

4.2.1. Cross-validation results for the human case. In our previous test,
we used all available landmark information to invert for the unknown parameters. We
obtained results that indicate that our proposed multiphysics modeling framework can
reasonably fit actual brain tumor subject data. A more stringent test for the model
is to avoid using all the landmarks in the available dataset.

To investigate the predictive capabilities of the proposed model, we conducted a
leave-one-out cross-validation experiment for the human case. A total of 21 pairs of
manually placed landmarks were available. In the cross-validation test, we solve the
parameter-estimation problem for values of g parameters (c0, Dw, ρ, p1) that minimize
the objective functional based on 20 pairs of corresponding landmarks and compute
the error for the remaining 21st target landmark that has not been included in the
optimization.
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Fig. 8. Relative error for landmark registration. Comparison of relative landmark
errors (here with respect to the maximum landmark displacement) for the three cases DC1, DC2,
and HC via the incremental pressure approach and the new model. The corresponding average
relative improvements achieved by the new optimized model are 17%, 20%, and 51% for DC1, DC2,
and HC, respectively.

Fig. 9. Real brain tumor images for dog case DC1. From left to right: Starting scan, T1
MR gadolinium enhanced; target scan, T1 MR gadolinium enhanced; our simulated tumor growth
and mass effect via the new optimized framework (tumor color maps overlaid on the model-deformed
image, with corresponding bar attached); simulated mass effect via the simplified incremental pres-
sure approach in [28], with tumor mask highlighted in white. While the deformation pattern is,
visually, only slightly different, the new tumor growth model shows potential for capturing more
information about the tumor compared to the pressure approach. Note that the tumor mask should
not be interpreted as a prediction of the tumor concentration. Rather, it represents the area of
uncertainty in which deformations are not expected to be recovered in any degree of accuracy.

The initial tumor volume is approximately 7800 voxels and the brain volume of
793K voxels; Tl = 900 days. The image resolution is 2562 × 124 voxels, each voxel
being 0.93752 × 1.5 mm. In a first set of leave-one-out experiments, we have used
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Fig. 10. Real brain tumor images, human subject Left to right: starting scan, T1 MR;
target scan, T1 MR; our simulated tumor growth and mass effect via the new optimized framework:
tumor color maps overlaid on the model-deformed image, with corresponding color bar attached.
Reasonable visual agreement obtained between the deformations in the actual patient target image
(second column) and the simulated one (third column, right), guided by only 21 pairs of corresponding
landmarks manually placed by a human rater in the early scan and the late (target) scan, respectively.
Note that in this case, the brain was segmented into white matter and ventricles only, which explains
the quasi-uniform tumor growth pattern.

the same bounds on g as those shown in Figure 8. The results from this test are
reported in Figure 11. They indicate reasonable model predictability for relatively
tight bounds imposed on the four optimization variables. The corresponding average
landmark error (physical, mm) upon cross validation here is 2.23 mm. The manually
placed landmark displacement statistics in this case, included here for comparison,
are median = 4.15 mm, min = 3.19 mm, and max = 6.1 mm.

In a second set of cross-validation experiments, we relaxed the bounds on the four
optimization variables; the solution is depicted in Figure 11. Along similar lines with
the results obtained on the synthetic brain data in section 4.1.1, the results indicate
that under extremely relaxed bounds, the problem has multiple local minima. Dis-
tinct trends of solutions are observed: one corresponding to a tumor growth scenario
characterized by lower initial tumor density, higher diffusivity, lower growth rate, and
with strong mass effect due to tumor infiltration; and another solution correspond-
ing to tumor growth characterized by high initial tumor density, low diffusivity, high
growth rate, and mass effect caused mainly by tumor bulk. Additional information
about the tumor is needed in order to uniquely reconstruct a solution.

5. Conclusions and further research. We have proposed a constrained-
optimization formulation for the coregistration of tumor-bearing brain images. We
proposed a framework for modeling glioma growth and the subsequent mechanical
impact on the surrounding brain tissue, the so-called mass effect.

The long-term goals of this work are (1) to improve the deformable registration
from a brain tumor patient image to a common stereotactic space (atlas) with the
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Fig. 11. Cross validation. We report results from the leave-one-out cross-validation experi-
ment for two cases, a first case (test 1) with tight bounds on the inversion parameters, and a second
case (test 2) with relaxed bounds on the inversion parameters. The results for the first case indicate
reasonable model predictability when tight bounds were imposed on g . The corresponding average
landmark error (physical, mm) upon cross validation is 2.23 mm. These results for the second case
indicate that without tight constraints we obtain multiple local minima, which correspond to different
tumor growth physical scenarios.

ultimate purpose of building statistical atlases of tumor-bearing brains; and (2) to
investigate predictive features for glioma growth after the model parameters are es-
timated from given patient scans. The first is important for integrative statistical
analysis of tumors in groups of patients and for surgical planning. The second is
important for general treatment planning and prognosis.

We discussed numerical algorithms for solving the nonlinear systems of PDEs gov-
erning the proposed unified model. The numerical solution procedure is designed to
be readily applied to 3D images of brain tumor subjects. These problems can result in
very large deformations. To avoid remeshing, we have employed a structured grid dis-
cretization. We illustrated the capabilities and flexibility of the method in capturing
complex tumor shapes and the subsequent mass effect with reasonable computational
cost. We tested both the model and the automatic optimization framework on syn-
thetic datasets and real brain tumor datasets and showed improvement compared to
existing approaches with less realistic models. (Of course, our model is still a very
rough approximation of true biophysics). In our numerical experiments, we observed
nonconvexity; one way to address it is by imposing strict lower and upper bounds.
We are currently integrating the code with more complex similarity functions and
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multiple imaging modalities.
Overall the results are quite preliminary and inconclusive. The tumor model is

by no means predictive and quantitatively accurate. Our goal in this article is to
showcase an example in which several aspects of computational mathematics are used
in a practical setting. In the context of image registration for tumor-bearing images,
a significant amount of additional work is necessary before one can draw conclusions
on the clinical applicability of our approach.

First, we need to conduct sensitivity analysis of the solution with respect to seg-
mentation and elastic material properties of the brain and the tumor tissues. Second,
we need to have more general parametrizations for the initial profile of the tumor.
In fact, one should not invert for the initial conditions, but rather for a forcing term
(with compact support, in time) that models the initial occurrence of tumor, which
in general takes place in an unknown moment in time. The current optimization
solver is robust, but slow; we require hundreds of function evaluations, and this will
be a significant bottleneck as we introduce more optimization variables. For exam-
ple, in our formulation we considered a single-degree-of-freedom parametrization of
the initial tumor concentration; richer representations are necessary for batch pro-
cessing of images. We are currently implementing fast PDE-constrained optimization
algorithms.

From a practical point of view, serial scans of human subjects with gliomas pro-
gressing into higher malignancy are rare, although some clinical studies have been
conducted [39]. Instead, animal experiments are necessary to construct more phys-
iologically correct models. Such datasets can be employed in conjunction with our
proposed framework for a preliminary validation/calibration of our image registra-
tion framework. Most important, rich longitudinal datasets will enable incorporation
and validation of more sophisticated tumor models that include diffusive anisotropy,
edema, necrosis, angiogenesis, and chemotaxis.
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