Financial Crises and Contagion: Dynamical Systems Approach

Youngna Choi

Montclair State University choiy@mail.montclair.edu

The Fields Institute for Research in Mathematical Sciences Sojourns in Nonlinear Economics June 2012

Outline

Goal: dynamic modeling of financial crises and systemic risk

- 1. Single Economy: w/R. Douady
 - ► Cause: breakage of stability ⇒ bifurcation
 - Effect: contagion, systemic risk \implies recurrence, chaos
 - Predicting a crisis: Market Instability Indicator
 - Suggested remedies
- 2. Multiple Economies: w/G. Castellacci
 - Contagion from one economy to another
 - Quantitative definition of contagion
 - Suggested remedies

Single Economy Five Agent Model

- C Consumers
- F Firms
- B Banks
- I Investors
- G Government

Generalized Single Economy Five Agent Model

Agents of Economy i

- Cⁱ Consumers
- Fⁱ Firms
- Bⁱ Banks
- Gⁱ Government
- Iⁱ Investors restricted to Economy i

Figure : Combined flow of funds among five agents in economy i

Flows of Funds: Scheduled vs. At-will

• Scheduled Cash Flows:

- Coupons
- Installments, minimum credit card payments
- Salaries
- Contributions to pension plans
- Taxes
- At-will Cash Flows: variable
 - Equity investments
 - Debt investments (loans, bonds)
 - Dividends
 - Consumption

Both are variable and subject to dynamic relations

More Flows of Funds: Contingent & International

• Contingent Cash Flows:

- Quantitative Easing
- Derivative Payoffs, e.g. CDS payouts

• International Debt Investment:

- Interbank lending and investment
- Investment in sovereign debt
- Central banks' lending to foreign banks

• International Consumption and Trade:

- Direct consumption of foreign goods and services
- International trade between firms

Flow of Funds for Two Economies

Figure : Flow of funds between economies *i* and *j*

I

Stage 1 Contagion

Figure : Contagion from debtor *i* to creditor *j* inside eurozone.

• Contagion of "reduced flow of funds"

Stage 2 Contagion

Figure : Contagion spills out of the eurozone

Youngna Choi (Montclair State University)

Financial Crisis Contagion

Early Bailout

Figure : Earlier stage of the eurozone crisis

Wealth Decomposition

 $w_i(t)$ = Wealth of Agent *i* at time *t*, (*i* = 1, · · · , 5 for C, F, B, G, I)

- Equity / Debt split
 - $w_i(t) = E_i(t) + D_i(t)$
 - $E_i(t)$ = Equity value
 - $D_i(t)$ = Debt value
- Liquid Asset / Invested Asset split
 - $\bullet \ w_i(t) = L_i(t) + K_i(t)$
 - $L_i(t)$ = Liquidities: cash, cashables \implies produces no income
 - ► $K_i(t)$ = Invested Assets: financial securities, property, equipment \implies produces capital gain

Wealth Dynamics

- Debt: $D_i(t+1) = (1 + r_i(t))D_i(t) + \tilde{\Delta}D_i(t+1)$
 - $r_i(t)$ = average interest rate on debt of *i* at *t*
 - $\tilde{\Delta}D_i(t)$ = new loans capital reimbursement
- Invested Asset: $K_i(t+1) = (1 + \gamma_i(t))K_i(t) + \tilde{\Delta}K_i(t+1)$
 - $\gamma_i(t)$ = internal growth factor (IRR)
 - $\tilde{\Delta}K_i(t)$ = new investment realization
- Liquidities: $L_i(t+1) = L_i(t) + \sum_{j \neq i}^n F_{ij}(t) \sum_{k \neq i}^n F_{ki}(t) \tilde{\Delta}K_i(t)$
 - $F_{ij}(t)$ = fund transferred from *j* to *i* at *t*
 - Can be seen as an "investment" with returns $F_{ji}(s)$, s > t
 - $F_{ii}(t) \coloneqq \gamma_i(t) K_i(t)$

•
$$w_i(t+1) = w_i(t) + \sum_{j=1}^n F_{ij}(t) - \sum_{k \neq i}^n F_{ki}(t)$$

Wealth Constraints

- Positive liquidities
 - $L_i(t) \ge 0$
 - Negative liquidities \implies *debt increase*
- Maximum convertibility rate
 - $|\tilde{\Delta}K_i(t+1)| \le \kappa_i(t)K_i(t)$
 - There is a limit to converting invested assets to/from liquidities
- Borrowing capacity constraint
 - $D_i(t) \le D_{i\max}(t)$: one cannot borrow forever
 - $D_{i \max}(t)$ depends on $w_i(t)$ and on market conditions
 - $(1 + r_i(t))D_i(t) > D_i \max(t+1) \Longrightarrow$ default, bankruptcy

Assumptions on Variables

- Each $F_{ji}(t)$ produces $F_{ij}(s)$ (s > t) with uncertainty
- Under normal (= non-crisis) times,
 - $r_i(t), \gamma_i(t)$ are continuous
 - $\tilde{\Delta}K_i(t), \tilde{\Delta}D_i(t), \Delta L_i(t)$ are continuous
 - $L_i(t)$, $K_i(t)$, $D_i(t)$ are processes with continuous sample paths
- During a crisis, above not necessarily hold
 - Violent changes in variables can lead to a crisis

Maximizing Benefit I

- U(x) is a utility function on gain x
 - $U: [a, b] \longrightarrow \mathbb{R}, \quad a < 0 < b$

Figure : Convex for losses, concave for gains

- \mathbb{P} : probability measure, $F(x) := \mathbb{P}[X \le x]$
- Expected Utility Theory

$$\vdash E[U(X)] = \int_{\mathbb{R}} U(x) \, dF(x)$$

Maximizing Benefit II

- Cumulative Prospect Theory: Subjective Utility (SU)
 - Weighting function: $W = \mathbb{1}_{[a,0)} W^- + \mathbb{1}_{(0,b]} W^+$
 - \implies measures attitude toward risk

Figure : Overreact to unlikely event, magnifying fear factor

►
$$SU[X] = \int_{\mathbb{R}} U(x) W'(F(x)) dF(x)$$

Non Linear Programming Problem

- Apply this to each i for each [t, t + 1]
 - $U_i(x)$, $\mathbb{P} = \mathbb{P}_t \text{ w}/F_t(x) = \mathbb{P}_t [X_i \le x]$
 - $SU_{i,t}[X] = Subjective Utility of U_i(x)$ at t
 - ► Net Subjective Utility (Investment) := SU (NPV of Investment) $NSU_{i,t}(F_{ji}(t)) = SU_{i,t}\left[\sum_{t < s_l \le T} D(t, s_l)F_{ij}(s_l) - F_{ji}(t)\right]$
- NLP: Max $z_i = \sum_{j=1}^n \text{NSU}_{i,t}(F_{ji}(t))$ sub. to
 - $L_i(t) \ge 0$
 - $|\tilde{\Delta}K_i(t+1)| \le \kappa_i(t)K_i(t)$
 - $\tilde{\Delta}D_i(t+1) \le D_{i\max}(t+1) (1+r_i(t))D_i(t)$
 - $1 \le i \le n, t \ge 0$

Optimal Investment: Equilibrium State

- NLP with *n* objective functions, 3*n* constraints
- $F_{ii}^{*}(t)$ = the optimal solution, $1 \le i, j \le n$
- Obtain *Random* dynamical system $f(X^*(t)) := X^*(t+1)$ where $X_i(t) = (L_i(t), K_i(t), D_i(t)) \in \mathbb{R}^3$, $X = (X_1, X_2, \dots, X_n)$
- Constraints produce nonlinear dynamics
 - ► In a crisis, constraints tend to be *saturated* ⇒ the dynamics doesn't depend on U_i
 - High leverage makes debt ↑, borrowing capacity ↓
 ⇒ hit the constraints
 - Myopic risk estimation
 - \Rightarrow short-term statistics extrapolated to long-term risk

Perturbation Analysis

- From random to deterministic
 - ► Take non-random part \overline{f} of f and rescale X^* to constant dollar X
 - We get *deterministic* dynamical system $X(t + 1) = \overline{f}(X(t))$
 - If \overline{f} becomes unstable, so does f
- There is an equilibrium (fixed point) $\tilde{X} = (\tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_n)$
 - Diminishing marginal utility in closed economy
 - Every agent has become as rich as it can be
 - Brouwer fixed point theorem on a compact convex set
- Stable equilibrium (attracting fixed point): $\bar{f}(\tilde{X}) = \tilde{X}$
 - Stable wealth stabilizes NLP constraints
 - Small changes in constraints preserve optimal solution

Elasticity Coefficient I

- Drop "overline" from \overline{f} : X(t + 1) = f(X(t))
- df is $3n \times 3n$: $f(X(t) + \delta X) \approx f(X) + df(X(t))\delta X$
- $\delta X_i = (\delta L_i, \delta K_i, \delta D_i), \, \delta w_i = \delta L_i + \delta K_i$
- Derive a "reduced" Jacobian B:

$$\blacktriangleright \ \delta X'(t+1) = df(X(t))\delta X(t) = (\delta L'_i(t+1), \delta K'_i(t+1), \delta D'_i(t+1))$$

$$\flat \ \delta L'_i(t+1) + \delta K'_i(t+1) = \delta w'(t+1) \equiv B(X(t))\delta w(t)$$

•
$$\delta w'(t+1) = B(X(t))\delta w(t)$$

• Define *Elasticity Coefficient*: $a_{ij} = a_{ij}^+(t)$ or $a_{ij}^-(t)$

$$a_{ij}^{+}(t) = \lim_{\Delta w_j \to 0^+} \frac{F_{ij}(w_j(t) + \Delta w_j) - F_{ij}(w_j(t))}{\Delta w_j}$$
$$a_{ij}^{-}(t) = \lim_{\Delta w_j \to 0^-} \frac{F_{ij}(w_j(t) + \Delta w_j) - F_{ij}(w_j(t))}{\Delta w_j}$$

Elasticity Coefficient II

• Different sign of $\Delta w_i(t)$ yields different reaction of $F_{ij}(t)$:

- Pre-Crisis C: failure to pay vs. no extra payment/savings
- Post-Crisis B: credit reduction vs. hoarding cash
- Post-Crisis F: layoff vs. hire freeze

Market Instability Indicator

• Elasticities vs. reduced Jacobian *B*(*X*(*t*)):

$$\blacktriangleright b_{ii} = 1 + a_{ii} - \sum_{k \neq i}^n a_{ki}$$

- $b_{ij} = a_{ij}$ for $i \neq j$
- High leverage implies high elasticities
- Market Instability Indicator

I(t) =Max Eigenvalue of $B(X(t)) = \rho(B(X(t)))$

- ► This is *not* a Lyapunov exponent
- I(t) < 1: perturbations of the system tend to be absorbed
- *I*(*t*) > 1: small perturbations tend to increase when propagating ⇒ Domino effect: possible Financial Crisis
- I(t) can be empirically observed
 - Lagged correlations of historical series of flow of funds

Financial Crisis: Breakage of Stability I

NLP with reduced borrowing capacity:

- Maximize $z_i = \sum_{j=1}^n \text{NSU}_{i,t}(F_{ji}(t))$ subject to
 - $L_i(t) \ge 0$
 - $|\tilde{\Delta}K_i(t+1)| \le \kappa_i(t)K_i(t)$
 - $\tilde{\Delta}D_1(t+1) \le D_{1\max}(t+1) \mu (1+r_1(t))D_1(t)$
 - $\tilde{\Delta}D_i(t+1) \le D_{i\max}(t+1) (1+r_i(t))D_i(t)$
 - $2 \le i \le n, t \ge 0$

 \implies obtain $\{f_{\mu}\}$

- Perturb f by $\{f_{\mu}\}$ to get new equilibrium $\{\tilde{X}_{\mu}\}$
 - As leverage increases so do entries of B_{μ} (\Leftarrow elasticities)
 - Hence eigenvalues of B_{μ} increase
 - Even a small default at \tilde{X}_{μ} will break the stability: I(t) > 1

Financial Crisis: Breakage of Stability II

Figure : One dimensional illustration of stability change

Evolution of 2007-2009+ Crisis I

- Cause: breakage of stability \implies bifurcation
- Effect: contagion, systemic risk \implies recurrence, chaos
 - Securitization interconnected agents
 - "Default" spread along the feedback loop
 - Chaos in the financial crisis
- Remedy: getting out of recession \Longrightarrow QE etc.
 - Default set in: bailouts, loan restructuring, pay cut etc.
 - Agents minimize spending: new $f(\tilde{Y}) = \tilde{Y}$
 - \tilde{Y} is a recession \implies Eigenvalues of $B(\tilde{Y}) < 1$
 - Break the equilibrium by raising elasticities: QE etc.
 - Targeted fund allocation is necessary: no random handing out

Evolution of 2007-2009+ Crisis II

• Government takes action to stay away from deflation (sink)

Agents of Global Economy I

G is a global economy consists of s subeconomies

- Economy k has n_k agents: G has $n = \sum_{k=1}^{s} n_k$ agents
- $w(t) = (w_1(t), w_2(t), \dots, w_n(t))$: the global wealth vector
- For subeconomy *k*,
 - ► $w^k(t) = \left(w_1^k(t), w_2^k(t), \dots, w_{n_k}^k(t)\right)$: the wealth
 - $w_i^k(t)$ is the wealth of agent j at t

•
$$w_i(t) = w_j^k(t)$$
 if $i = N(k) + j$, $N(k) = \sum_{l=1}^{k-1} n_l$

- $F_{N(k)+i,N(k)+j}(t) = F_{ij}^k(t)$
- ► $b_{N(k)+i,N(k)+j}(t) = b_{ij}^k(t), B^{(k)}(t) = (b_{ij}^k(t))$ is the Jacobian matrix
- ► $a_{N(k)+i,N(k)+j}(t) = a_{ij}^k(t), A^{(k)}(t) = \left(a_{ij}^k(t)\right)$ is the elasticity matrix

Agents of Global Economy II

Between two economies k and l,

• $F_{ij}^{kl}(t) = F_{N(k)+i,N(l)+j}(t)$

Flow of funds from agent j of economy l to agent i of economy k at time t

•
$$a_{ij}^{kl}(t) = a_{ij}^{kl+}(t) \text{ or } a_{ij}^{kl-}(t),$$

* $a_{ij}^{kl+}(t) = \lim_{\Delta w_j^l \to 0^+} \frac{F_{ij}^{kl}(w_j^l(t) + \Delta w_j^l) - F_{ij}^{kl}(w_j^l(t)))}{\Delta w_j^l}$
* $a_{ij}^{kl-}(t) = \lim_{\Delta w_j^l \to 0^-} \frac{F_{ij}^{kl}(w_j^l(t) + \Delta w_j^l) - F_{ij}^{kl}(w_j^l(t))}{\Delta w_j^l}$

• Local $A^{(k)}(t)$ can be canonically embedded into the global A(t)

• Local $B^{(k)}(t)$ cannot be canonically embedded into the global B(t)

Elasticity Matrix for Multi Economy

$$A(t) = \begin{pmatrix} A^{(1)}(t) & A^{(12)}(t) & \dots & A^{(1s)}(t) \\ \\ & \\ A^{(21)}(t) & A^{(2)}(t) & & \\ & \\ \vdots & & \ddots & \\ & \\ A^{(s1)}(t) & \dots & A^{(s)}(t) \end{pmatrix}$$

•
$$A^{(kl)}(t) = \left(a_{ij}^{kl}(t)\right)_{\substack{1 \le i \le n_k \\ 1 \le j \le n_l}}$$

• Global matrix is canonical embeddedings of local matrices

Jacobian Matrix for Multi Economy

• $\tilde{B}^{(k)}(t) \neq B^{(k)}(t)$

• Off-diagonal block matrices $A^{ij}(t)$ $(i \neq j)$ cause contagion

Quantitative Definition of Contagion

• We say that *contagion* in a global economic system occurs if given two times $0 < t_0 < t_1$,

• At
$$t < t_0$$
, $\max_k \rho(B^{(k)}(t)) < 1$ and $\rho(B(t)) < 1$

2 At $t \in (t_0, t_1)$, $\max_k \rho(B^{(k)}(t)) > 1$ and $\rho(B(t)) < 1$

3 At time
$$t > t_1 B(t) \neq \bigoplus_{k=1}^{s} B^{(k)}(t)$$
 and $\rho(B(t)) > 1$.

- Unrelated simultaneous crises are ruled out:
 - ► $B(t) = \bigoplus_{k=1}^{s} B^{(k)}(t)$, then $\rho(B(t)) = \max_{k} \rho(B^{(k)}(t))$ \implies independent occurrence of sub-systemic crises.
 - ▶ Condition 3 implies nonzero off-diagonal block matrices $A^{ij}(t)$ $(i \neq j)$

2010-2011+ Eurozone Crisis I

- Mini Eurozone and Mini Global Economy
 - ▶ Group I: Greece (1), Ireland (2), Portugal (3), Spain (4), and Italy (5)
 - ▶ Group II: France (6), Germany (7)
 - Group III: USA (8)
- Each economy has 5 agents: C, F, B, G, I (1 5)

$$A(t) = \begin{pmatrix} A^{(1)}(t) & \dots & A^{(16)}(t) & A^{(17)}(t) & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A^{(61)}(t) & A^{(6)}(t) & A^{(67)}(t) & A^{(68)}(t) \\ \vdots & \ddots & \vdots & \vdots \\ A^{(61)}(t) & A^{(60)}(t) & A^{(70)}(t) & A^{(78)}(t) \\ \vdots & \ddots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(70)}(t) & A^{(78)}(t) \\ \vdots & \ddots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(67)}(t) & A^{(68)}(t) \\ \vdots & \ddots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(67)}(t) & A^{(68)}(t) \\ \vdots & \ddots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(67)}(t) & A^{(68)}(t) \\ \vdots & \ddots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(67)}(t) & A^{(68)}(t) \\ \vdots & \ddots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(67)}(t) & A^{(68)}(t) \\ \vdots & \ddots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(67)}(t) & A^{(68)}(t) \\ \vdots & \ddots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(67)}(t) & A^{(68)}(t) \\ \vdots & \ddots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(67)}(t) & A^{(68)}(t) \\ \vdots & \ddots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(67)}(t) & A^{(68)}(t) \\ \vdots & \ddots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(67)}(t) & A^{(68)}(t) \\ \vdots & \ddots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(67)}(t) & A^{(68)}(t) \\ \vdots & \vdots \\ A^{(61)}(t) & A^{(67)}(t) & A^{(68)}(t) \\ \vdots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(68)}(t) \\ \vdots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(68)}(t) \\ \vdots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(68)}(t) \\ \vdots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(68)}(t) \\ \vdots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(68)}(t) \\ \vdots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(68)}(t) \\ \vdots & A^{(68)}(t) & A^{(68)}(t) \\ \vdots & \vdots \\ A^{(61)}(t) & B^{(6)}(t) & A^{(68)}(t) \\ \vdots & A^{(68)}(t) & A^{(68)}(t) & A^{(68)}(t) \\ \vdots & A^{(68)}(t) & A^{(68)}(t) & A^{(68)}(t) \\ \vdots & A^{(68)}(t) & A^{(68)}(t) \\ \vdots & A^{(68)}(t) & A^{(68)}(t) & A^{(68)}(t) \\ \vdots & A^{(68)}(t) & A^{(68$$

2010-2011+ Eurozone Crisis II

Scenario 1. Greek sovereign debt is restructured

- Payments from Greek G to French B \downarrow : $F_{34}^{61} \downarrow \Rightarrow a_{34}^{61} \downarrow$
 - Entries of $A^{61}(t)$ kept low \Longrightarrow Little impact on $\rho(B(t))$
- Payments from Greek G to German B \downarrow : $F_{34}^{71} \downarrow \Rightarrow a_{34}^{71} \downarrow$
 - Entries of $A^{71}(t)$ kept low \Longrightarrow Little impact on $\rho(B(t))$
- Fear for French, German banks' insolvency rises
- Markets reduce their exposure to French, German banks
- ECB & Fed's lending to French, German banks ↑
- Post-Lehman Brothers type credit crunch is possible

2010-2011+ Eurozone Crisis III

Scenario 2. Greek sovereign debt is not restructured

- Domestically:
 - French, German banks more susceptible to liquidity crunches
 - $a_{i3}^{6+} \neq a_{i3}^{6-}$, $a_{i3}^{7+} \neq a_{i3}^{7-}$: hoard cash
- Externally:
 - ► a_{33}^{76} ↑ and a_{33}^{86} ↑: greater default risk of French banks to their German and the US counterparties
 - $a_{33}^{67} \uparrow$ and $a_{33}^{87} \uparrow$: greater default risk of German banks to their French and the US counterparties
 - These belong to the off-diagonal blocks B(t)
 - Higher probability for $\rho(B(t)) > 1 \Longrightarrow$ Global financial crisis

2010-2011+ Eurozone Crisis IV

Scenario 3. Fear Factor

• If French B and I lose confidence in Italian sovereign debt:

- ► NSU⁶_{3,t} $\left(F^{56}_{43}(t)\right)$ decreases $\implies F^{56}_{43}$ decreases
- ► NSU⁶_{5,t} $(F^{56}_{45}(t))$ decreases \implies F^{56}_{45} decreases
- If German B and I lose confidence in Italian sovereign debt:
 - ► $\text{NSU}_{3,t}^7 \left(F_{43}^{57}(t) \right)$ decreases $\implies F_{43}^{57}$ decreases
 - ► $\text{NSU}_{5,t}^7(F_{45}^{57}(t))$ decreases $\implies F_{45}^{57}$ decreases
- Italian sovereign bond yields soar
- Risk of Italian default rises
- This is not due to *Contagion*

Current Issues

- Scenario 1 does not work well
 - Greek G (now CCC) cannot print euro
 - Austerity deepens recession
- What if Greece is to leave eurozone?
 - Worst: all three scenarios for all major economies
 ⇒ situation grows exponentially worse
 - Hope: depending on exit strategy, things may improve
 - Greek debt: terms of restructuring, then currency control
 - ► The rest: keep money flow (≠ printing more)
- Group 2: French politics
- Group 3: U.S. banks

1997-98 Asian-Russian Crisis

Figure : Flow of funds vs. flow of default among stricken countries and foreign investors

- Each country could devalue its own currency
- Off-block matrices $A^{kl}(t)$ are zero \Longrightarrow no contagion

Conclusion: Work in Progress

- Theoretical
 - Analyze the crisis dynamics
 - Impact of hitting borrowing and liquidity constraints
 - Impact of Government actions: Quantitative easing, taxes, expenditures, bail out, etc.
- Empirical
 - Collect and sort out Flow of Funds data
 - Simulate Instability Indicator
 - Validate the hypothesis that it anticipates systemic crises
 - Simulate Government actions

Selected References

- Acharya, V., Engle, R. and Richardson, M. Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks, May 2012. To appear in American Economic Review Papers and Proceedings.
- **2** Benhabib, J., 1992. Cycles and Chaos in Economic Equilibrium, Princeton University Press.
- Youngna Choi and Raphael Douady, Financial Crisis Dynamics: Attempt to Define a Market Instability Indicator. *Quantitative Finance*, available on line.
- Youngna Choi and Raphael Douady, Financial Crisis and Contagion: A Dynamical Systems Approach. To appear in *Handbook on Systemic Risk*, Cambridge University Press.
- Dixit, A. K. and Pindyck, R. S., 1994. *Investment under Uncertainty*, Chap.5 on dynamic programming, Princeton Univ. Press.
- Daniel Hollo, Manfred Kremer and Marco Lo Luca, CISS A Composite Indicator of Systemic Stress in the Financial System. Working paper, August 2011. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1611717
- Carmen M. Reinhart and Kenneth S. Rogoff, This time is different: A panoramic view of eight centuries of financial crises. NBER, April 2008. http://www.nber.org/~wbuiter/cr1.pdf.
- O Robinson, C., 1999. Dynamical Systems: stability, symbolic dynamics, and chaos, 2nd ed., CRC Press
- Tversky, Amos, and Kahneman, Daniel, Advances in Prospect Theory: Cumulative representations of Uncertainty, *Journal of Risk and Uncertainty*, 5, 297-323, 1992.