Keen model with Erlang distributed delay

Bernardo R. C. da Costa Lima

June 12, 2012

ミ▶ ▲ ミ ト ミ つへで

Keen Model

With capital assets being driven by

$$\dot{K} = \kappa(\pi_n) Y - \delta K \tag{1}$$

we get the following dynamical system

$$\dot{\omega} = \omega(\Phi(\lambda) - \alpha)$$
 (2)

$$\dot{\lambda} = \lambda \left(\frac{\kappa(\pi_n)}{\nu} - \alpha - \beta - \delta \right) \tag{3}$$

$$\dot{d} = \kappa(\pi_n) - \pi_n - d\left(\frac{\kappa(\pi_n)}{\nu} - \delta\right)$$
(4)

< 注 > < 注 > 注 = ・ ○ < ()

Introducing the delay

Capital assets should be delayed from the moment of investment:

$$\dot{K}(t) = \kappa(\pi_n(t-\tau))Y(t-\tau) - \delta K(t)$$
(5)

To avoid complications related to Delayed-Differential Equations, we introduce investment stages:

$$\dot{\Theta}_{1} = \kappa(\pi_{n})Y - \frac{n}{\tau}\Theta_{1}$$

$$\dot{\Theta}_{2} = \frac{n}{\tau}(\Theta_{1} - \Theta_{2})$$

$$\vdots$$

$$\dot{\Theta}_{n} = \frac{n}{\tau}(\Theta_{n-1} - \Theta_{n})$$

$$\dot{K} = \frac{n}{\tau}\Theta_{n} - \delta K$$

$$\dot{D} = (\kappa(\pi_{n}) - \pi_{n})Y$$
(6)

Introducing the delay

Capital assets should be delayed from the moment of investment:

$$\dot{K}(t) = \kappa(\pi_n(t-\tau))Y(t-\tau) - \delta K(t)$$
(5)

To avoid complications related to Delayed-Differential Equations, we introduce investment stages:

$$\dot{\Theta}_{1} = \kappa(\pi_{n})Y - \frac{n}{\tau}\Theta_{1}$$

$$\dot{\Theta}_{2} = \frac{n}{\tau}(\Theta_{1} - \Theta_{2})$$

$$\vdots$$

$$\dot{\Theta}_{n} = \frac{n}{\tau}(\Theta_{n-1} - \Theta_{n})$$

$$\dot{K} = \frac{n}{\tau}\Theta_{n} - \delta K$$

$$\dot{D} = (\kappa(\pi_{n}) - \pi_{n})Y$$
(6)

-

- Dollar travels between the investment substages taking an exponential (with mean $\frac{\tau}{n}$) time in each of them.
- To see this, suppose that during investment stage k, the only process occurring was transference to stage k + 1. Θ_k would then be

$$d\Theta_k/dt = -\frac{n}{\tau}\Theta_k \tag{7}$$

that is, if we start with \$M dollars at time 0, $Me^{-\frac{n}{\tau}t}$ will remain there at time t.

• Still confused? If we start with \$*M* at time 0, and dollars (or cents!) leave at an exponentially distributed time, at time *t* we can expect to still have

$$M.\mathbb{P}[exp.dist.r.v. > t] = M(1 - F(t)^{1}) = Me^{-\frac{n}{\tau}t}$$
(8)

 ${}^{1}F(t)$ is the CDF for the exponentially distributed random variable describing the waiting time.

- Dollar travels between the investment substages taking an exponential (with mean $\frac{\tau}{n}$) time in each of them.
- To see this, suppose that during investment stage k, the only process occurring was transference to stage k + 1. Θ_k would then be

$$d\Theta_k/dt = -\frac{n}{\tau}\Theta_k \tag{7}$$

that is, if we start with \$M dollars at time 0, $Me^{-\frac{n}{\tau}t}$ will remain there at time t.

• Still confused? If we start with \$*M* at time 0, and dollars (or cents!) leave at an exponentially distributed time, at time *t* we can expect to still have

$$M.\mathbb{P}[exp.dist.r.v. > t] = M(1 - F(t)^{1}) = Me^{-\frac{n}{\tau}t}$$
(8)

- Dollar travels between the investment substages taking an exponential (with mean $\frac{\tau}{n}$) time in each of them.
- To see this, suppose that during investment stage k, the only process occurring was transference to stage k + 1. Θ_k would then be

$$d\Theta_k/dt = -\frac{n}{\tau}\Theta_k \tag{7}$$

that is, if we start with \$M dollars at time 0, $Me^{-\frac{n}{\tau}t}$ will remain there at time t.

• Still confused? If we start with \$*M* at time 0, and dollars (or cents!) leave at an exponentially distributed time, at time *t* we can expect to still have

$$M.\mathbb{P}[exp.dist.r.v. > t] = M(1 - F(t)^{1}) = Me^{-\frac{n}{\tau}t}$$
(8)

 ${}^{1}F(t)$ is the CDF for the exponentially distributed random variable describing the waiting time.

• The total time it takes for each dollar invested then follows an Erlang distribution with shape parameter n and rate $\frac{n}{\tau}$, which has mean τ and variance τ^2/n .

$$\left(X_i \sim \mathsf{Exponential}(n/\tau) \implies \sum_{i=1}^n X_i \sim \mathsf{Erlang}(n, n/\tau)\right) \qquad (9)$$

 In the limit n → ∞, the distribution converges to a deterministic time delay of τ, which represents the Delayed-Differential Equation we tried to avoid.

A = A = A = OQO
 A

• The total time it takes for each dollar invested then follows an Erlang distribution with shape parameter n and rate $\frac{n}{\tau}$, which has mean τ and variance τ^2/n .

$$\left(X_i \sim \mathsf{Exponential}(n/\tau) \implies \sum_{i=1}^n X_i \sim \mathsf{Erlang}(n, n/\tau)\right) \qquad (9)$$

• In the limit $n \to \infty$, the distribution converges to a deterministic time delay of τ , which represents the Delayed-Differential Equation we tried to avoid.

A = A = A = OQO
 A

Dividing the Θ_k variables by Y, $\theta_k = \Theta_k/Y$, we can derive the n + 3-dimensional system

$$\dot{\omega} = \omega(\Phi(\lambda) - \alpha)$$

$$\dot{\lambda} = \lambda \left(\frac{n}{\tau\nu}\theta_n - (\alpha + \beta + \delta)\right)$$

$$\dot{d} = \kappa(\pi_n) - \pi_n - d\left(\frac{n}{\tau\nu}\theta_n - \delta\right)$$

$$\dot{\theta}_1 = \kappa(\pi_n) - \theta_1 \left[\frac{n}{\tau}\left(1 + \frac{1}{\nu}\theta_n\right) - \delta\right]$$

$$\dot{\theta}_2 = \frac{n}{\tau}\left(\theta_1 - \theta_2\right) - \theta_2\left(\frac{n}{\tau\nu}\theta_n - \delta\right)$$

$$\vdots$$

$$\dot{\theta}_k = \frac{n}{\tau}\left(\theta_{k-1} - \theta_k\right) - \theta_k\left(\frac{n}{\tau\nu}\theta_n - \delta\right)$$

$$\vdots$$

$$\dot{\theta}_n = \frac{n}{\tau}\left(\theta_{n-1} - \theta_n\right) - \theta_n\left(\frac{n}{\tau\nu}\theta_n - \delta\right)$$

The "good" equilibrium has become

$$\hat{\lambda}_{1} = \Phi^{-1}(\alpha)$$

$$\hat{\theta}_{n,1} = \frac{\tau\nu}{n}(\alpha + \beta + \delta)$$

$$\vdots$$

$$\hat{\theta}_{n-k,1} = \hat{\theta}_{n,1} \left[\frac{\tau}{n}(\alpha + \beta + n/\tau)\right]^{k}$$

$$\vdots$$

$$\hat{\theta}_{1,1} = \hat{\theta}_{n,1} \left[\frac{\tau}{n}(\alpha + \beta + n/\tau)\right]^{n-1}$$

$$\hat{\pi}_{n,1} = \kappa^{-1} \left[\hat{\theta}_{1,1}(\alpha + \beta + n/\tau)\right]$$

$$\hat{d}_{1} = \frac{\kappa(\hat{\pi}_{n,1}) - \hat{\pi}_{n,1}}{\alpha + \beta}$$

$$\hat{\omega}_{1} = 1 - \hat{\pi}_{n,1} - r\hat{d}_{1}$$
(11)

The Jacobian matrix for the linearized system at this equilibrium is

Γ	0	$\bar{\omega} \Phi'(\bar{\lambda})$	0	0	0		0	0	0
	0	0	0	0	0		0	0	$\frac{n}{\tau \nu} \bar{\lambda}$
	$1 - \kappa'(\bar{\pi_n})$		$r - r\kappa'(\bar{\pi}_n) - (\alpha + \beta)$	0	0		0	0	$-\frac{n}{\tau\nu}\bar{d}$
	$-\kappa'(\bar{\pi}_n)$	0	$-r\kappa'(\bar{\pi}_n)$	$-\frac{\alpha}{-\frac{n}{\tau}}^{-\beta}$	0		0	0	$-\frac{n}{\tau\nu}\bar{\theta}_1$
	0	0	0	$\frac{n}{\tau}$	$-\alpha - \beta - \frac{n}{\tau}$		0	0	$-\frac{n}{\tau\nu}\bar{\theta}_2$
						·			
	0	0	0	0	0		$\frac{n}{\tau}$	$-\alpha - \beta - \frac{n}{\tau}$	$-\frac{n}{\tau\nu}\bar{\theta}_{n-1}$
L	0	0	0	0	0		0	$\frac{n}{\tau}$	$-\frac{n}{\tau} - 2\alpha$ $-2\beta - \delta$ (12)

★ Ξ → < Ξ → </p>

Armed with the Jacobian, we can investigate when stability is lost for each n, in terms of τ .

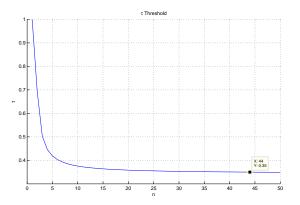


Figure 1: Stability threshold value for τ as a function of n

< ∃ →

Keen model with Erlang distributed delay

Using XPPAUT, we verified that the there is a **supercritical** Hopf bifurcation for τ larger than the threshold seen on Figure1. The stable equilibrium point unfolds in a stable cycle, while the equilibrium point loses its local stability, Figure 2.

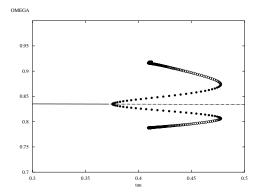


Figure 2: Supercritical Hopf bifurcation for n = 10

★ ∃ ▶ 3

Simulations

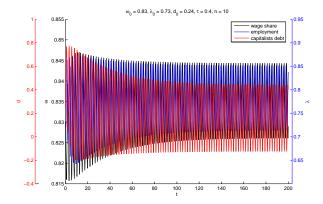


Figure 3: Solution converging to the stable cycle, n = 10

æ

∢ ≣ ≯

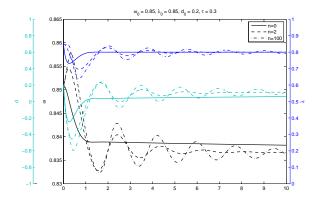


Figure 4: Solutions for different values of n

æ

< ∃ >

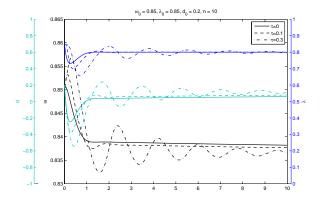


Figure 5: Solutions for different values of τ

æ

< ∃ >