Indices in a number field.

Mohamed Ayad

August 4, 2011

Let K be a number field, A be its ring of integers and \hat{A} be the set of elements of A which are primitive over \mathbb{Q} . For any $\theta \in \hat{A}$ denote by $F_{\theta}(x)$ the characteristic polynomial of θ sur \mathbb{Q} . Set $i(\theta) = gcd_{x \in \mathbb{Z}} F_{\theta}(x)$ and $i(K) = lcm_{\theta \in \hat{A}}i(\theta)$. C. R. Mac Cluer has characterized the fields K for which i(K) is nontrivial. In this common work with O. Kihel, we show that this integer i(K) is linked to the so called common factor of indices in a number field or innessential discriminant divisor. For any $\theta \in \hat{A}$, write its discriminant in the form $D(\theta) = I(\theta)^2 D_K$, where D_K denotes the absolute discriminant and $I(\theta)$ the index of θ . p is said to be a common factor of indices in K if $p \mid I(\theta)$ for any $\theta \in \hat{A}$. It is shown in particular that if the exists some prime number which is a commmon factor of indices in K then i(K) is nontrivial. Moreover fix a prime p and define the integers

$$\rho(p) = |\{\theta \in A/pA, p \mid i(\theta)\}|$$

and

$$\mu(p) = |\{\theta \in A/pA, \quad p \mid I(\theta)\}|.$$

Explicit formulas for these integers are given and we show that they may be usefull for determining, in some cases, the spliting type of p in A.