

Counting Rational Points on Certain Pfaffian Sets

Margaret E. M. Thomas

Fachbereich Mathematik und Statistik and Zukunftskolleg, Universität Konstanz

o-Minimal Structures and Real Analytic Geometry Retrospective Workshop, Fields Institute, Toronto 11 August 2011

Let $X \subseteq \mathbb{R}^n$ be definable in an o-minimal expansion of $\overline{\mathbb{R}}$ and consider $|X \cap \mathbb{Q}^n|$.

Guiding Principle:

If X contains "too many" rational points, then it must contain an infinite connected semialgebraic set.

```
Turn this around:
Consider X^{\text{trans}} := X \setminus X^{\text{alg}}, the transcendental part of X, where X^{\text{alg}} is the union of all infinite, connected, semialgebraic subsets of X.
We investigate when X^{\text{trans}} does not contain "too many" rational
```

We investigate when X^{trans} does not contain "too many" rational points.

```
But it is not a finitary/infinitary question - consider |graph(2^x) \cap \mathbb{Q}^2|. Not finite but 2^x is a transcendental function.
```


Instead categorise rational points by *height*: $H(\frac{a}{b}) := \max\{|a|, |b|\}$. So, for a given height $T \in \mathbb{N}$, attention is restricted to at most T^2 points, $0, 1, \ldots, T, \ldots, \frac{1}{T}, \ldots, \frac{T}{T}$. $\mathbb{Q}^n(T) := \{\overline{q} \in \mathbb{Q}^n | H(q_i) \le T\}; \qquad |\mathbb{Q}^n(T)| \le T^{2n}$. We then count $|X^{\text{trans}} \cap \mathbb{Q}^n(T)|$ and see how fast it grows with T.

Theorem (Pila-Wilkie 2006)

Let $X \subseteq \mathbb{R}^n$ be definable in an o-minimal expansion of $\overline{\mathbb{R}}$. For all $\varepsilon > 0$, there exists $c(X, \varepsilon) > 0$ such that, for all (sufficiently large) $T \in \mathbb{N}$, $|X^{trans} \cap \mathbb{Q}^n(T)| \le cT^{\varepsilon}$.

Best possible statement for o-minimal expansions of $\overline{\mathbb{R}}$ in general (counterexample curve in \mathbb{R}_{an}).

However, proposed improvement for \mathbb{R}_{exp} :

Wilkie's Conjecture (2006)

For all sets X definable in \mathbb{R}_{exp} , there exist $c(X), \gamma(X) > 0$ such that

 $|X^{\text{trans}} \cap \mathbb{Q}^n(T)| \le c(\log T)^{\gamma}$, for $T \ge e$.

Remark: All results in this talk also apply to bounds on the density of algebraic points in a fixed number field (using the absolute multiplicative height).

Theorem (Pila 2007)

For any X = graph(f), where $f: I \longrightarrow \mathbb{R}$ is a transcendental Pfaffian function on an interval $I \subseteq \mathbb{R}$, there exist $c(X), \gamma(X) > 0$ such that $|X \cap \mathbb{Q}^2(T)| \leq c(\log T)^{\gamma}$.

2 ingredients in the proof.

Proposition (Pila 2007)

Let $f: I \to \mathbb{R}$ be D-times differentiable on an interval I with $\frac{1}{T^2} < l(I) < 2T$, where $D := \frac{(d+1)(d+2)}{2}$, for some $d \ge 1$ and $T \ge e$. Suppose $|f'| \le 1$ and, for each order $j = 1, \ldots, D$, $f^{(j)}$ is either identically 0 or non-vanishing. Then $X \cap \mathbb{Q}^2(T)$ is contained in at most $cD(logT)T^{\frac{32}{3(d+3)}}$ real algebraic curves of degree $\le d$.

The second ingredient:

For a Pfaffian function f, we have effective Khovanskii bounds on the number of connected components of:

```
V(f), the zero set of f, and on
```

 $X \cap V(P)$, the graph of f intersected with the zero set of a polynomial P,

which depend

on the complexity of f - the number of variables of f, the number of differential equations r in the system describing f, the degrees of the polynomials in that system and

```
(polynomially) on the degree d of P.
```


Theorem (Pila 2007)

For any X = graph(f), where $f: I \longrightarrow \mathbb{R}$ is a transcendental Pfaffian function on an interval $I \subseteq \mathbb{R}$, there exist $c(X), \gamma(X) > 0$ such that $|X \cap \mathbb{Q}^2(T)| \leq c(\log T)^{\gamma}$.

Idea of Proof.

See board...

Universität Konstanz

Theorem (Jones-T. 2010)

For any X = graph(f), where $f: I \longrightarrow \mathbb{R}$ is a transcendental function implicitly defined from Pfaffian functions on an interval $I \subseteq \mathbb{R}$, there exist $c(X), \gamma(X) > 0$ such that

 $|X \cap \mathbb{Q}^n(T)| \le c(\log T)^{\gamma}.$

Proof.

First must establish analogous bounds on the number of connected components of $V(f), V(f'), \ldots, V(g), V(g'), \ldots$ for f defined implicitly from Pfaffian functions (and g its inverse). Then the proof follows the method of Pila's theorem.

Corollary (Jones-T. 2010)

For any X = graph(f), where $f: I \longrightarrow \mathbb{R}$ is existentially definable in \mathbb{R}_{Pfaff} , there exist $c(X), \gamma(X) > 0$ s.t. $|X^{trans} \cap \mathbb{Q}^n(T)| \le c(\log T)^{\gamma}$.

Proof.

By methods of Wilkie, for such a function f there are intervals I_1, \ldots, I_m , covering I up to a finite set, such that, on each I_i , f is implicitly defined. Apply the above to each I_i in turn.

Moreover, this bound will hold for any function definable in any model complete reduct of \mathbb{R}_{Pfaff} - in particular in \mathbb{R}_{exp} .

Corollary (Jones-T. 2010; also shown by Butler)

Wilkie's Conjecture holds for any 1-dimensional set X.

MEM Thomas

Counting Rational Points on Certain Pfaffian Sets

Idea:

Contain the rational points on a surface X in a controlled number of algebraic surfaces. Then count points on intersections.

Theorem (Pila 2009)

Suppose $X \subseteq (0,1)^3$ has dimension 2 and admits a mild parameterization*; then $X \cap \mathbb{Q}^3(T)$ is contained in at most $K_1(\log T)^{K_2}$ algebraic surfaces of degree $\lfloor (\log T)^2 \rfloor$, for some $K_1(X), K_2(X) > 0$.

*Mild parameterization:

A surface X has a mild parameterization if there exist finitely many C^{∞} functions $\phi_1, \ldots, \phi_l \colon (0,1)^2 \to X$ such that $X = \bigcup_{i=1}^l \phi_i((0,1)^2)$ and the *n*th $(= (n_1 + n_2)$ th) order derivatives of each ϕ_i are bounded by $n_1!n_2!(Bn^C)^n$, for some B, C > 0.

We study the intersection of definable surfaces with algebraic surfaces.

Consider X, the graph of a function $f: U \longrightarrow \mathbb{R}$ implicitly defined from Pfaffian functions on an analytic cell $U \subseteq \mathbb{R}^2$. We would like to bound the density of rational points on sets of the form $X \cap V(P)$, for $P \in \mathbb{R}[X_1, X_2, X_3]$.

Proposition (Jones-T. 2010)

For such a surface X, there exist $c(X), \gamma(X) > 0$ and a polynomial $Q \in \mathbb{R}[X]$ of degree N(X) such that, for any polynomial $P : \mathbb{R}^3 \to \mathbb{R}$ of degree d, $|(X \cap V(P))^{trans} \cap \mathbb{Q}^3(T)| \le cQ(d)(\log T)^{\gamma}$.

Proposition (Jones-T. 2010)

For such a surface X, there exist $c(X), \gamma(X) > 0$ and a polynomial $Q \in \mathbb{R}[X]$ of degree N(X) such that, for any polynomial $P : \mathbb{R}^3 \to \mathbb{R}$ of degree d, $|(X \cap V(P))^{trans} \cap \mathbb{Q}^3(T)| \le cQ(d)(\log T)^{\gamma}$.

Idea of Proof.

See board...

Some consequences of combining this result with Pila's Theorem:

1st Corollary (Jones-T. 2010)

If $X \subseteq \mathbb{R}^n$ is a surface definable in $\mathbb{R}_{resPfaff}$, the real field expanded by all restricted Pfaffian functions, then there exist $c(X), \gamma(X) > 0$ such that $|X^{trans} \cap \mathbb{Q}^n(T)| \leq c(\log T)^{\gamma}$.

Proof.

All sets definable in $\mathbb{R}_{\text{resPfaff}}$ are subanalytic and therefore admit mild parameterization. (Even a definable mild parameterization - Jones-Miller-T. 2009.)

2nd Corollary (Jones-T. 2010)

Wilkie's Conjecture holds for any surface X which admits a mild parameterization.

MEM Thomas

Counting Rational Points on Certain Pfaffian Sets

Let $\alpha, \beta, 1$ be linearly independent over \mathbb{Q} . Consider

$$X := \{ (x, y, z) \in (0, \infty)^3 | z = x^{\alpha} y^{\beta} \}.$$

 X^{alg} is empty. We can find a mild parameterization that gives us, for some $c(X), \gamma(X)$, and $T \ge e$, $|X \cap \mathbb{Q}^3(T)| \le c(\log T)^{\gamma}$.

Proposition

Suppose $(x_1, ..., x_k), (y_1, ..., y_k)$ are two multiplicatively independent k-tuples of rationals, where $k > \gamma$. At least one of $x_i^{\alpha} y_i^{\beta}$ is irrational.

$X := \{(x, y, z) \in (0, \infty)^3 | z = x^{\alpha} y^{\beta}\}. \ \left| X \cap \mathbb{Q}^3(T) \right| \le c (\log T)^{\gamma}.$

Proposition

Suppose $(x_1, ..., x_k), (y_1, ..., y_k)$ are two multiplicatively independent k-tuples of rationals, where $k > \gamma$. At least one of $x_i^{\alpha} y_j^{\beta}$ is irrational.

Proof.

Suppose $x_i^{\alpha} y_i^{\beta}$ are all rational. Then all $(x_i, y_i, x_i^{\alpha} y_i^{\beta}) \in X \cap \mathbb{Q}^3$. Moreover, for any k-tuples $(m_1, \ldots, m_k), (n_1, \ldots, n_k) \in \mathbb{N}^k$, we also have $(x_i^{m_i}, y_i^{n_i}, x_i^{\alpha m_i} y_i^{\beta n_i}) \in X \cap \mathbb{Q}^3$. By considering k + 1 pairs of tuples \bar{m}, \bar{n} , we have that $|X \cap \mathbb{Q}^3(T)| \ge c(\log T)^{k+1}$, which is a contradiction.