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Thank you!

The Fields Institute for hosting the thematic program on
O-minimal Structures and Real Analytic Geometry,

the Deutscher Akademischer Austausch Dienst for funding my
stay, and

above all, the organizers for running such a fantastic program.

I am very fortunate that this excellent program came at such a
great time for me.
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Setting

Let X be a collection of subsets of Rn. Let R = (R,+, ·, (X )X∈X )
be an expansion of (R,+, ·). We want to study the definable sets
in R.

Take zero sets of real polynomial maps Rm → Rn, as well as
preimages of cartesian products of elements in X .

Close this collection under the basic logico-geometric
operations; that is taking finite unions, complements,
cartesian products, projections into lower-dimensional spaces,
identifications into higher-dimensional spaces, and so on.

The sets that arise are said to be definable from X . Or to use a
more standard model-theoretic notation: sets definable in R.
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The game we play

Start with a collection X and analyze the process of generating all
definable sets. We win the game in one of two ways:

(i) A stabilization occurs that allows us to understand the
definable sets to some desired degree (tameness, e.g.
quantifier elimination or model completeness); or

(ii) the set Z arises (wildness)

The model-theoretic wild west

If an expansion R defines Z, it defines all Borel sets. Hence all
projections of Borel sets. Then all of the complements. Then again
all of the projections... So there is no uniformly finite bound on the
number of iterations needed to produce the whole collection of
definable sets.
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Question

What can be said about R in general if R does not define Z? In
particular, is there anything (geometrically) that can be said about
the sets definable in R (without further assumptions on R)?

A priori, why should non-definability of an arithmetic object
translate into a geometric condition on definable sets?

Philipp Hieronymi A dichotomy for expansions of the real field



Question

What can be said about R in general if R does not define Z? In
particular, is there anything (geometrically) that can be said about
the sets definable in R (without further assumptions on R)?

A priori, why should non-definability of an arithmetic object
translate into a geometric condition on definable sets?

Philipp Hieronymi A dichotomy for expansions of the real field



A result from Fields

Dichotomy - H.

Let R be an expansion of (R,+, ·) such that R does not define Z.
Then there is no definable function f : Dn → R such that D ⊆ R
is discrete and f (Dn) is somewhere dense.
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An application - Spirals

Consider a logarithmic spiral

Sω := {(et cosωt, et sinωt) : t ∈ R}.

The expansion (R,+, ·, Sω) is tame. But it defines an infinite
discrete set

Sω ∩ R>0 = e2πZ/ω.

Consider two logarithmic spirals Sω and Sτ with τ /∈ Qω. Then
e2πZ/ω and e2πZ/τ are definable in (R,+, ·,Sω,Sτ ). And so is their
union

D := e2πZ/ω ∪ e2πZ/τ .

Now consider the map Q : D2 → R given by

(x , y) 7→ x/y .

The image of D2 under Q is dense in R>0. Hence (R,+, ·,Sω, Sτ )
defines Z.
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An application - More spirals

Let U ⊆ R2 be open and connected and let F : U → R2 be a
vector field with an isolated singularity at the origin. Let Γ be a
nontrivial trajectory of F ; that is the image of a map
γ : (0, 1]→ R2 such that

γ′ = F ◦ γ.

Let P(t) be Poincaré return map of F . If

lim
t→0

P(t)

t
= 1.

Then (R,+, ·, Γ) defines Z.
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That happens. Let F be analytic.

If the eigenvalues of the Jacobian at the origin are imaginary, then

lim
t→0

P(t)

t
= 1.

If the Jacobian at the origin is 0, then

lim
t→0

P(t)

t
= c

for some c ∈ (0,∞).
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Post Fields

Dichotomy - H. (PAMS 2010)

Let R be an expansion of (R,+, ·) such that R does not define Z.
Then there is no definable function f : Dn → R such that D ⊆ R
is discrete and f (Dn) is somewhere dense.

Is there a more geometric interpretation of the dichotomy? Yes!
(joint work with C. Miller and A. Fornasiero)
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Minkowski dimension

Given E ⊆ Rn bounded and r > 0, let N(E , r) be the number of
closed balls of radius r needed to cover E . Put

dimME = lim
r↓0

log N(E , r)/ log(1/r),

(with log 0 := −∞), the upper Minkowski dimension of E . We
say that E is M-null if dimME ≤ 0.

There are many equivalent formulations and different names, in
particular, dimM is also known as upper box-counting dimension.
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Two examples

Minkowski dimension distinguishes between countable sets:

dimM{
1

n + 1
: n ∈ N} =

1

2
,

while

dimM{
1

2n
: n ∈ N} = 0.

And that is fortunate:

(R,+, ·, { 1

n + 1
: n ∈ N}) defines Z,

but

(R,+, ·, { 1

2n
: n ∈ N}) does not.
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Dichotomy - Fornasiero-H.-Miller - (PAMS, to appear)

Let R be an expansion of (R,+, ·) such that R does not define Z.
Then every bounded nowhere dense definable subset of R is M-null.
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Strategy

Let R be an expansion of (R,+, ·) such that R defines a set
E ⊆ R such that E is nowhere dense, but not M-null.

Step 1

There is a discrete set D ⊆ R such that R defines a map
f : D → E such that f (D) = E .

Step 2

There is a function g : Em → R such that g is definable in R and
g(Em) is dense in R.

Step 3

Conclude that Z is definable, since there is a function Dm → R
whose image is dense in R.
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Step 2

Lemma

Let E ⊆ R be bounded. If dimME > 0, then there exist n ∈ N and
linear T : Rn → R such that Q(T (En)) is dense in R, where

Q(X ) := {x1 − x2

x3 − x4
: x1, x2, x3, x4 ∈ X , x3 6= x4}
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Proof of Step 2

Since dimMEn = n dimME , limn→∞ dimMEn =∞. By Falconer
and Howroyd, there exist n ∈ N and a linear T : Rn → R such that
dimMT (En) > 1/2.

By replacing E with T (En), it suffices to
consider the case that dimME > 1/2 and show that Q(E ) is dense
in R. Suppose not.Observe that Q(E ) is the set of slopes of
nonvertical lines connecting pairs of points in E 2. Thus, the
difference set { u− v : u, v ∈ E 2 } of E 2 is disjoint from some open
double cone C ⊆ R2 centered at the origin. Let ` be the line
through the origin perpendicular to the axis of C . Then the
restriction to E 2 of the projection of R2 onto ` is injective, and the
compositional inverse is Lipshitz. Hence, E 2 is contained in a
rotation of the graph of a Lipshitz function from some bounded
subinterval of R into R. It follows that dimME 2 ≤ 1. But then
dimME = (dimME 2)/2 ≤ 1/2, a contradiction.
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Conjecture

Let R be an expansion of (R,+, ·) that does not define Z. Let
X ⊆ Rn be definable in R. Then dimMX = dim X .

Conjecture

Let R be an expansion of (R,+, ·) by a spiralling trajectory Γ of an
o-minimal vector field and R does not define Z. Then dimMΓ = 1
and the length of Γ is finite.
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Optimality

Dichotomy - Fornasiero-H.-Miller

Let R be an expansion of (R,+, ·) such that R does not define Z.
Then every bounded definable subset of R is either somewhere
dense or M-null.

M-null

There are Cantor sets K ⊆ R such that (R,+, ·,K ) defines sets in
every projective level, yet every subset of R definable in
(R,+, ·,K ) either has interior or is nowhere dense (Friedman,
Miller, Kurdyka, Speissegger).

Somewhere dense

Z is not definable in the expansion of (R,+, ·) by
{ (2j , 2k3l) : j , k, l ∈ Z } (Günaydın), yet it evidently defines both
an infinite discrete set and a dense subset of R>0 that has empty
interior.
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