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Sudoku
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x91 x92 x93 1 x95 3 x97 7 x99
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Sudoku

An alternate formulation as a decision problem

Is there a way to assign elements from {1,2,3,4,5,6,7,8,9} to each variable
xij so that for each i :

(xi1,xi2, . . . ,xi9) ∈Sym{1,2,3,4,5,6,7,8,9}
(x1i ,x2i , . . . ,x9i) ∈Sym{1,2,3,4,5,6,7,8,9}

(x11,x12, . . . ,x33) ∈Sym{1,2,3,4,5,6,7,8,9}
(x14,x15, . . . ,x36) ∈Sym{1,2,3,4,5,6,7,8,9}

...

(x77,x78, . . . ,x99) ∈Sym{1,2,3,4,5,6,7,8,9}
x12 ∈{6}
x13 ∈{3}

...
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Boolean Satisfiability

Problem:
Given a propositional formula Φ, is there a truth assignment that satisfies Φ?

Example

Φ = x1∧ (x3∨ x4)∧¬x4∧ (¬x1∨ x2)∧ (¬x1∨¬x3∨ x4)

An Equivalent Formulation

Is there a way to assign values from {0,1} to the variables x1,x2,x3,x4 so that:

x1 ∈{1} x4 ∈ {0}
(x3,x4) ∈{(0,1),(1,0),(1,1)}
(x1,x2) ∈{(0,0),(0,1),(1,1)}

(x1,x3,x4) ∈{(0,0,0),(0,0,1),(0,1,0),(0,1,1)

(1,0,0),(1,0,1),(1,1,1)}
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The Constraint Satisfaction Problem

Instance
A triple P = (V ,A,C ) with

V a nonempty, finite set of variables,

A a nonempty, finite domain,
C a set of constraints {C1, . . . ,Cq} where each Ci is a pair (~si ,Ri) with

~si a tuple of variables of length mi , called the scope of Ci , and
Ri a subset of Ami , called the constraint relation of Ci .

Question
Is there a solution to P, i.e., is there a function f : V → A such that for each
i ≤ q, the mi -tuple f (~si) ∈ Ri?
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NP problems

NP vs P

One feature of a CSP is that it is easy to determine if a given assignment
is actually a solution or not.

Problems of this sort can be solved by non-deterministic polynomial time
algorithms and are said to belong to the class NP.

In contrast, problems that can be solved quickly, say in time bounded by a
polynomial function of the problem size, are said to belong to the class P.

The class of CSPs constitutes a maximally hard problem class within NP.

Problem
Identify natural subclasses of the CSP for which there are efficient algorithms
for solving them.
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An approach via algebra

Remarks

If the constraints that appear in a given set of instances have a nice
underlying algebraic structure, then this may imply the existence of a fast
algorithm for solving such instances.

For example, by using vector space operations, one may quickly solve a
system of linear equations over some finite field.

Problem
Identify algebraic properties of sets of constraint relations that can be used to
construct good algorithms for solving CSPS over those relations.
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Some Constraint Relations

Fact
There is a fast algorithm for solving instances of the CSP whose constraint
relations come from the following set:

{(0,5,2),(0,8,2),(0,9,5),(1,8,2),(1,8,5),(4,7,6)}
{(0,2,6),(0,3,2),(0,8,1),(0,9,0),(1,2,2),(1,3,1),

(1,3,2),(1,3,5),(4,2,4)}
{(0,0,1),(0,1,3),(0,1,8),(1,1,3),(1,2,1),(1,2,3),

(1,5,3),(1,6,1),(4,2,3),(4,4,3),(4,5,3)}
{(5,2,5),(5,2,6),(7,2,0),(7,2,1),(7,2,4),(8,2,2),

(9,5,2),(9,6,2)}
{(5,5,9,1),(7,6,8,8),(8,2,3,3),(8,5,3,2),(8,5,3,3),

(8,5,8,3),(9,5,2,2)}
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Some Constraint Relations, continued

Hidden Structure
The constraint relations on the previous slide are compatible with the following
order and associated binary operation. It follows that the constraint language is
tractable.

An Ordering of the Domain

0

111111 4


6

1111111



1

1111111 5

111111


9 7



2

111111 8



3

A Compatible Operation

For x ,y ∈ {0,1,2, . . . ,9}, define
x ∧ y = g.l.b.(x ,y).
Then for all x , y , z,

x ∧ x = x ,
x ∧ y = y ∧ x ,
x ∧ (y ∧ z) = (x ∧ y)∧ z.
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