

Faculty of Science

Closure properties for the class of Cuntz-Krieger algebras

Sara Arklint Department of Mathematical Sciences

Canadian Operator Symposium, May 27-31, 2013 Slide 1/5

Theorem (A-Ruiz)

Let E be a countable directed graph. TFAE:

Theorem (A-Ruiz)

Let E be a countable directed graph. TFAE:

• C*(E) is a Cuntz-Krieger algebra,

Theorem (A-Ruiz)

Let E be a countable directed graph. TFAE:

- C*(E) is a Cuntz-Krieger algebra,
- E is finite with no sinks,

Theorem (A-Ruiz)

Let E be a countable directed graph. TFAE:

- C^{*}(E) is a Cuntz-Krieger algebra,
- E is finite with no sinks,
- $C^*(E)$ is unital and rank $K_0(C^*(E)) = \operatorname{rank} K_1(C^*(E))$.

Theorem (A-Ruiz)

Let E be a countable directed graph. TFAE:

- C^{*}(E) is a Cuntz-Krieger algebra,
- E is finite with no sinks,
- $C^*(E)$ is unital and rank $K_0(C^*(E)) = \operatorname{rank} K_1(C^*(E))$.

Theorem (A-Ruiz)

Let A be a unital C^* -algebra and assume that A is stably isomorphic to a Cuntz-Krieger algebra. Then A is a Cuntz-Krieger algebra.

Theorem (A-Ruiz)

Let E be a countable directed graph. TFAE:

- C^{*}(E) is a Cuntz-Krieger algebra,
- E is finite with no sinks,
- C*(E) is unital and rank K₀(C*(E)) = rank K₁(C*(E)).

Theorem (A-Ruiz)

Let A be a unital C^* -algebra and assume that A is stably isomorphic to a Cuntz-Krieger algebra. Then A is a Cuntz-Krieger algebra.

Corollary (A-Ruiz)

Corners of Cuntz-Krieger algebras are Cuntz-Krieger algebras.

Definition

Definition

A C*-algebra A looks like a purely infinite Cuntz-Krieger algebra if

• A is unital, purely infinite, nuclear, separable, and of real rank zero,

Definition

- A is unital, purely infinite, nuclear, separable, and of real rank zero,
- A has finitely many ideals,

Definition

- A is unital, purely infinite, nuclear, separable, and of real rank zero,
- A has finitely many ideals,
- for all $I \leq J \leq A$, the group $K_*(J/I)$ is finitely generated, the group $K_1(J/I)$ is free, and rank $K_0(J/I) = \operatorname{rank} K_1(J/I)$,

Definition

- A is unital, purely infinite, nuclear, separable, and of real rank zero,
- A has finitely many ideals,
- for all $I \leq J \leq A$, the group $K_*(J/I)$ is finitely generated, the group $K_1(J/I)$ is free, and rank $K_0(J/I) = \operatorname{rank} K_1(J/I)$,
- the simple subquotients of A are in the bootstrap class.

Definition

A C*-algebra A looks like a purely infinite Cuntz-Krieger algebra if

- A is unital, purely infinite, nuclear, separable, and of real rank zero,
- A has finitely many ideals,
- for all $I \leq J \leq A$, the group $K_*(J/I)$ is finitely generated, the group $K_1(J/I)$ is free, and rank $K_0(J/I) = \operatorname{rank} K_1(J/I)$,
- the simple subquotients of A are in the bootstrap class.

Observation

Consider a unital extension $I \hookrightarrow A \twoheadrightarrow B$.

Definition

A C*-algebra A looks like a purely infinite Cuntz-Krieger algebra if

- A is unital, purely infinite, nuclear, separable, and of real rank zero,
- A has finitely many ideals,
- for all $I \leq J \leq A$, the group $K_*(J/I)$ is finitely generated, the group $K_1(J/I)$ is free, and rank $K_0(J/I) = \operatorname{rank} K_1(J/I)$,
- the simple subquotients of A are in the bootstrap class.

Observation

Consider a unital extension $I \hookrightarrow A \twoheadrightarrow B$. If A is a purely infinite Cuntz-Krieger algebra, then

Definition

A C*-algebra A looks like a purely infinite Cuntz-Krieger algebra if

- A is unital, purely infinite, nuclear, separable, and of real rank zero,
- A has finitely many ideals,
- for all $I \leq J \leq A$, the group $K_*(J/I)$ is finitely generated, the group $K_1(J/I)$ is free, and rank $K_0(J/I) = \operatorname{rank} K_1(J/I)$,
- the simple subquotients of A are in the bootstrap class.

Observation

Consider a unital extension $I \hookrightarrow A \twoheadrightarrow B$. If A is a purely infinite Cuntz-Krieger algebra, then

 \bullet B is a purely infinite Cuntz-Krieger algebra,

Definition

A C*-algebra A looks like a purely infinite Cuntz-Krieger algebra if

- A is unital, purely infinite, nuclear, separable, and of real rank zero,
- A has finitely many ideals,
- for all $I \leq J \leq A$, the group $K_*(J/I)$ is finitely generated, the group $K_1(J/I)$ is free, and rank $K_0(J/I) = \operatorname{rank} K_1(J/I)$,
- the simple subquotients of A are in the bootstrap class.

Observation

Consider a unital extension $I \hookrightarrow A \twoheadrightarrow B$. If A is a purely infinite Cuntz-Krieger algebra, then

- \bullet *B* is a purely infinite Cuntz-Krieger algebra,
- ❷ I is stably isomorphic to a purely infinite Cuntz-Krieger algebra,

Definition

A C*-algebra A looks like a purely infinite Cuntz-Krieger algebra if

- A is unital, purely infinite, nuclear, separable, and of real rank zero,
- A has finitely many ideals,
- for all $I \leq J \leq A$, the group $K_*(J/I)$ is finitely generated, the group $K_1(J/I)$ is free, and rank $K_0(J/I) = \operatorname{rank} K_1(J/I)$,
- the simple subquotients of A are in the bootstrap class.

Observation

Consider a unital extension $I \hookrightarrow A \twoheadrightarrow B$. If A is a purely infinite Cuntz-Krieger algebra, then

- \bullet B is a purely infinite Cuntz-Krieger algebra,
- ❷ I is stably isomorphic to a purely infinite Cuntz-Krieger algebra,
- \mathfrak{S} K₀(B) \rightarrow K₁(I) vanishes.

Definition

A C*-algebra A looks like a purely infinite Cuntz-Krieger algebra if

- A is unital, purely infinite, nuclear, separable, and of real rank zero,
- A has finitely many ideals,
- for all $I \leq J \leq A$, the group $K_*(J/I)$ is finitely generated, the group $K_1(J/I)$ is free, and rank $K_0(J/I) = \operatorname{rank} K_1(J/I)$,
- the simple subquotients of A are in the bootstrap class.

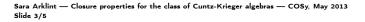
Observation

Consider a unital extension $I \hookrightarrow A \twoheadrightarrow B$. If A is a purely infinite Cuntz-Krieger algebra, then

- \bullet B is a purely infinite Cuntz-Krieger algebra,
- ❷ I is stably isomorphic to a purely infinite Cuntz-Krieger algebra,

 \mathfrak{S} $\mathsf{K}_0(B) \to \mathsf{K}_1(I)$ vanishes.

If 1–3 holds, then A looks like a purely infinite Cuntz-Krieger algebra.



Theorem (Restorff)

Let A and B be purely infinite Cuntz-Krieger algebras with $Prim(A) \cong Prim(B)$. Then $FK_{\mathcal{R}}(A) \cong FK_{\mathcal{R}}(B)$ implies $A \otimes \mathbb{K} \cong B \otimes \mathbb{K}$.

Theorem (Restorff)

Let A and B be purely infinite Cuntz-Krieger algebras with $Prim(A) \cong Prim(B)$. Then $FK_{\mathcal{R}}(A) \cong FK_{\mathcal{R}}(B)$ implies $A \otimes \mathbb{K} \cong B \otimes \mathbb{K}$.

Theorem (Restorff)

Let A and B be purely infinite Cuntz-Krieger algebras with $Prim(A) \cong Prim(B)$. Then $FK_{\mathcal{R}}(A) \cong FK_{\mathcal{R}}(B)$ implies $A \otimes \mathbb{K} \cong B \otimes \mathbb{K}$.

Example (Reduced filtered K-theory $FK_{\mathcal{R}}$)

For a C^* -algebra A with ideal lattice

Theorem (Restorff)

Let A and B be purely infinite Cuntz-Krieger algebras with $Prim(A) \cong Prim(B)$. Then $FK_{\mathcal{R}}(A) \cong FK_{\mathcal{R}}(B)$ implies $A \otimes \mathbb{K} \cong B \otimes \mathbb{K}$.

Example (Reduced filtered K-theory $FK_{\mathcal{R}}$)

For a C^* -algebra A with ideal lattice

$$J_{1} \bigvee_{I \atop 0}^{A} J_{2}, \text{ its } \mathsf{FK}_{\mathcal{R}}(A) \text{ consists of } \bigwedge_{K_{0}(J_{n}) \to K_{0}(J_{n})}^{K_{0}(J_{n})} K_{1}(I), \\ K_{0}(J_{n}/I) \qquad K_{1}(I), \\ n \in \{1, 2\}.$$

Theorem (A-Bentmann-Katsura)

Let A be a C^{*}-algebra that looks like a purely infinite Cuntz-Krieger algebra. Then there exists a purely infinite Cuntz-Krieger algebra B with $Prim(A) \cong Prim(B)$ and $FK_{\mathcal{R}}(A) \cong FK_{\mathcal{R}}(B)$.

Sara Arklint — Closure properties for the class of Cuntz-Krieger algebras — COSy, May 2013 Slide 4/5

Theorem (A-Bentmann-Katsura)

Let A be a C^{*}-algebra that look like a purely infinite Cuntz-Krieger algebra. Then there exists a purely infinite Cuntz-Krieger algebra B with $Prim(A) \cong Prim(B)$ and $FK_{\mathcal{R}}(A) \cong FK_{\mathcal{R}}(B)$.

Theorem (A-Bentmann-Katsura)

Let A be a C^{*}-algebra that look like a purely infinite Cuntz-Krieger algebra. Then there exists a purely infinite Cuntz-Krieger algebra B with $Prim(A) \cong Prim(B)$ and $FK_{\mathcal{R}}(A) \cong FK_{\mathcal{R}}(B)$.

Theorem (Kirchberg, Meyer-Nest, Bentmann-Köhler)

Let A and B be Kirchberg X-algebras with X an accordion space. Then $FK(A) \cong FK(B)$ implies $A \otimes \mathbb{K} \cong B \otimes \mathbb{K}$.

Theorem (A-Bentmann-Katsura)

Let A be a C^{*}-algebra that look like a purely infinite Cuntz-Krieger algebra. Then there exists a purely infinite Cuntz-Krieger algebra B with $Prim(A) \cong Prim(B)$ and $FK_{\mathcal{R}}(A) \cong FK_{\mathcal{R}}(B)$.

Theorem (Kirchberg, Meyer-Nest, Bentmann-Köhler)

Let A and B be Kirchberg X-algebras with X an accordion space. Then $FK(A) \cong FK(B)$ implies $A \otimes \mathbb{K} \cong B \otimes \mathbb{K}$.

Theorem (A-Bentmann-Katsura)

Let A be a C^{*}-algebra that look like a purely infinite Cuntz-Krieger algebra. Then there exists a purely infinite Cuntz-Krieger algebra B with $Prim(A) \cong Prim(B)$ and $FK_{\mathcal{R}}(A) \cong FK_{\mathcal{R}}(B)$.

Theorem (Kirchberg, Meyer-Nest, Bentmann-Köhler)

Let A and B be Kirchberg X-algebras with X an accordion space. Then $FK(A) \cong FK(B)$ implies $A \otimes \mathbb{K} \cong B \otimes \mathbb{K}$.

Theorem (A-Bentmann-Katsura)

Let A be a C^{*}-algebra that look like a purely infinite Cuntz-Krieger algebra. Then there exists a purely infinite Cuntz-Krieger algebra B with $Prim(A) \cong Prim(B)$ and $FK_{\mathcal{R}}(A) \cong FK_{\mathcal{R}}(B)$.

Theorem (Kirchberg, Meyer-Nest, Bentmann-Köhler)

Let A and B be Kirchberg X-algebras with X an accordion space. Then $FK(A) \cong FK(B)$ implies $A \otimes \mathbb{K} \cong B \otimes \mathbb{K}$.

Theorem (A-Bentmann-Katsura)

Let A and B be C^{*}-algebras that looks like purely infinite Cuntz-Krieger algebras and assume that Prim(A) and Prim(B) are homeomorphic accordion spaces. Then $FK_{\mathcal{R}}(A) \cong FK_{\mathcal{R}}(B)$ implies $FK(A) \cong FK(B)$.

Theorem (A-Bentmann-Katsura)

Let A be a C^{*}-algebra that look like a purely infinite Cuntz-Krieger algebra. Then there exists a purely infinite Cuntz-Krieger algebra B with $Prim(A) \cong Prim(B)$ and $FK_{\mathcal{R}}(A) \cong FK_{\mathcal{R}}(B)$.

Theorem (Kirchberg, Meyer-Nest, Bentmann-Köhler)

Let A and B be Kirchberg X-algebras with X an accordion space. Then $FK(A) \cong FK(B)$ implies $A \otimes \mathbb{K} \cong B \otimes \mathbb{K}$.

Theorem (A-Bentmann-Katsura)

Let A and B be C^{*}-algebras that looks like purely infinite Cuntz-Krieger algebras and assume that Prim(A) and Prim(B) are homeomorphic accordion spaces. Then $FK_{\mathcal{R}}(A) \cong FK_{\mathcal{R}}(B)$ implies $FK(A) \cong FK(B)$.

Corollary

Let A be a C^* -algebra with Prim(A) an accordion space. Then A is a purely infinite Cuntz-Krieger algebra if and only if it looks like one.

Sara Arklint — Closure properties for the class of Cuntz-Krieger algebras — COSy, May 2013 Slide 5/5

