▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Geometric classification of graph C^* -algebras

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

COSy, May 31st, 2013

2 Classification

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Graph algebras

Any countable graph $E = (E^0, E^1)$ defines a C^* -algebra $C^*(E)$ given as a universal C^* -algebra by **projections** $\{p_v : v \in E^0\}$ and **partial isometries** $\{s_e : e \in E^1\}$ subject to the *Cuntz-Krieger relations*:

$$p_v p_w = 0 \text{ when } v \neq w$$

②
$$(s_e s_e^*)(s_f s_f^*) = 0$$
 when $e \neq f$

$${f 0}$$
 $s_e^*s_e=p_{r(e)}$ and $s_es_e^*\leq p_{s(e)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Graph algebra need-to-know

There is a huge body of knowledge about graph algebras. Of prime importance here is

Observation

$$\gamma_z(p_v) = p_v \qquad \gamma_z(s_e) = zs_e$$

induces a gauge action $\mathbb{T} \mapsto \operatorname{Aut}(C^*(E))$

Theorem

Gauge invariant ideals are induced by **hereditary** and **saturated** sets of vertices V:

•
$$s(e) \in V \Longrightarrow r(e) \in V$$

•
$$r(s^{-1}(v)) \subseteq V \Longrightarrow [v \in V \text{ or } v \text{ is singular } (\circ)]$$

and when there are no breaking vertices, all arise this way.

The gauge simple case

Theorem

If a graph C^* -algebra has no non-trivial gauge invariant ideals, it is either

- an AF algebra;
- 2 a Kirchberg algebra; or
- $C(\mathbb{T}) \otimes \mathbb{K}(H)$ for some Hilbert space H.

It is easy to tell from the graph which case occurs. The first case occurs when the graph has no cycles; the second when one vertex supports several cycles.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

The unital case

Observation

$$C^*(E)$$
 is unital $\iff E_0$ is finite

In this case we get a finite presentation, e.g.

$$A_{E} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \infty & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad A_{E}^{\bullet} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad A_{E}^{\circ} = \begin{bmatrix} 0 & 0 \\ \infty & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
for
$$\circ \Longrightarrow \bullet \bullet \bullet \bullet \circ$$

Move (R)

Reduce a configuration with a transitional regular vertex, as

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition

$E \sim_{C^*} F$ when $C^*(E) \otimes \mathbb{K} \simeq C^*(F) \otimes \mathbb{K}$

Definition

 $E \sim_m F$ when there is a finite sequence of moves of type

(S), (R), (O), (I),

and their inverses, leading from E to F.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proposition

$E \sim_m F \Longrightarrow E \sim_{C^*} F$

Our goal will be to try to reverse this implication.

Observation

dim $C^*(E) < \infty$ precisely when E is a finite graph with no cycles

Let $\#_{sink}(E)$ denote the number of sinks in the graph *E*.

Theorem

Assume that E, F are both finite graphs with no cycles. The following are equivalent

$$\bullet E \sim_{C^*} F$$

②
$$E\sim_m F$$
 via moves (O) and (R)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Amplified graphs

Move (T)

Emit infinitely to any vertex reachable by a path starting with an edge with infinitely many parallels:

$$0 \Longrightarrow \bullet \longrightarrow \bullet \rightsquigarrow 0 \Longrightarrow \bullet \blacksquare \bullet$$

Lemma (E-Ruiz-Sørensen)

Move (T) is generated by moves (R), (I), and (O).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (E-Ruiz-Sørensen)

When E and F both have finitely many vertices and both have the property that if there is an edge between two vertices, there are infinitely many (i.e., they are **amplified**), then

$$E \sim_{C^*} F \Longrightarrow E \sim_m F$$

through move **(T)** only

Classification

Let E be a finite graph with no sinks or sources. Then

$$X_E = \{(e_n) \in (E^1)^{\mathbb{Z}} \mid r(e_n) = s(e_{n+1})\}$$

is a shift space; in fact an SFT.

We say that two shift spaces X and Y are *flow equivalent* and write $X \sim_{FE} Y$ when their suspension flows

$$\mathsf{SX} = \mathsf{X} \otimes \mathbb{R} / \langle (x,t) \sim (\sigma(x),t+1) \rangle$$

are homeomorphic in a way preserving the direction of the flow lines. The relevance of this notion comes from

Theorem (Parry-Sullivan)

When E, F are both finite graphs with no sinks or sources, then

$$\mathsf{X}_E \sim_{FE} \mathsf{X}_F \Longleftrightarrow E \sim_m F$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Theorem (Franks)

Let E and F be strongly connected finite graphs, not a single cycle. The following are equivalent

•
$$\mathbb{Z}^n/\operatorname{im}(I-A_E) \simeq \mathbb{Z}^m/\operatorname{im}(I-A_F)$$
 and $\det(I-A_E) = \det(I-A_F)$

$$2 X_E \sim_{FE} X_F$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Consider the two graphs E, F given by

We have

$$\mathbb{Z}/\operatorname{im}(I-A_{\textit{E}})=0=\mathbb{Z}^2/\operatorname{im}(I-A_{\textit{F}})$$

but

$$\det(I - \mathsf{A}_{\mathsf{E}}) = -1 \neq 1 = \det(I - \mathsf{A}_{\mathsf{F}}).$$

Theorem (Rørdam)

 $C^*(E) \otimes \mathbb{K} \simeq C^*(F) \otimes \mathbb{K}$

Hence $E \sim_{C^*} F$ but $E \not\sim_m F$.

Theorem (Rørdam, Cuntz)

Let E, F be strongly connected finite graphs, not a single cycle. When $E \sim_{C^*} F$, then $\mathbb{Z}^n/(I - A_E)\mathbb{Z}^n \simeq \mathbb{Z}^m/(I - A_F)\mathbb{Z}^m$. When $\mathbb{Z}^n/(I - A_E)\mathbb{Z}^n \simeq \mathbb{Z}^m/(I - A_F)\mathbb{Z}^m$, then $E \sim_M F$ through moves (**R**), (**I**), (**O**), and (**C**).

Definition

 $E \sim_M F$ when there is a finite sequence of moves of type

(S),(R),(O),(I),(C)

and their inverses, leading from E to F.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんぐ

Filtered K-theory

Definition

Let ${\mathfrak A}$ be a $C^*\mbox{-algebra having only finitely many ideals. The collection of all sequences$

$$\begin{array}{cccc}
\mathcal{K}_{0}(\mathfrak{J}/\mathfrak{I}) \longrightarrow \mathcal{K}_{0}(\mathfrak{K}/\mathfrak{I}) \longrightarrow \mathcal{K}_{0}(\mathfrak{K}/\mathfrak{I}) \\
\uparrow & & \downarrow \\
\mathcal{K}_{1}(\mathfrak{K}/\mathfrak{I}) \longleftarrow \mathcal{K}_{1}(\mathfrak{K}/\mathfrak{I}) \longleftarrow \mathcal{K}_{1}(\mathfrak{I}/\mathfrak{I})
\end{array}$$

with $\mathfrak{I} \triangleleft \mathfrak{J} \triangleleft \mathfrak{K} \triangleleft \mathfrak{A}$ gauge invariant ideals is called the *filtered K*-theory of \mathfrak{A} and denoted $FK(\mathfrak{A})$. Equipping all K_0 -groups with order we arrive at the *ordered*,*filtered K*-theory $FK^+(\mathfrak{A})$.

Question

Suppose C[X] is a family of C^* -algebras with real rank zero and primitive ideal space X, so that it is known that $(K_*(-), K_*(-)_+)$ is a complete invariant for all simple subquotients of $\mathfrak{A} \in C$. When can we conclude that $FK^+(-)$ is a complete invariant for the \mathfrak{A} 's themselves?

Theorem (Elliott, Kirchberg-Phillips)

When $C^*(E)$ and $C^*(F)$ are simple, then

 $\mathcal{K}_*(\mathcal{C}^*(E)) \simeq \mathcal{K}_*(\mathcal{C}^*(F)) \Longleftrightarrow \mathcal{C}^*(E) \otimes \mathbb{K} \simeq \mathcal{C}^*(F) \otimes \mathbb{K}$

Status quo

 $FK^+(-)$ is known to be a complete invariant for graph C^* -algebras over X when

- |X| = 2 [E-Tomforde]
- |X| = 3 and all K-groups are finitely generated [E-Restorff-Ruiz]

and in roughly 2/3 of the possible cases with |X| = 4 [Arklint-Bentmann-E-Katsura-Köhler-Restorff-Ruiz]. No counterexamples are known.

Theorem (Sørensen)

Let E and F be graphs so that $C^*(E)$ and $C^*(F)$ are unital and gauge simple. The following are equivalent

- **1** $K_*(C^*(E)) \simeq K_*(C^*(F))$
- $e E \sim_M F$
- $I C^* F$

Gauge filtered K-theory

Definition

Let (\mathfrak{A}, γ) be a C^* -algebra with a gauge action, having only finitely many gauge-invariant ideals. The collection of all sequences

$$\begin{array}{cccc}
\mathcal{K}_{0}(\mathfrak{J}/\mathfrak{I}) \longrightarrow \mathcal{K}_{0}(\mathfrak{K}/\mathfrak{I}) \longrightarrow \mathcal{K}_{0}(\mathfrak{K}/\mathfrak{I}) \\
\uparrow & & \downarrow \\
\mathcal{K}_{1}(\mathfrak{K}/\mathfrak{I}) \longleftarrow \mathcal{K}_{1}(\mathfrak{K}/\mathfrak{I}) \longleftarrow \mathcal{K}_{1}(\mathfrak{J}/\mathfrak{I})
\end{array}$$

with $\mathfrak{I} \triangleleft \mathfrak{J} \triangleleft \mathfrak{J} \triangleleft \mathfrak{K} \triangleleft \mathfrak{A}$ gauge invariant ideals is called the *gauge filtered K*-theory of \mathfrak{A} and denoted $FK^{\gamma}(\mathfrak{A})$. Equipping all K_0 -groups with order we arrive at the *ordered*, *gauge filtered K*-theory $FK^{\gamma,+}(\mathfrak{A})$.

Definition

The **reduced** ordered, gauge filtered *K*-theory $FK^{\gamma,+,red}(\mathfrak{A})$ consists of

$$\begin{array}{c} \mathcal{K}_{0}(\mathfrak{J}) \longrightarrow \mathcal{K}_{0}(\mathfrak{K}) \longrightarrow \mathcal{K}_{0}(\mathfrak{K}/\mathfrak{J}) \\ \uparrow \\ \mathcal{K}_{1}(\mathfrak{K}/\mathfrak{J}) \end{array}$$

with $\mathfrak J$ a maximal gauge invariant ideal inside a gauge prime ideal $\mathfrak K,$ along with

$$K_0(\mathfrak{J}_n) o K_0(\mathfrak{I})$$

whenever $\mathfrak{I}, \mathfrak{J}_n$ are gauge prime with $\mathfrak{I} = \cup \mathfrak{J}_n$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The signature of $\mathfrak A$ with finitely many gauge invariant ideals is a map

 $\tau: \mathsf{Prim}^{\gamma}(\mathfrak{A}) \to \mathbb{Z}$

given by

$$\tau(\mathfrak{I}) = \begin{cases} -2 & \mathfrak{I}/\mathfrak{I}_0 \text{ is not simple} \\ -1 & \mathfrak{I}/\mathfrak{I}_0 \text{ is simple and } AF \\ \operatorname{rank} K_0(\mathfrak{I}/\mathfrak{I}_0) - \operatorname{rank} K_1(\mathfrak{I}/\mathfrak{I}_0) & \operatorname{otherwise} \end{cases}$$

when \mathfrak{I}_0 is the maximal gauge invariant proper ideal of \mathfrak{I} .

Theorem (E-Ruiz-Sørensen)

Let E and F be finite graphs. Then the following are equivalent (1) $E \sim_M F$ (2) $E \sim_{C^*} F$ (3) $FK^{\gamma,+}(C^*(E)) \simeq FK^{\gamma,+}(C^*(F))$ (4) $\tau_E = \tau_F$ and $FK^{\gamma,+,red}(C^*(E)) \simeq FK^{\gamma,+,red}(C^*(F))$

Restorff proved (2) \iff (3) \iff (4) for *E*, *F* with no sinks and sources, and every vertex reaching a vertex supporting two cycles (condition (II)).