Nonself-adjoint 2-graph Algebras

Adam Fuller (joint work with Dilian Yang)

Department of Mathematics, University of Nebraska – Lincoln

COSy, Fields Institute, Toronto, May 2013

Let S_1, \ldots, S_n be isometries on H with pairwise orthogonal ranges, i.e.

$$
S_i^* S_j = \delta_{i,j} I.
$$

Then $S = [S_1, \ldots, S_n]$ is a row-isometry, i.e. is an isometric map from $\mathcal{H}^{(n)}$ to \mathcal{H} .

Conversely an isometric map from $\mathcal{H}^{(n)}$ is determined by n isometries on H with pairwise orthogonal ranges. We say a row-isometry is of Cuntz-type if

$$
\sum_{i=1}^n S_i S_i^* = I.
$$

We will be interested in "commuting" row-isometries and the algebras they generate.

- Let $S = [S_1, \ldots, S_n]$ be a Cuntz-type row-isometry. Then
	- **1** there is only one possible C^* -algebra (Cuntz),
	- **2** there is only one possible unital norm-closed algebra (Popescu),
	- **3** the weak operator closed unital nonself-adjoint algebras are determined by the structure of the row-isometry (Davidson-Katsoulis-Pitts; Kennedy).

Representations of single vertex 2-graphs

Let $S = [S_1, \ldots, S_m]$ and $T = [T_1, \ldots, T_n]$ be row-isometries on H and let θ be a permuation on $m \times n$ elements. Then S and T are θ -commuting row-isometries if

$$
S_i T_j = T_{j'} S_{i'}
$$
 when $\theta(i,j) = (i',j').$

Representations of single vertex 2-graphs

Let $S = [S_1, \ldots, S_m]$ and $T = [T_1, \ldots, T_n]$ be row-isometries on H and let θ be a permuation on $m \times n$ elements. Then S and T are θ -commuting row-isometries if

$$
S_i T_j = T_{j'} S_{i'}
$$
 when $\theta(i,j) = (i',j').$

This is precisely saying that (S, T) is an isometric representation of the 2-graph

Let $\mathcal{H}_n = \ell^2(\mathbb{F}_n^+)$ with orthonormal basis $\{\xi_w: \; w \in \mathbb{F}_n^+\}$. Define the row-isometry $L = [L_1, \ldots, L_n]$ by

$$
L_i \xi_w = \xi_{iw}.
$$

Let $A_n = \overline{\mathsf{alg}}^{\|\cdot\|} \{1, L_1, \ldots, L_n\}$. We call this the noncommutative disc algebra. (Note when $n = 1$, $A_1 = A(\mathbb{D})$).

Let $\mathfrak{L}_n = \overline{\mathsf{alg}^{\text{WOT}}}\{1, L_1, \ldots, L_n\}$. We call this the noncommutative analytic Toeplitz algebra. (Note when $n = 1$, $\mathfrak{L}_1 = H^{\infty}$).

Let θ be a permutation on $m \times n$ and let \mathbb{F}_θ^+ $_{\theta}^{+}$ be the unital semigroup

$$
\mathbb{F}_{\theta}^+ = \langle e_1, \ldots, e_m, f_1, \ldots, f_n : e_i f_j = f_{j'} e_{i'} \text{ when } \theta(i,j) = (i',j') \rangle.
$$

Let $\mathcal{H}_\theta = \ell^2(\mathbb{F}_\theta^2)$ with orthonormal basis $\{\xi_w: \; w \in \mathbb{F}_\theta^+ \}$ $\big\{\theta}^+\big\}$. Define θ -commuting row-isometries $E = [E_1, \ldots, E_m]$ and $F = [F_1, \ldots, F_n]$ by

$$
E_i \xi_w = \xi_{e_i w} \text{ and } F_j \xi_w = \xi_{f_j w}.
$$

Let $A_{\theta} = \overline{\mathsf{alg}}^{\|\cdot\|} \{1, E_1, \ldots, E_m, F_1, \ldots, F_n\}$. We call this the higher-rank noncommutative disc algebra. Let $\mathfrak{L}_{\theta} = \overline{\mathsf{alg}}^{\text{WOT}}\{1, E_1, \ldots, E_m, F_1, \ldots, F_n\}$. We call this the higher-rank noncommutative analytic Toeplitz algebra

Nonself-adjoint 2-graph algebras

We will be primarily interested in θ -commuting row-isometries (S, T) where both S and T are Cuntz-type. These are precisely the Cuntz-Krieger families for the 2-graph \mathbb{F}_θ^+ $\overset{+}{\theta}$.

Definition

Let (S, T) be a pair of θ -commuting Cuntz-type row-isometries. We call the algebra

$$
\mathcal{S} = \overline{\mathsf{alg}}^{\mathrm{WOT}} \{ I, S_1, \ldots, S_m, T_1, \ldots, T_n \}
$$

a nonself-adjoint 2-graph algebra.

Definition

Let S be a row-isometry. We call the algebra

$$
\mathcal{S} = \overline{\mathsf{alg}}^{\text{WOT}} \{1, S_1, \dots, S_m\}
$$

a free semigroup algebra.

Theorem (Davidson, Katsoulis & Pitts (2001))

Let S be a row-isometry on H . Let S be the unital weakly closed algebra generated by S and let M be the von-Neumann algebra generated by S.

Then there is a projection P in S so that

$$
\bullet \ \mathsf{P}^\perp \mathcal{H} \ \text{is an invariant subspace for} \ \mathcal{S},
$$

$$
S = MP + P^{\perp}SP^{\perp},
$$

$$
\bullet \ \mathsf{P}^{\perp} \mathsf{SP}^{\perp} \ \text{is 'like' } \ \mathfrak{L}_n.
$$

Theorem (F. & Yang (2013))

Let (S, T) be Cuntz-type θ -commuting row-isometries on H. Let S be the nonself-adjoint 2-graph generated by S and T and let $\mathcal M$ be the von-Neumann algebra generated by S and T. Then there is a projection P in S so that \textbf{D} $\mathsf{P}^{\perp}\mathcal{H}$ is an invariant subspace for $\mathcal{S},$

 $3 S = MP + P^{\perp}SP^{\perp}.$

The Structure projection

Let (S, \mathcal{T}) be a Cuntz-type representation of \mathbb{F}_{θ}^+ $_\theta^+$ and let ${\cal S}$ be the nonself-adjoint 2-graph algebra generated by (S, T) . Note that $[S_1T_1, S_1T_2, \ldots, S_mT_n]$ is a row-isometry.

The Structure projection

Let (S, \mathcal{T}) be a Cuntz-type representation of \mathbb{F}_{θ}^+ $_\theta^+$ and let ${\cal S}$ be the nonself-adjoint 2-graph algebra generated by (S, T) . Note that $[S_1T_1, S_1T_2, \ldots, S_mT_n]$ is a row-isometry. As is $[S_1T_1T_1, S_1T_1T_2, S_1T_1T_3, \ldots, S_mT_nT_n]$.

The Structure projection

Let (S, \mathcal{T}) be a Cuntz-type representation of \mathbb{F}_{θ}^+ $_\theta^+$ and let ${\cal S}$ be the nonself-adjoint 2-graph algebra generated by (S, T) . Note that $[S_1T_1, S_1T_2, \ldots, S_mT_n]$ is a row-isometry. As is $[S_1T_1T_1, S_1T_1T_2, S_1T_1T_3, \ldots, S_mT_nT_n]$. For any $k, l > 0$ we have a row-isometry

$$
[ST]_{k,l} := [S_w T_u : |w| = k, |u| = l].
$$

Let (S, \mathcal{T}) be a Cuntz-type representation of \mathbb{F}_{θ}^+ $_\theta^+$ and let ${\cal S}$ be the nonself-adjoint 2-graph algebra generated by (S, T) . Note that $[S_1T_1, S_1T_2, \ldots, S_mT_n]$ is a row-isometry. As is $[S_1T_1T_1, S_1T_1T_2, S_1T_1T_3, \ldots, S_mT_nT_n]$. For any $k, l > 0$ we have a row-isometry

$$
[ST]_{k,l} := [S_w T_u : |w| = k, |u| = l].
$$

Each of these row-isometries generates a free semigroup algebra in side $\mathcal{S}.$ Let $\mathcal{S}_{k,l}$ be the free semigroup algebra generated by $[\mathcal{S} \mathcal{T}]_{k,l}.$ By Davidson-Katsoulis-Pitts each $S_{k,l}$ has a structure projection $P_{k,l}$. Then

$$
P=\bigwedge_{k,l>0}P_{k,l}.
$$

Question

In our structure theorem above, there was no description of what the corner $P^{\perp}SP^{\perp}$ was like. Why not?

Answer

Our setting is too general.

Example

Let S be any Cuntz-type row-isometry and let $T = S$. Then (S, T) are θ -commuting row-isometries (for some θ). So the nonself-adjoint 2-graph generated by (S, T) is just the free semigroup algebra generated by S.

The above example is a representation of a periodic 2-graph.

Periodicity of 2-graphs is a technical condition about the existence of repetition in infinite red-blue paths. If (S, T) is a Cuntz-type representation of an aperiodic 2-graph then there will necessarily be a strong relation between S and T making them behave more like a 1-graph than a 2-graph.

Lemma (Davidson & Yang (2009))

Let (S, T) be θ -commuting Cuntz-type row-isometries where \mathbb{F}_θ^+ $^+_\theta$ is a periodic 2-graph. Then there are a, $b>0$ such that $m^a=n^b$ such that

$$
[S_v : |v| = a] = [T_u W : |u| = b],
$$

where W is a unitary in the center of the C^* -algebra generated by S and T.

Theorem (F. & Yang (2013))

Let (S, T) be Cuntz-type θ -commuting row-isometries on H . Let S be the nonself-adjoint 2-graph generated by S and T and let M be the von-Neumann algebra generated by S and T Then there is a projection P in S so that

$$
\bullet \ \mathsf{P}^\perp \mathcal{H} \ \text{is an invariant subspace for} \ \mathcal{S},
$$

$$
\bullet \ \mathcal{S} = \mathcal{M}P + P^{\perp}\mathcal{S}P^{\perp}.
$$

Further, if θ defines an aperodic 2-graph then there is a projection Q such that $Q \geq P^{\perp}$ and

- \bigcirc QH is an invariant subspace for S,
- \bullet QSQ is "like" \mathfrak{L}_{θ} .

Norm-closed algebras

Theorem (Popescu)

Let
$$
S = [S_1, \ldots, S_n]
$$
 be any row-isometry. Then

$$
\mathcal{A} = \overline{alg}^{\|\cdot\|} \{I, S_1, S_2, \ldots, S_n\}
$$

is completely isometrically isomorphic to the noncommutative disc algebra A_n .

This does not hold for isometric representations of 2-graphs. Not even for aperiodic 2-graphs:

Example

Let $L = [L_1, \ldots, L_n]$ be the left regular representation of \mathbb{F}_n^+ and let $R = [R_1, \ldots, R_n]$ be the right regular representation. Then $L_iR_j = R_jL_i$. It can be shown that $\overline{\mathsf{alg}}^{\|\cdot\|}\{I,\, L_i,\, R_j\}$ is not completely isometrically isomorphic to \mathcal{A}_{id} .

However, in our setting something similar to Popescu's result does hold:

Theorem (F. & Yang 2013)

Let (S, T) be an isometric representation of an aperiodic 2-graph \mathbb{F}_q^+ $_{\theta}^{+}$ on a Hilbert space $\mathcal{H}.$ Let $\mathcal{A} = \overline{\mathsf{alg}}^{\|\cdot\|} \{I, S_1, \ldots, S_m, T_1, \ldots, T_n\}.$ Suppose there is a Cuntz-type representation (S', T') of \mathbb{F}_θ^+ $_\theta^+$ on a Hilbert space K containing H such that (S, T) is the restriction of (S', T') , i.e. each $S_i = S'_i|_{\mathcal{H}}$ and $T_j = T'_j|_{\mathcal{H}}$. Then A is completely isometrically isomorphic to A_{θ} .