A Krein-Milman type theorem for C*-algebras

Cristian Ivanescu

June 3, 2013

Extreme points for the set of positive operators

A B K A B K

 \bullet setting: locally convex top. space V

回 と く ヨ と く ヨ と

- setting: locally convex top. space V
- $\emptyset \neq K \subseteq V$ and K is both convex and compact

個 と く ヨ と く ヨ と …

- setting: locally convex top. space V
- $\emptyset \neq K \subseteq V$ and K is both convex and compact
- $K = \bar{co}(\text{ext. points})$

伺下 イヨト イヨト

- setting: locally convex top. space V
- $\emptyset \neq K \subseteq V$ and K is both convex and compact
- $K = \bar{co}(\text{ext. points})$
- a point $\{x\} \in K$ is an ext. point means

(4) (3) (4) (3) (4)

- setting: locally convex top. space V
- $\emptyset \neq K \subseteq V$ and K is both convex and compact
- $K = \bar{co}(\text{ext. points})$
- a point $\{x\} \in K$ is an ext. point means
- whenever $y,z\in \mathcal{K},\lambda\in (0,1)$ and $\lambda y+(1-\lambda)z=x$ then

- setting: locally convex top. space V
- $\emptyset \neq K \subseteq V$ and K is both convex and compact
- $K = \bar{co}(\text{ext. points})$
- a point $\{x\} \in K$ is an ext. point means
- whenever $y,z\in \mathcal{K},\lambda\in(0,1)$ and $\lambda y+(1-\lambda)z=x$ then
- y = z = x

・ 同 ト ・ ヨ ト ・ ヨ ト

- setting: locally convex top. space V
- $\emptyset \neq K \subseteq V$ and K is both convex and compact
- $K = \bar{co}(\text{ext. points})$
- a point $\{x\} \in K$ is an ext. point means
- whenever $y,z\in \mathcal{K},\lambda\in(0,1)$ and $\lambda y+(1-\lambda)z=x$ then
- y = z = x
- K convex and compact implies there exists at least one ext. point (Zorn's lemma)

高 とう ヨン うまと

• A and B partially ordered vector spaces

★ E > < E >

A ■

- A and B partially ordered vector spaces
- S = the set of all **positive linear maps** order unit preserving

E + 4 E +

- A and B partially ordered vector spaces
- S = the set of all **positive linear maps** order unit preserving
- study the extreme points of S and the closure of the convex hull of these extreme points

(E) < E)</p>

• a C*-algebra is an example of a partially ordered vector space

(4) E (4) E (4)

A ■

- a C*-algebra is an example of a partially ordered vector space
- a linear map $\varphi : A \to B$ is positive if $\varphi(a)$ is positive whenever a is positive

伺 とう ヨン うちょう

- a C*-algebra is an example of a partially ordered vector space
- a linear map $\varphi: A \to B$ is positive if $\varphi(a)$ is positive whenever a is positive
- the set of all positive maps that map a fixed positive element into another fixed positive element is convex

(4) (5) (4) (5) (4)

- a C*-algebra is an example of a partially ordered vector space
- a linear map $\varphi: A \to B$ is positive if $\varphi(a)$ is positive whenever a is positive
- the set of all positive maps that map a fixed positive element into another fixed positive element is convex
- an extreme point of such a set is a *-homomorphisms (E. Stormer 1963)

伺 と く き と く き と

•
$$A = C(X)$$
 and $B = \mathbb{C}$

イロン イヨン イヨン イヨン

- A = C(X) and $B = \mathbb{C}$
- S = all unital positive linear functional = state space

回 と く ヨ と く ヨ と

- A = C(X) and $B = \mathbb{C}$
- S = all unital positive linear functional = state space
- S = the set of Borel probability measures on X

白 と く ヨ と く ヨ と

- A = C(X) and $B = \mathbb{C}$
- S = all unital positive linear functional = state space
- S = the set of Borel probability measures on X
- extreme states = pure states → Dirac measures

- A = C(X) and $B = \mathbb{C}$
- S = all unital positive linear functional = state space
- S = the set of Borel probability measures on X
- extreme states = pure states → Dirac measures
- $\psi: \mathcal{C}(X)
 ightarrow \mathbb{C}, \psi \geq 0, \psi(1) = 1$ extreme state then

- A = C(X) and $B = \mathbb{C}$
- S = all unital positive linear functional = state space
- S = the set of Borel probability measures on X
- extreme states = pure states → Dirac measures
- $\psi: \mathcal{C}(X)
 ightarrow \mathbb{C}, \psi \geq 0, \psi(1) = 1$ extreme state then

•
$$\psi(f) = \int f d\mu = \int f d\delta_{t_0} = f(t_0)$$

- A = C(X) and $B = \mathbb{C}$
- S = all unital positive linear functional = state space
- S = the set of Borel probability measures on X
- extreme states = pure states → Dirac measures
- $\psi: \mathcal{C}(X)
 ightarrow \mathbb{C}, \psi \geq 0, \psi(1) = 1$ extreme state then

•
$$\psi(f) = \int f d\mu = \int f d\delta_{t_0} = f(t_0)$$

• $S(C(X)) = \overline{co}(P(C(X)))$

・ 同 ト ・ ヨ ト ・ ヨ ト

• (K. Thomsen) **Thm.** Assume X is path connected. Then $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps

同下 イヨト イヨト

- (K. Thomsen) **Thm.** Assume X is path connected. Then $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps
- If X is totally disconnected then statement is false

- (K. Thomsen) **Thm.** Assume X is path connected. Then $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps
- If X is totally disconnected then statement is false
- Any *-hom. $\psi : C(X) \to C[0,1]$ has the form $\psi(f) = f \circ \lambda$ $\lambda : [0,1] \to X$ cont and hence constant

伺 と く き と く き と

- (K. Thomsen) **Thm.** Assume X is path connected. Then $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps
- If X is totally disconnected then statement is false
- Any *-hom. $\psi : C(X) \to C[0,1]$ has the form $\psi(f) = f \circ \lambda$ $\lambda : [0,1] \to X$ cont and hence constant
- $\phi(f) = 1/2f(x_1)g + 1/2f(x_2)(1-g), x_1 \neq x_2 \in X$ is unital positive and cannot be approximated

・ 同 ト ・ ヨ ト ・ ヨ ト …

- (K. Thomsen) **Thm.** Assume X is path connected. Then $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps
- If X is totally disconnected then statement is false
- Any *-hom. $\psi : C(X) \to C[0,1]$ has the form $\psi(f) = f \circ \lambda$ $\lambda : [0,1] \to X$ cont and hence constant
- $\phi(f) = 1/2f(x_1)g + 1/2f(x_2)(1-g), x_1 \neq x_2 \in X$ is unital positive and cannot be approximated
- Assume Y is totally disconnected. Then

 $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps

- (K. Thomsen) **Thm.** Assume X is path connected. Then $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps
- If X is totally disconnected then statement is false
- Any *-hom. $\psi : C(X) \to C[0,1]$ has the form $\psi(f) = f \circ \lambda$ $\lambda : [0,1] \to X$ cont and hence constant
- $\phi(f) = 1/2f(x_1)g + 1/2f(x_2)(1-g), x_1 \neq x_2 \in X$ is unital positive and cannot be approximated
- Assume Y is totally disconnected. Then

 $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps

• S = all unital positive linear maps $A \rightarrow B$ and B von Neumann algebra then

- (K. Thomsen) **Thm.** Assume X is path connected. Then $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps
- If X is totally disconnected then statement is false
- Any *-hom. $\psi : C(X) \to C[0,1]$ has the form $\psi(f) = f \circ \lambda$ $\lambda : [0,1] \to X$ cont and hence constant
- $\phi(f) = 1/2f(x_1)g + 1/2f(x_2)(1-g), x_1 \neq x_2 \in X$ is unital positive and cannot be approximated
- Assume Y is totally disconnected. Then

 $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps

- S = all unital positive linear maps $A \rightarrow B$ and B von Neumann algebra then
- $S = \bar{co}(\text{extreme points})$

• Thomsen's result may allow an arbitrarily large number of *-hom. in the approximation

(1日) (日) (日)

Э

- Thomsen's result may allow an arbitrarily large number of *-hom. in the approximation
- L. Li's result is specifying a number N of *-hom. that depends only on the initial error

・回 ・ ・ ヨ ・ ・ ヨ ・ …

- Thomsen's result may allow an arbitrarily large number of *-hom. in the approximation
- L. Li's result is specifying a number N of *-hom. that depends only on the initial error
- Let X be path connected compact metrizable.
 For any finite set F ⊆ C(X) and ε > 0, there is N > 0 such that:

伺い イヨト イヨト

- Thomsen's result may allow an arbitrarily large number of *-hom. in the approximation
- L. Li's result is specifying a number N of *-hom. that depends only on the initial error
- Let X be path connected compact metrizable.
 For any finite set F ⊆ C(X) and ε > 0, there is N > 0 such that:
- for any unital positive map ξ : C(X) → C(Y), Y compact metrizable

・ 同 ト ・ ヨ ト ・ ヨ ト

- Thomsen's result may allow an arbitrarily large number of *-hom. in the approximation
- L. Li's result is specifying a number N of *-hom. that depends only on the initial error
- Let X be path connected compact metrizable.
 For any finite set F ⊆ C(X) and ε > 0, there is N > 0 such that:
- for any unital positive map ξ : C(X) → C(Y), Y compact metrizable
- there are N homomorphisms (φ_i)^N_{i=1} whose average approximates ξ

(四) (日) (日)

- Thomsen's result may allow an arbitrarily large number of *-hom. in the approximation
- L. Li's result is specifying a number N of *-hom. that depends only on the initial error
- Let X be path connected compact metrizable.
 For any finite set F ⊆ C(X) and ε > 0, there is N > 0 such that:
- for any unital positive map ξ : C(X) → C(Y), Y compact metrizable
- there are N homomorphisms (φ_i)^N_{i=1} whose average approximates ξ
- $||\xi(f) \frac{1}{N} \sum \phi_i(f)|| < \epsilon$ for all $f \in F$.

(四) (日) (日)

• $C[0,1]_a = \{ f \in C[0,1], f(0) = \frac{a}{a+1}f(1) \}, a \in \mathbb{N}$

★@> ★ E> ★ E> = E

- $C[0,1]_a = \{ f \in C[0,1], f(0) = \frac{a}{a+1}f(1) \}, a \in \mathbb{N}$
- $C[0,1]_a$ is a subspace of C[0,1] of codimension 1

伺下 イヨト イヨト

2

- $C[0,1]_a = \{f \in C[0,1], f(0) = \frac{a}{a+1}f(1)\}, a \in \mathbb{N}$
- $C[0,1]_a$ is a subspace of C[0,1] of codimension 1

•
$$C[0,1]_a \oplus \mathbb{R} = C[0,1]$$

伺下 イヨト イヨト

2

- $C[0,1]_a = \{f \in C[0,1], f(0) = \frac{a}{a+1}f(1)\}, a \in \mathbb{N}$
- $C[0,1]_a$ is a subspace of C[0,1] of codimension 1

•
$$C[0,1]_a \oplus \mathbb{R} = C[0,1]$$

ullet any positive map ψ : $C[0,1]_{a} \rightarrow C[0,1]_{a}$ extends to

・ 同 ト ・ ヨ ト ・ ヨ ト …

- $C[0,1]_a = \{f \in C[0,1], f(0) = \frac{a}{a+1}f(1)\}, a \in \mathbb{N}$
- $C[0,1]_a$ is a subspace of C[0,1] of codimension 1

•
$$C[0,1]_a \oplus \mathbb{R} = C[0,1]$$

- any positive map $\psi: C[0,1]_a
 ightarrow C[0,1]_a$ extends to
- a unital map $\psi: C[0,1] \rightarrow C[0,1]$

- 本部 ト イヨ ト - - ヨ

- $C[0,1]_a = \{ f \in C[0,1], f(0) = \frac{a}{a+1}f(1) \}, a \in \mathbb{N}$
- $C[0,1]_a$ is a subspace of C[0,1] of codimension 1

•
$$C[0,1]_a \oplus \mathbb{R} = C[0,1]$$

- any positive map $\psi: C[0,1]_a \to C[0,1]_a$ extends to
- a unital map $\psi: C[0,1] \rightarrow C[0,1]$
- note 1(x) ≡ 1 ∉ C[0,1]_a and ψ(1(x)) = 1(x)
 C[0,1]_a is not an algebra but some features can still be used.

- 本部 ト イヨ ト - - ヨ

• Thomsen-Li gives N *-homomorphisms $(\phi)_1^N$ and each ϕ_i

白 ト イヨト イヨト

æ

• Thomsen-Li gives N *-homomorphisms $(\phi)_1^N$ and each ϕ_i

•
$$\phi_i(f) = f \circ \lambda_i = f(\lambda_i)$$

白 ト イヨト イヨト

æ

• Thomsen-Li gives N *-homomorphisms $(\phi)_1^N$ and each ϕ_i

•
$$\phi_i(f) = f \circ \lambda_i = f(\lambda_i)$$

• $\lambda_i: [0,1] \rightarrow [0,1]$

2

A ₽

• Thomsen-Li gives N *-homomorphisms $(\phi)_1^N$ and each ϕ_i

•
$$\phi_i(f) = f \circ \lambda_i = f(\lambda_i)$$

• $\lambda_i : [0, 1] \rightarrow [0, 1]$
• $||\frac{\sum f \circ \lambda_i(0)}{N} - \frac{a}{a+1} \frac{\sum f \circ \lambda_i(1)}{N}|| \le \epsilon (1 + \frac{a}{a+1})$

白 ト イヨト イヨト

æ

• Thomsen-Li gives N *-homomorphisms $(\phi)_1^N$ and each ϕ_i

•
$$\phi_i(f) = f \circ \lambda_i = f(\lambda_i)$$

• $\lambda_i : [0, 1] \rightarrow [0, 1]$
• $||\frac{\sum f \circ \lambda_i(0)}{N} - \frac{a}{a+1} \frac{\sum f \circ \lambda_i(1)}{N}|| \le \epsilon (1 + \frac{a}{a+1})$
• the map $f \longrightarrow \frac{\sum f \circ \overline{\lambda_i}}{N}$

takes finitely many F from $C[0,1]_a$ into $C[0,1]_a$.

伺 と く き と く き と

2

• Thomsen-Li gives N *-homomorphisms $(\phi)_1^N$ and each ϕ_i

•
$$\phi_i(f) = f \circ \lambda_i = f(\lambda_i)$$

• $\lambda_i : [0, 1] \rightarrow [0, 1]$
• $||\frac{\sum f \circ \lambda_i(0)}{N} - \frac{a}{a+1} \frac{\sum f \circ \lambda_i(1)}{N}|| \le \epsilon (1 + \frac{a}{a+1})$

- the map $f \longrightarrow \frac{\sum f \circ \lambda_i}{N}$ takes finitely many F from $C[0, 1]_a$ into $C[0, 1]_a$.
- **Thm.** A positive map of norm one between $C[0,1]_a$ and $C[0,1]_b$, 0 < a < b, can be approximated on a finite set by an average of homomorphisms.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Thomsen-Li gives N *-homomorphisms $(\phi)_1^N$ and each ϕ_i

•
$$\phi_i(f) = f \circ \lambda_i = f(\lambda_i)$$

• $\lambda_i : [0, 1] \rightarrow [0, 1]$
• $||\frac{\sum f \circ \lambda_i(0)}{N} - \frac{a}{a+1} \frac{\sum f \circ \lambda_i(1)}{N}|| \le \epsilon (1 + \frac{a}{a+1})$

- the map $f \longrightarrow \frac{\sum f \circ \lambda_i}{N}$ takes finitely many F from $C[0,1]_a$ into $C[0,1]_a$.
- **Thm.** A positive map of norm one between $C[0,1]_a$ and $C[0,1]_b$, 0 < a < b, can be approximated on a finite set by an average of homomorphisms.
- Thank You!

・ 同 ト ・ ヨ ト ・ ヨ ト