A Krein-Milman type theorem for C*-algebras

Cristian Ivanescu

June 3, 2013

Extreme points for the set of positive operators

 \leftarrow \Box

 \equiv \rightarrow

 \bullet setting: locally convex top. space V

 \leftarrow \Box

重

IN ∢ 重 ≯

- \bullet setting: locally convex top. space V
- \bullet $\emptyset \neq K \subseteq V$ and K is both convex and compact

 $2Q$

Barbara

- \bullet setting: locally convex top. space V
- \bullet $\emptyset \neq K \subseteq V$ and K is both convex and compact
- $K = \bar{co}(\text{ext. points})$

 $2Q$

 \equiv \rightarrow 4 三 日

- \bullet setting: locally convex top. space V
- \bullet $\emptyset \neq K \subseteq V$ and K is both convex and compact
- $K = \bar{co}(\text{ext. points})$
- a point $\{x\} \in K$ is an ext. point means

つくい

- \bullet setting: locally convex top. space V
- $\bullet \emptyset \neq K \subseteq V$ and K is both convex and compact
- $K = \bar{co}(\text{ext. points})$
- a point $\{x\} \in K$ is an ext. point means
- whenever $y, z \in K, \lambda \in (0,1)$ and $\lambda y + (1 \lambda)z = x$ then

へのへ

- \bullet setting: locally convex top. space V
- $\bullet \emptyset \neq K \subseteq V$ and K is both convex and compact
- $K = \bar{co}(\text{ext. points})$
- a point $\{x\} \in K$ is an ext. point means
- whenever $y, z \in K, \lambda \in (0,1)$ and $\lambda y + (1 \lambda)z = x$ then
- $y = z = x$

医骨盆 医骨盆

つくい

- \bullet setting: locally convex top. space V
- $\bullet \emptyset \neq K \subseteq V$ and K is both convex and compact
- $K = \bar{co}(\text{ext. points})$
- a point $\{x\} \in K$ is an ext. point means
- whenever $y, z \in K, \lambda \in (0,1)$ and $\lambda y + (1 \lambda)z = x$ then
- $\bullet \quad v = z = x$
- \bullet K convex and compact implies there exists at least one ext. point (Zorn's lemma)

医骨盆 医骨盆

つくい

• A and B partially ordered vector spaces

 \leftarrow \Box

A

∢ 重→

 \sim

 \equiv

 299

- A and B partially ordered vector spaces
- \bullet S = the set of all **positive linear maps** order unit preserving

 $2Q$

扂

- \bullet A and B partially ordered vector spaces
- \bullet S = the set of all **positive linear maps** order unit preserving
- study the extreme points of S and the closure of the convex hull of these extreme points

• a C*-algebra is an example of a partially ordered vector space

 \leftarrow \Box

 $2Q$

唾

4 三 日

- a C*-algebra is an example of a partially ordered vector space
- a linear map $\varphi : A \to B$ is positive if $\varphi(a)$ is positive whenever a is positive

 $2Q$

Barbara

- \bullet a C^* -algebra is an example of a partially ordered vector space
- a linear map $\varphi : A \to B$ is positive if $\varphi(a)$ is positive whenever a is positive
- **•** the set of all positive maps that map a fixed positive element into another fixed positive element is convex

つくい

- \bullet a C^* -algebra is an example of a partially ordered vector space
- a linear map $\varphi : A \to B$ is positive if $\varphi(a)$ is positive whenever a is positive
- **•** the set of all positive maps that map a fixed positive element into another fixed positive element is convex
- \bullet an extreme point of such a set is a *-homomorphisms (E. Stormer 1963)

医骨盆 医骨盆

つくい

•
$$
A = C(X)
$$
 and $B = \mathbb{C}$

Cristian Ivanescu [A Krein-Milman type theorem for C*-algebras](#page-0-0)

 \leftarrow \Box

 \overline{A} \overline{B} \rightarrow \overline{A} \overline{B} \rightarrow \overline{A} \overline{B} \rightarrow

目

 299

- \bullet $A = C(X)$ and $B = \mathbb{C}$
- $S =$ all unital positive linear functional $S =$ state space

 \leftarrow \Box

重き マキャ

 $2Q$

扂

- \bullet $A = C(X)$ and $B = \mathbb{C}$
- \bullet $S =$ all unital positive linear functional $=$ state space
- $S =$ the set of Borel probability measures on X

 $2Q$

 \equiv \rightarrow

- \bullet $A = C(X)$ and $B = \mathbb{C}$
- \bullet $S =$ all unital positive linear functional $=$ state space
- \bullet $S =$ the set of Borel probability measures on X
- extreme states $=$ pure states \longrightarrow Dirac measures

- \bullet $A = C(X)$ and $B = \mathbb{C}$
- \bullet $S =$ all unital positive linear functional $=$ state space
- \bullet $S =$ the set of Borel probability measures on X
- extreme states $=$ pure states \longrightarrow Dirac measures
- $\bullet \psi : C(X) \to \mathbb{C}, \psi \geq 0, \psi(1) = 1$ extreme state then

つへへ

- \bullet $A = C(X)$ and $B = \mathbb{C}$
- \bullet $S =$ all unital positive linear functional $=$ state space
- \bullet $S =$ the set of Borel probability measures on X
- extreme states $=$ pure states \longrightarrow Dirac measures
- $\bullet \psi : C(X) \to \mathbb{C}, \psi \geq 0, \psi(1) = 1$ extreme state then

$$
\bullet \ \psi(f) = \int f d\mu = \int f d\delta_{t_0} = f(t_0)
$$

つへへ

- \bullet $A = C(X)$ and $B = \mathbb{C}$
- \bullet $S =$ all unital positive linear functional $=$ state space
- \bullet $S =$ the set of Borel probability measures on X
- extreme states $=$ pure states \longrightarrow Dirac measures
- $\bullet \psi : C(X) \to \mathbb{C}, \psi \geq 0, \psi(1) = 1$ extreme state then

$$
\bullet \ \psi(f) = \int f d\mu = \int f d\delta_{t_0} = f(t_0)
$$

 \circ S(C(X)) = $\overline{co}(P(C(X)))$

 \bullet (K. Thomsen) Thm. Assume X is path connected. Then

 $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps

Barrett Bay

 $2Q$

后

- \bullet (K. Thomsen) Thm. Assume X is path connected. Then $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps
- \bullet If X is totally disconnected then statement is false

- (K. Thomsen) Thm. Assume X is path connected. Then $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps
- \bullet If X is totally disconnected then statement is false
- Any *-hom. $\psi : C(X) \to C[0,1]$ has the form $\psi(f) = f \circ \lambda$ $\lambda : [0, 1] \rightarrow X$ cont and hence constant

(医学) マ 医子

- (K. Thomsen) Thm. Assume X is path connected. Then $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps
- \bullet If X is totally disconnected then statement is false
- Any *-hom. $\psi : C(X) \to C[0,1]$ has the form $\psi(f) = f \circ \lambda$ $\lambda : [0, 1] \rightarrow X$ cont and hence constant
- $\phi(f) = 1/2f(x_1)g + 1/2f(x_2)(1-g), x_1 \neq x_2 \in X$ is unital positive and cannot be approximated

桐 トラ ミュート

- (K. Thomsen) Thm. Assume X is path connected. Then $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps
- \bullet If X is totally disconnected then statement is false
- Any *-hom. $\psi : C(X) \to C[0,1]$ has the form $\psi(f) = f \circ \lambda$ $\lambda : [0, 1] \rightarrow X$ cont and hence constant
- $\phi(f) = 1/2f(x_1)g + 1/2f(x_2)(1-g), x_1 \neq x_2 \in X$ is unital positive and cannot be approximated
- Assume Y is totally disconnected. Then

 $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps

 \mathbf{A} and \mathbf{A} is a set of the set of \mathbf{B} is a set of \mathbf{B} is a set of \mathbf{B}

- (K. Thomsen) Thm. Assume X is path connected. Then $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps
- \bullet If X is totally disconnected then statement is false
- Any *-hom. ψ : $C(X) \rightarrow C[0, 1]$ has the form $\psi(f) = f \circ \lambda$ $\lambda : [0, 1] \rightarrow X$ cont and hence constant
- $\phi(f) = 1/2f(x_1)g + 1/2f(x_2)(1 g), x_1 \neq x_2 \in X$ is unital positive and cannot be approximated
- Assume Y is totally disconnected. Then

 $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps

 \bullet S = all unital positive linear maps $A \rightarrow B$ and B von Neumann algebra then

イロト イ押 トイチ トイチャー

- (K. Thomsen) Thm. Assume X is path connected. Then $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps
- \bullet If X is totally disconnected then statement is false
- Any *-hom. $\psi : C(X) \to C[0,1]$ has the form $\psi(f) = f \circ \lambda$ $\lambda : [0, 1] \rightarrow X$ cont and hence constant
- $\phi(f) = 1/2f(x_1)g + 1/2f(x_2)(1-g), x_1 \neq x_2 \in X$ is unital positive and cannot be approximated
- Assume Y is totally disconnected. Then

 $\bar{co}Hom_1(C(X), C(Y)) =$ all unital positive maps

- \bullet S = all unital positive linear maps $A \rightarrow B$ and B von Neumann algebra then
- $S = \bar{co}$ (extreme points)

イロト イ押 トイチ トイチャー

Thomsen's result may allow an arbitrarily large number of *-hom. in the approximation

a mills.

メタメメ ミメメ ミメ

重

 298

- Thomsen's result may allow an arbitrarily large number of *-hom. in the approximation
- L. Li's result is specifying a number N of *-hom. that depends only on the initial error

 4.17 ± 1.0

 $\mathcal{A} \times \mathcal{B} \rightarrow \mathcal{A} \times \mathcal{B} \rightarrow$

 $2Q$

目

- Thomsen's result may allow an arbitrarily large number of *-hom. in the approximation
- L. Li's result is specifying a number N of $*$ -hom. that depends only on the initial error
- \bullet Let X be path connected compact metrizable. For any finite set $F \subseteq C(X)$ and $\epsilon > 0$, there is $N > 0$ such that:

医骨间 医骨间

- Thomsen's result may allow an arbitrarily large number of *-hom. in the approximation
- L. Li's result is specifying a number N of $*$ -hom. that depends only on the initial error
- \bullet Let X be path connected compact metrizable. For any finite set $F \subset C(X)$ and $\epsilon > 0$, there is $N > 0$ such that:
- **•** for any unital positive map ξ : $C(X) \rightarrow C(Y)$, Y compact metrizable

A + + = + + = +

つくい

- Thomsen's result may allow an arbitrarily large number of *-hom. in the approximation
- L. Li's result is specifying a number N of $*$ -hom. that depends only on the initial error
- \bullet Let X be path connected compact metrizable. For any finite set $F \subseteq C(X)$ and $\epsilon > 0$, there is $N > 0$ such that:
- for any unital positive map $\xi : C(X) \to C(Y)$, Y compact metrizable
- there are N homomorphisms $(\phi_i)_{i=1}^N$ whose average approximates ξ

 $4.50 \times 4.75 \times 4.75 \times$

- Thomsen's result may allow an arbitrarily large number of *-hom. in the approximation
- L. Li's result is specifying a number N of $*$ -hom. that depends only on the initial error
- \bullet Let X be path connected compact metrizable. For any finite set $F \subseteq C(X)$ and $\epsilon > 0$, there is $N > 0$ such that:
- for any unital positive map $\xi : C(X) \to C(Y)$, Y compact metrizable
- there are N homomorphisms $(\phi_i)_{i=1}^N$ whose average approximates ξ
- $||\xi(f) \frac{1}{\hbar}\$ $\frac{1}{N}\sum \phi_i(f) || < \epsilon$ for all $f \in F$.

御 ト イヨ ト イヨ トー

$C[0,1]_a = \{f \in C[0,1], f(0) = \frac{a}{a+1}f(1)\}, a \in \mathbb{N}$

 4.17 ± 1.0

K 御 * K 唐 * K 唐 * 『唐

 299

- $C[0,1]_a = \{f \in C[0,1], f(0) = \frac{a}{a+1}f(1)\}, a \in \mathbb{N}$
- $C[0, 1]_a$ is a subspace of $C[0, 1]$ of codimension 1

 \leftarrow \Box

AT H

A BAY A BAY

 $2Q$

后

- $C[0,1]_a = \{f \in C[0,1], f(0) = \frac{a}{a+1}f(1)\}, a \in \mathbb{N}$
- $C[0, 1]_a$ is a subspace of $C[0, 1]$ of codimension 1

$$
\bullet \ \ C[0,1]_a \oplus \mathbb{R} = C[0,1]
$$

 \leftarrow \Box

AT H

A BAY A BAY

 $2Q$

后

- $C[0,1]_a = \{f \in C[0,1], f(0) = \frac{a}{a+1}f(1)\}, a \in \mathbb{N}$
- $C[0, 1]_a$ is a subspace of $C[0, 1]$ of codimension 1

$$
\bullet \ \ C[0,1]_a \oplus \mathbb{R} = C[0,1]
$$

• any positive map ψ : $C[0,1]_a \rightarrow C[0,1]_a$ extends to

5 8 9 9 9 9 9 9 1

- $C[0,1]_a = \{f \in C[0,1], f(0) = \frac{a}{a+1}f(1)\}, a \in \mathbb{N}$
- $C[0, 1]_a$ is a subspace of $C[0, 1]$ of codimension 1

$$
\bullet \ \ C[0,1]_a \oplus \mathbb{R} = C[0,1]
$$

- any positive map ψ : $C[0,1]_a \rightarrow C[0,1]_a$ extends to
- a unital map ψ : $C[0,1] \rightarrow C[0,1]$

 \mathcal{A} and \mathcal{A} . In the set of \mathbb{R}^n is a set of \mathbb{R}^n

 $2Q$

后

- $C[0,1]_a = \{f \in C[0,1], f(0) = \frac{a}{a+1}f(1)\}, a \in \mathbb{N}$
- $C[0, 1]_a$ is a subspace of $C[0, 1]$ of codimension 1

$$
\bullet \ C[0,1]_a \oplus \mathbb{R} = C[0,1]
$$

- any positive map $\psi : C[0,1]_a \rightarrow C[0,1]_a$ extends to
- a unital map $\psi : C[0,1] \rightarrow C[0,1]$
- note $1(x) \equiv 1 \notin C[0, 1]_a$ and $\psi(1(x)) = 1(x)$ $C[0, 1]$ _a is not an algebra but some features can still be used.

 \mathcal{A} and \mathcal{A} . In the set of \mathbb{R}^n is a set of \mathbb{R}^n

つくい

Thomsen-Li gives N *-homomorphisms $(\phi)^N_1$ and each ϕ_i

 \leftarrow \Box

重

 \equiv \rightarrow

 \equiv \rightarrow

 298

Thomsen-Li gives N *-homomorphisms $(\phi)^N_1$ and each ϕ_i

$$
\bullet \ \phi_i(f) = f \circ \lambda_i = f(\lambda_i)
$$

 \leftarrow \Box

重

 \equiv \rightarrow

 \equiv \rightarrow

 298

Thomsen-Li gives N *-homomorphisms $(\phi)^N_1$ and each ϕ_i

$$
\bullet \ \phi_i(f) = f \circ \lambda_i = f(\lambda_i)
$$

 $\lambda_i: [0,1] \rightarrow [0,1]$

 \leftarrow \Box

重

E N

Thomsen-Li gives N *-homomorphisms $(\phi)^N_1$ and each ϕ_i

\n- $$
\phi_i(f) = f \circ \lambda_i = f(\lambda_i)
$$
\n- $\lambda_i : [0, 1] \to [0, 1]$
\n- $||\sum_{i} f \circ \lambda_i(0) - \frac{a}{a+1} \sum_{i} f \circ \lambda_i(1)|| \leq \epsilon \left(1 + \frac{a}{a+1}\right)$
\n

 \leftarrow \Box

重

 \equiv \rightarrow

 \equiv \rightarrow

 299

Thomsen-Li gives N *-homomorphisms $(\phi)^N_1$ and each ϕ_i

\n- $$
\phi_i(f) = f \circ \lambda_i = f(\lambda_i)
$$
\n- $\lambda_i : [0, 1] \rightarrow [0, 1]$
\n- $||\frac{\sum f \circ \lambda_i(0)}{N} - \frac{a}{a+1} \frac{\sum f \circ \lambda_i(1)}{N}|| \leq \epsilon \left(1 + \frac{a}{a+1}\right)$
\n- the map $f \longrightarrow \frac{\sum f \circ \overline{\lambda_i}}{N}$
\n

takes finitely many F from $C[0,1]_a$ into $C[0,1]_a$.

 \leftarrow \Box

医下 マチャ

 $2Q$

目

Thomsen-Li gives N *-homomorphisms $(\phi)^N_1$ and each ϕ_i

\n- $$
\phi_i(f) = f \circ \lambda_i = f(\lambda_i)
$$
\n- $\lambda_i : [0,1] \to [0,1]$
\n- $||\frac{\sum f \circ \lambda_i(0)}{N} - \frac{a}{a+1} \frac{\sum f \circ \lambda_i(1)}{N}|| \leq \epsilon \left(1 + \frac{a}{a+1}\right)$
\n

- the map $f \longrightarrow \frac{\sum f \circ \lambda_i}{N}$ N takes finitely many F from $C[0, 1]_a$ into $C[0, 1]_a$.
- **Thm.** A positive map of norm one between $C[0,1]_a$ and $C[0, 1]_b$, $0 < a < b$, can be approximated on a finite set by an average of homomorphisms.

 $4.50 \times 4.70 \times 4.70 \times$

つくい

Thomsen-Li gives N *-homomorphisms $(\phi)^N_1$ and each ϕ_i

\n- $$
\phi_i(f) = f \circ \lambda_i = f(\lambda_i)
$$
\n- $\lambda_i : [0,1] \to [0,1]$
\n- $||\frac{\sum f \circ \lambda_i(0)}{N} - \frac{a}{a+1} \frac{\sum f \circ \lambda_i(1)}{N}|| \leq \epsilon \left(1 + \frac{a}{a+1}\right)$
\n

- the map $f \longrightarrow \frac{\sum f \circ \lambda_i}{N}$ N takes finitely many F from $C[0, 1]_a$ into $C[0, 1]_a$.
- **Thm.** A positive map of norm one between $C[0,1]_a$ and $C[0, 1]_b$, $0 < a < b$, can be approximated on a finite set by an average of homomorphisms.
- Thank You!

A + + = + + = +

つくい