A new uniqueness theorem for k-graph C*-algebras

Sarah Reznikoff

joint work with Jonathan H. Brown and Gabriel Nagy Kansas State University

> COSy 2013 Fields Institute

Brief history k-graph algebras Uniqueness Theorems Main Theorem

Graph algebras and generalizations k-graph algebras

Cuntz Algebra (1977): \mathcal{O}_n , generated by *n* partial isometries S_i satisfying $\forall i, S_i^* S_i = \sum_{j=1}^n S_j S_j^*$.

Cuntz-Krieger Algebras (1980): \mathcal{O}_A , generated by partial isometries S_1, \ldots, S_n , with relations $S_i^* S_i = \sum_{j=1}^n A_{ij} S_j S_j^*$ for an $n \times n$ matrix A over $\{0, 1\}$, i.e., the adjacency matrix of a finite directed graph with no multiple edges.

Graph algebras: generalization to arbitrary directed graphs.

Generalizations and related constructions: Exel crossed product algebras, Leavitt path algebras (Abrams, Ruiz, Tomforde), topological graph algebras (Katsura), Ruelle algebras (Putnam, Spielberg), Exel-Laca algebras, ultragraphs (Tomforde), Cuntz-Pimsner algebras, higher-rank Cuntz-Krieger algebras (Robertson-Steger), etc.

k-graph algebras (Kumjian and Pask, 2000)

- developed to generalize graph algebras and higher-rank Cuntz-Krieger algebras,
- whether simple, purely infinite, or AF can be determined from properties of the graph (Kumjian-Pask, Evans-Sims),
- can be described from a k-colored directed graph—a "skeleton"—along with a collection of "commuting squares" (Fowler, Sims, Hazlewood, Raeburn, Webster),
- are groupoid C*-algebras,
- include examples of algebras that are simple but neither AF nor purely infinite, and hence not graph algebras (Pask-Raeburn-Rørdam-Sims),
- include examples that can be constructed from shift spaces (Pask-Raeburn-Weaver),
- can be used to construct any Kirchberg algebra (Spielberg).

Let $k \in \mathbb{N}^+$. We regard \mathbb{N}^k as a category with a single object, 0, and with composition of morphisms given by addition.

A *k*-graph is a countable category Λ along with a degree functor $d : \Lambda \to \mathbb{N}^k$ satisfying the *unique factorization property*:

For all $\lambda \in \Lambda$, and $m, n \in \mathbb{N}^k$, if $d(\lambda) = m + n$ then there are unique $\mu \in d^{-1}(m)$ and $\nu \in d^{-1}(n)$ such that $\lambda = \mu \nu$.

- Denote the range and source maps $r, s : \Lambda \to \Lambda$.
- Refer to the objects of Λ as vertices and the morphisms of Λ as paths.
- Unique factorization implies that $d(\lambda) = 0$ iff λ a vertex.

Brief history Definition of k-graph k-graph algebras Examples Uniqueness Theorems Notation Main Theorem Cuntz-Krieger families

Illustration of unique factorization in k = 2 case.

$\lambda \in \Lambda$ $s(\lambda)$ $d(\lambda) = (10, 8)$ $\underline{s}(\nu)$ $\lambda = \mu \nu$ r(v $d(\mu) = (4,4)$ 41 $d(\nu) = (6,4)$ $\bar{r}(\bar{\mu})$ $r(\lambda)$

1. The set E^* , where (E^0, E^1, r, s) is a directed graph. Set $d(\lambda) = d$ iff λ has length d.

2. Let $\Omega_k := \{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k \mid m \leq n\}$ with composition (m, r)(r, n) = (m, n) and degree map d(m, n) = n - m. п m

0

Sarah Reznikoff A new uniqueness theorem for k-graph C*-algebras

3. We can define a 2-graph from the directed colored graph $E = (E^0, E^1, r, s)$ with color map $c : E^1 \to \{1, 2\}$ as follows.

Endow E^* with the degree functor given by

е

$$d(e_1e_2...e_n) = (m_1, m_2)$$
, where $m_i = |c^{-1}(i)|$.

Since (0, 1) + (1, 0) = (1, 0) + (0, 1) and the only paths of degrees (1, 0) and (0, 1) are, respectively, *e* and *f*, to define a 2-graph from E^* we must declare *ef* = *fe*. In fact, any two paths of equal degree must be equal.

The 2-graph we obtain is the semigroup \mathbb{N}^2 with degree map the identity.

Brief history Definition of k-graph k-graph algebras Examples Uniqueness Theorems Notation Main Theorem Cuntz-Krieger families

Notation:

- ► For $n \in \mathbb{N}^k$, we denote $\Lambda^n = \{\lambda \in \Lambda \mid d(\lambda) = n\}$.
- For $v \in \Lambda^0$ denote $v\Lambda^n = \{\lambda \in \Lambda^n | r(\lambda) = v\}.$

A k-graph Λ is row-finite and has no sources if

$$\forall \mathbf{v} \in \Lambda^0, \, \forall \mathbf{n} \in \mathbb{N}^k, \, \, \mathbf{0} < |\mathbf{v}\Lambda^n| < \infty.$$

Assume all k-graphs are row-finite and have no sources.

A **Cuntz-Krieger** Λ -family in a C*-algebra *A* is a set $\{T_{\lambda}, \lambda \in \Lambda\}$ of partial isometries in *A* satisfying (i) $\{T_{\nu} | \nu \in \Lambda^0\}$ is a family of mutually orthogonal projections, (ii) $T_{\lambda\mu} = T_{\lambda}T_{\mu}$ for all $\lambda, \mu \in \Lambda$ s.t. $s(\lambda) = r(\mu)$, (iii) $T_{\lambda}^*T_{\lambda} = T_{s(\lambda)}$ for all $\lambda \in \Lambda$, and (iv) for all $\nu \in \Lambda^0$ and $n \in \mathbb{N}^k$, $T_{\nu} = \sum_{\lambda \in \nu \Lambda^n} T_{\lambda}T_{\lambda}^*$. For $\lambda \in \Lambda$, denote $Q_{\lambda} := T_{\lambda}T_{\lambda}^*$.

 $C^*(\Lambda)$ will denote the C^{*}-algebra generated by a universal Cuntz-Krieger Λ -family, $(S_{\lambda}, \lambda \in \Lambda)$, with $P_{\lambda} = S_{\lambda}S_{\lambda}^*$.

Q: When is a *-homomorphism $\Phi : C^*(\Lambda) \to A$ injective?

Necessary: Φ is **nondegenerate**, i.e., it is injective on the diagonal subalgebra $\mathscr{D} := C^*(\{P_\mu \mid \mu \in \Lambda\}).$

Our new uniqueness theorem proves the sufficiency of injectivity on a (usually) larger subalgebra, $\mathscr{M} \supseteq \mathscr{D}$, and generalizes our theorem for directed graphs, where \mathscr{M} is called the Abelian Core of $C^*(\Lambda)$.

[NR1] G. Nagy and S. Reznikoff, Abelian core of graph algebras, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 889–908.
[NR2] G. Nagy and S. Reznikoff, *Pseudo-diagonals and uniqueness theorems*, (2013), to appear in Proc. AMS.
[S] W. Szymański, *General Cuntz-Krieger uniqueness theorem*, Internat. J. Math. 13 (2002) 549–555.

Brief history k-graph algebras Uniqueness Theorems Main Theorem Aperiodicity

Gauge Actions

The universal C*-algebra of a *k*-graph Λ has a *gauge action* $\alpha : \mathbb{T}^k \to \operatorname{Aut} C^*(\Lambda)$ given by

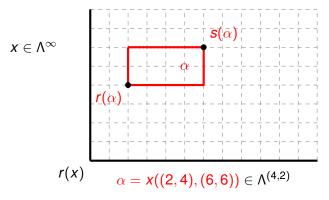
$$\alpha_t(S_{\lambda}) = t^{d(\lambda)}S_{\lambda} = t_1^{d_1}t_2^{d_2}\ldots t_k^{d_k}S_{\lambda},$$

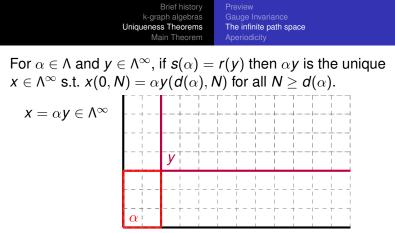
where
$$t = (t_1, t_2, ..., t_k)$$
 and $d(\lambda) = (d_1, d_2, ..., d_k)$.

Gauge-Invariant Uniqueness Theorem (Kumjian-Pask): If $\Phi : C^*(\Lambda) \to A$ is a nondegenerate *-representation and intertwines a gauge action $\beta : \mathbb{T}^k \to \operatorname{Aut}(A)$ with α , then Φ is injective. Brief history k-graph algebras Uniqueness Theorems Main Theorem Aperiodicity

Recall $\Omega_k := \{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k \mid m \le n\}$, with degree map d(m, n) = n - m and composition (m, n)(n, r) = (m, r).

The **infinite path space** Λ^{∞} is the set of all degree-preserving covariant functors $x : \Omega_k \to \Lambda$.





Using the topology generated by the cylinder sets

$$Z(\alpha) = \{ x \in \Lambda^{\infty} | x(0, d(\alpha)) = \alpha \}$$

= $\{ x \in \Lambda^{\infty} | \exists y \in \Lambda^{\infty} \text{ s.t. } x = \alpha y \},$

 Λ^{∞} is a locally compact Hausdorff space.

The shift map: For $x \in \Lambda^{\infty}$ and $N \in \mathbb{N}^{k}$, $\sigma^{N}(x)$ is defined to be the element of Λ^{∞} given by $\sigma^{N}(x)(m, n) = x(m + N, n + N)$. $x \in \Lambda^{\infty}$ is *eventually periodic* if there is an $N \in \mathbb{N}^k$ and an $p \in \mathbb{Z}^k$ such that $\sigma^N(x) = \sigma^{N+p}(x)$; otherwise x is aperiodic. $x \in \Lambda^{\infty}$ N = (1, 2)p = (4, -1)

Brief history Preview k-graph algebras Gauge Invariance Uniqueness Theorems The infinite path space Main Theorem Apperiodicity

Theorem (Kumjian-Pask) If A satisfies

(A) for every $v \in \Lambda^0$ there is an aperiodic path $x \in v\Lambda^{\infty}$,

then any nondegenerate representation of $C^*(\Lambda)$ is injective.

Theorem (Raeburn, Sims, Yeend) If Λ satisfies

(B) For each
$$v \in \Lambda^0$$
 there is an $x \in v\Lambda^\infty$ s.t.
 $\forall \alpha, \beta \in \Lambda \quad (\alpha \neq \beta \Rightarrow \alpha x \neq \beta x)$

then any nondegenerate representation of $C^*(\Lambda)$ is injective.

Remarks:

- When \wedge has no sources, (A) \Rightarrow (B).
- (B) \Rightarrow (A) holds for 1-graphs.

Brief history The super-normal subalgebra *M* k-graph algebras The Representation Space Uniqueness Theorems Sketch of proof Main Theorem Special subalgebras

The super-normal subalgebra

Observation: $C^*(\Lambda) = \overline{\text{span}} \{ S_{\mu} S_{\nu}^* |, \mu, \nu \in \Lambda, s(\mu) = s(\nu) \}.$ Recall $P_{\alpha} := S_{\alpha} S_{\alpha}^*.$

Defn. We call the element $S_{\alpha}S_{\beta}^*$ super-normal if it is normal and commutes with $\mathscr{D} := C^*(\{P_{\mu}\})$.

Prop. The following are equivalent for $\alpha \neq \beta$.

- (i) $S_{\alpha}S_{\beta}^*$ is super-normal.
- (ii) For all $\gamma \in \Lambda$, $P_{\alpha\gamma} = P_{\beta\gamma}$.
- (iii) For all $\gamma \in s(\alpha)\Lambda$, the pair $(\alpha\gamma, \beta\gamma)$ is a generalized cycle without entry, in the sense of Evans and Sims.

 Brief history
 The super-normal subalgebra ...

 k-graph algebras
 The Representation Space

 Uniqueness Theorems
 Sketch of proof

 Main Theorem
 Special subalgebras

Example
$$(k = 1)$$
: Suppose λ is a cycle without entry,
 $r(\lambda) = s(\alpha)$, and $\beta = \lambda \circ \alpha$. Then it is easy to verify that
for all $\gamma \in \Lambda$, $P_{\alpha\gamma} = P_{\beta\gamma}$, so $S_{\alpha}S_{\beta}^*$ is super-normal.

On the other hand:

Fact: If $s(\alpha) = s(\beta)$ but $\alpha \neq \beta$, and there exists an aperiodic $x \in s(\alpha)\Lambda^{\infty}$, then $S_{\alpha}S_{\beta}^{*}$ is not super-normal. Therefore, if Λ satisfies Condition (A) then the only

super-normal generators are the projections $P_{\mu} = S_{\mu}S_{\mu}^*$.

 Brief history
 The super-normal subalgebra
 #

 k-graph algebras
 The Representation Space
 Sketch of proof

 Uniqueness Theorem
 Sketch of proof
 Special subalgebras

Let $\mathscr{M} = C^*(\{S_{\alpha}S_{\beta}^* \text{ super-normal}\}).$

Theorem (Brown-Nagy-R, 2013) For a representation $\Phi : C^*(\Lambda) \to B$, TFAE:

- (i) Φ is injective
- (ii) Φ is injective on \mathcal{M} .

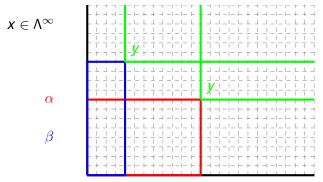
Rmk: By the observation on the previous page, if Λ satisfies Condition (A) then $\mathcal{M} = \mathcal{D} := C^*(\{P_\mu\})$.

The proof involves examining a representation of $C^*(\Lambda)$ in $B(\ell^2(X))$, for $X \subset \Lambda^{\infty}$ the set of "regular paths" of Λ .

Brief history The k-graph algebras The Uniqueness Theorems Sket Main Theorem Spe

The super-normal subalgebra A The Representation Space Sketch of proof Special subalgebras

For $\alpha, \beta \in \Lambda$, let $F_{\alpha,\beta} := \{ x \in \Lambda^{\infty} \mid \exists y \in \Lambda^{\infty} x = \alpha y = \beta y \}.$



Facts:

- $x \in F_{\alpha,\beta}$ is eventually periodic of period $p = d(\beta) d(\alpha)$.
- Any eventually periodic x is in some $F_{\alpha,\beta}$.
- $F_{\alpha,\beta}$ is closed, and if $\alpha = \beta$, then $F_{\alpha,\beta} = Z(\alpha)$.

Brief history The super-normal subalgebra k-graph algebras The Representation Space Uniqueness Theorems Sketch of proof Main Theorem Special subalgebras

The regular paths are the elements of

$$X := \Lambda^{\infty} \setminus \bigcup_{lpha,eta \in \Lambda} \partial F_{lpha,eta}.$$

- X is dense in Λ^{∞} (uses Baire Category).
- X is closed under the shift.

• When
$$k = 1$$
,

$$X = \{$$
infinite "essentially aperiodic" paths $\}.$

Aperiodic paths are essentially aperiodic.
If
$$\lambda$$
 cycle with no entry, $\alpha \in \Lambda$, $r(\lambda) = s(\alpha)$, then
 $\lambda = \alpha \lambda^{\infty}$ is essentially aperiodic.

 Brief history
 The super-normal subalgebra
 M

 k-graph algebras
 The Representation Space
 Sketch of proof

 Main Theorem
 Special subalgebras
 Special subalgebras

There is a Cuntz-Krieger Λ family $(T_{\alpha}, \alpha \in \Lambda)$ in $B(\ell^2(X))$, given by

$$\mathcal{T}_{lpha}\delta_{x}=egin{cases} \delta_{lpha x} & ext{ if } x\in oldsymbol{s}(lpha)\Lambda^{\infty}\ 0 & ext{ otherwise}. \end{cases}$$

We define the aperiodic representation:

$$egin{aligned} \pi_{\mathrm{ap}} &\colon \pmb{C}^*(\Lambda) o \pmb{B}(\ell^2(\pmb{X})) \ & \pmb{S}_\lambda \mapsto \pmb{T}_\lambda \end{aligned}$$

We first prove that for representations of $\pi_{ap}(C^*(\Lambda))$ injectivity on $\pi_{ap}(\mathcal{M})$ lifts.

 Brief history
 The super-normal subalgebra M

 k-graph algebras
 The Representation Space

 Uniqueness Theorems
 Sketch of proof

 Main Theorem
 Special subalgebras

Abstract Uniqueness Theorem (Brown-Nagy-R, 2013) Let *A* be a C*-algebra and $M \subset A$ an abelian C*-subalgebra. Suppose there is a set *S* of pure states on *M* satisfying

(i) each $\psi \in \mathcal{S}$ extends uniquely to a state $\tilde{\psi}$ on \mathcal{A} , and

(ii) the collection $\tilde{S} := \{ \tilde{\psi} \mid \psi \in S \}$ is "jointly faithful" on *A*.

Then a *-homomorphism $\Phi : A \to B$ is injective iff $\Phi|_M$ is injective. Moreover, M' is a masa in A.

Corollary

A *-representation $\Phi : \pi_{ap}(C^*(\Lambda)) \to B$ is injective iff it is injective on $\pi_{ap}(\mathscr{M})$.

Proof: The hypotheses of the Abstract Uniqueness Theorem hold with S a set of "evaluation states". (See extra slides after biblio. for proof sketches.)

 Brief history
 The super-normal subalgebra ...

 k-graph algebras
 The Representation Space

 Uniqueness Theorems
 Sketch of proof

 Main Theorem
 Special subalgebras

To handle representations of $C^*(\Lambda)$: Define the "twisted aperiodic representation"

$$\Psi_{\mathrm{ap}}: \mathcal{C}^*(\Lambda) \to \mathcal{B}(\ell^2(X \times \mathbb{Z}^k)).$$

Now the gauge invariance theorem applies. Adapt the previous argument to $\Psi_{ap}(C^*(\Lambda))$. Pull back the jointly faithful set of uniquely extending states to $C^*(\Lambda)$ to prove:

Theorem (Brown-Nagy-R, 2013) For a representation $\Phi : C^*(\Lambda) \to B$, TFAE:

(i) Φ is injective.

(ii) Φ is injective on $C^*(\mathcal{M})$.

Brief history	The super-normal subalgebra M
k-graph algebras	The Representation Space
Uniqueness Theorems	Sketch of proof
Main Theorem	Special subalgebras

(Renault, '80) A C*-subalgebra $\mathcal{B} \subseteq \mathcal{A}$ is **Cartan** if

- \mathcal{B} is a masa in \mathcal{A} ,
- ▶ ∃ a faithful conditional expectation $\mathcal{A} \to \mathcal{B}$,
- The normalizer of \mathcal{B} in \mathcal{A} generates \mathcal{A} , and
- \mathcal{B} contains an approximate unit of \mathcal{A} .

Theorem (Nagy-R, 2011)

If Λ is a 1-graph then $\mathscr{M} \subseteq C^*(\Lambda)$ is Cartan.

Defn. $\mathcal{B} \subseteq \mathcal{A}$ has the Unique Extension Property (UEP) if every pure state on \mathcal{B} extends uniquely to a pure state on \mathcal{A} .

- A Cartan C*-subalgebra with the UEP is a C*-Diagonal.
- For k = 1, \mathcal{M} is a **pseudo-diagonal**: densely many pure states extend uniquely and there is a faithful conditional exp.
- For arbitrary k, \mathcal{M}' is a MASA. Is it a pseudo-diagonal?

Brief history	The super-normal subalgebra ${\mathscr M}$
k-graph algebras	The Representation Space
Uniqueness Theorems	Sketch of proof
Main Theorem	Special subalgebras

- K.R. Davidson, S.C. Power, and D. Yang, *Dilation theory for rank 2 graph algebras*, J. Operator Theory.
- D. G. Evans and A. Sims, *When is the Cuntz-Krieger algebra of a higher-rank graph approximately finite-dimensional?*, J. Funct. Anal. **263** (2012), no. 1, 183–215.
- A. Kumjian and D. Pask, *Higher rank graph C*-algebras*, New York J. Math. **6** (2000), 1–20.
- A. Kumjian, D. Pask, and I. Raeburn, *Cuntz-Krieger algebras of directed graphs*, Pacific J. Math. **184** (1998) 161–174.
- A. Kumjian, D. Pask, I. Raeburn, and J. Renault, *Graphs, groupoids and Cuntz-Krieger algebras*, J. Funct. Anal. 144 (1997), 505–541

 Brief history
 The super-normal subalgebra *M*

 k-graph algebras
 The Representation Space

 Uniqueness Theorems
 Sketch of proof

 Main Theorem
 Special subalgebras

- G. Nagy and S. Reznikoff, *Abelian core of graph algebras*, J. Lond. Math. Soc. (2) **85** (2012), no. 3, 889–908.
- G. Nagy and S. Reznikoff, *Pseudo-diagonals and uniqueness theorems*, (2013), to appear in Proc. AMS.
- D. Pask, I. Raeburn, M. Rørdam, A. Sims, *Rank-two graphs whose C*-algebras are direct limits of circle algebras*, J. Functional Anal. **144** (2006), 137–178.
- I. Raeburn, A. Sims and T. Yeend, *Higher-rank graphs and their C*-algebras*, Proc. Edin. Math. Soc. 46 (2003) 99–115.
- D. Robertson and A. Sims, Simplicity of C*-algebras associated to higher-rank graphs. Bull. Lond. Math. Soc. 39 (2007), no. 2, 337–344.

 Brief history
 The super-normal subalgebra *M*

 k-graph algebras
 The Representation Space

 Uniqueness Theorems
 Sketch of proof

 Main Theorem
 Special subalgebras

- G. Robertson and T. Steger, *Affine buildings, tiling systems and higher rank Cuntz-Krieger algebras*, J. Reine Angew. Math. **513** (1999), 115–144.
- A. Sims, Gauge-invariant ideals in the C*-algebras of finitely aligned higher-rank graphs, Canad. J. Math. 58 (2006), no. 6, 1268–1290.
- J. Spielberg, *Graph-based models for Kirchberg algebras*, J. Operator Theory **57** (2007), 347–374.
- W. Szymański, *General Cuntz-Krieger uniqueness theorem*, Internat. J. Math. **13** (2002) 549–555.

 Brief history
 The super-normal subalgebra M

 k-graph algebras
 The Representation Space

 Uniqueness Theorems
 Sketch of proof

 Main Theorem
 Special subalgebras

Thank you!

Sarah Reznikoff A new uniqueness theorem for k-graph C*-algebras

Brief history	The super-normal subalgebra M
k-graph algebras	The Representation Space
Uniqueness Theorems	Sketch of proof
Main Theorem	Special subalgebras

Sketch of corollary proof:

Let $A = \pi_{\mathrm{ap}}(C^*(\Lambda)), \ M = \pi_{\mathrm{ap}}(\mathscr{M}), \ \text{ and } D = \pi_{\mathrm{ap}}(\mathscr{D}).$

• Why *M* is abelian: Note that if $T \in D'$ then *T* commutes with all $p_x :=_{\text{sor-lim}} n_{\to\infty} Q_{x(0,n)}$ so $T \in \ell^{\infty}(X)$. Thus *D'* is abelian, and $M \subseteq D'$ by definition.

• The states in *S*: For each $x \in X$ define $ev_x^D(Q_\alpha) = \chi_{Z(\alpha)}(x)$. Let ϕ be an extension of ev_x^D to *A*. We show that $\phi(T_\alpha T_\beta^*)$ depends only on x, α , and β . To do this, we extend α and β to μ and ν with $T_{\nu} = T_{\mu}$. Denote the unique extension ϕ_x and let $S = \{\phi_x|_M | x \in X\}$.

• Why the extensions ϕ_x are jointly faithful on *A*: Easy to see that $\phi_x(T) = \langle T\delta_x, \delta_x \rangle$ and so if $T = (T^{1/2})^2$ and $\phi_x(T) = 0$ for all *x* then $T^{1/2} = 0$ too.

 Brief history
 The super-normal subalgebra M

 k-graph algebras
 The Representation Space

 Uniqueness Theorems
 Sketch of proof

 Main Theorem
 Special subalgebras

Ideas in proof of Abstract Uniqueness Theorem:

We are assuming the states $\psi \in S$ on M extends uniquely to states $\tilde{\psi} \in \tilde{S}$ on A, and the collection of the extensions is jointly faithful on A.

• If ker $\phi|_M \subseteq \ker \psi$ then ker $\phi \subseteq \ker \pi_{\psi}$ (the GNS representation associated with ψ).

• If \tilde{S} is jointly faithful then $\bigcap_{\psi \in S} \ker \pi_{\psi} = \{0\}$.

Brief history	The super-normal subalgebra M
k-graph algebras	The Representation Space
Uniqueness Theorems	Sketch of proof
Main Theorem	Special subalgebras

The conditional expectation when k = 1: For $x \in X$, let $p_x = \text{sor-lim}_{n \to \infty} Q_{x(0,n)} \in B(\ell^2(X))$.

▶ p_x is the projection onto $\operatorname{span}\{\delta_{x,m} \mid m \in \mathbb{Z}^k\}$

•
$$\phi_x(T_\alpha T_\beta^*) p_x = p_x T_\alpha T_\beta^* p_x.$$

Define

$$egin{aligned} & E_{\mathrm{ap}}: B(\ell^2(X)) o \{ p_X \, | \, x \in X \}' \ & A \mapsto \sum_{x \in X} p_x A p_x \end{aligned}$$

 $E_{\rm ap}$ is a faithful conditional expectation; moreover $\Psi_{\rm ap}$ intertwines it with a faithful conditional expectation $E_{\Lambda}: C^*(\Lambda) \to \mathscr{M}.$