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Brief history
k-graph algebras

Uniqueness Theorems
Main Theorem

Graph algebras and generalizations
k-graph algebras

Cuntz Algebra (1977): On, generated by n partial isometries Si

satisfying ∀i , S∗i Si =
n∑

j=1

SjS∗j .

Cuntz-Krieger Algebras (1980): OA, generated by partial
isometries S1, . . .Sn, with relations S∗i Si =

∑n
j=1 AijSjS∗j for an

n × n matrix A over {0,1}, i.e., the adjacency matrix of a finite
directed graph with no multiple edges.

Graph algebras: generalization to arbitrary directed graphs.

Generalizations and related constructions: Exel crossed
product algebras, Leavitt path algebras (Abrams, Ruiz,
Tomforde), topological graph algebras (Katsura), Ruelle
algebras (Putnam, Spielberg), Exel-Laca algebras, ultragraphs
(Tomforde), Cuntz-Pimsner algebras, higher-rank
Cuntz-Krieger algebras (Robertson-Steger), etc.
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k-graph algebras (Kumjian and Pask, 2000)

• developed to generalize graph algebras and higher-rank
Cuntz-Krieger algebras,
• whether simple, purely infinite, or AF can be determined from
properties of the graph (Kumjian-Pask, Evans-Sims),
• can be described from a k-colored directed graph—a
“skeleton”—along with a collection of “commuting squares”
(Fowler, Sims, Hazlewood, Raeburn, Webster),
• are groupoid C*-algebras,
• include examples of algebras that are simple but neither AF
nor purely infinite, and hence not graph algebras
(Pask-Raeburn-Rørdam-Sims),
• include examples that can be constructed from shift spaces
(Pask-Raeburn-Weaver),
• can be used to construct any Kirchberg algebra (Spielberg).
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Let k ∈ N+. We regard Nk as a category with a single object, 0,
and with composition of morphisms given by addition.

A k -graph is a countable category Λ along with a degree
functor d : Λ→ Nk satisfying the unique factorization property:

For all λ ∈ Λ, and m, n ∈ Nk , if d(λ) = m + n then there are
unique µ ∈ d−1(m) and ν ∈ d−1(n) such that λ = µν.

I Denote the range and source maps r , s : Λ→ Λ.
I Refer to the objects of Λ as vertices and the morphisms of

Λ as paths.
I Unique factorization implies that d(λ) = 0 iff λ a vertex.
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Illustration of unique factorization in k = 2 case.

λ ∈ Λ

d(λ) = (10,8)

r(λ)

s(λ)

λ = µν

d(ν) = (6,4)

d(µ) = (4,4)
r(ν)

s(ν)

r(µ)

s(µ)
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1. The set E∗, where (E0,E1, r , s) is a directed graph. Set
d(λ) = d iff λ has length d .

2. Let Ωk := {(m,n) ∈ Nk × Nk |m ≤ n} with composition
(m, r)(r ,n) = (m,n) and degree map d(m,n) = n −m.

0

m

n
r

n

m
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3. We can define a 2-graph from the directed colored graph
E = (E0,E1, r , s) with color map c : E1 → {1,2} as follows.

fe

Endow E∗ with the degree functor given by

d(e1e2 . . . en) = (m1,m2), where mi = |c−1(i)|.

Since (0,1) + (1,0) = (1,0) + (0,1) and the only paths of
degrees (1,0) and (0,1) are, respectively, e and f , to define a
2-graph from E∗ we must declare ef = fe. In fact, any two paths
of equal degree must be equal.
The 2-graph we obtain is the semigroup N2 with degree map
the identity.
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Notation:
I For n ∈ Nk , we denote Λn = {λ ∈ Λ |d(λ) = n}.
I For v ∈ Λ0 denote vΛn = {λ ∈ Λn | r(λ) = v}.

A k -graph Λ is row-finite and has no sources if

∀v ∈ Λ0, ∀n ∈ Nk , 0 < |vΛn| <∞.

Assume all k -graphs are row-finite and have no sources.

Sarah Reznikoff A new uniqueness theorem for k-graph C*-algebras



Brief history
k-graph algebras

Uniqueness Theorems
Main Theorem

Definition of k-graph
Examples
Notation
Cuntz-Krieger families

A Cuntz-Krieger Λ-family in a C*-algebra A is a set
{Tλ, λ ∈ Λ} of partial isometries in A satisfying

(i) {Tv | v ∈ Λ0} is a family of mutually orthogonal projections,
(ii) Tλµ = TλTµ for all λ, µ ∈ Λ s.t. s(λ) = r(µ),
(iii) T ∗λTλ = Ts(λ) for all λ ∈ Λ, and

(iv) for all v ∈ Λ0 and n ∈ Nk , Tv =
∑

λ∈vΛn TλT ∗λ .

For λ ∈ Λ, denote Qλ := TλT ∗λ .

C∗(Λ) will denote the C*-algebra generated by a universal
Cuntz-Krieger Λ-family, (Sλ, λ ∈ Λ), with Pλ = SλS∗λ.
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Q: When is a *-homomorphism Φ : C∗(Λ)→ A injective?

Necessary: Φ is nondegenerate, i.e., it is injective on the
diagonal subalgebra D := C∗({Pµ |µ ∈ Λ}).

Our new uniqueness theorem proves the sufficiency of
injectivity on a (usually) larger subalgebra, M ⊇ D , and
generalizes our theorem for directed graphs, where M is called
the Abelian Core of C∗(Λ).

[NR1] G. Nagy and S. Reznikoff, Abelian core of graph
algebras, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 889–908.
[NR2] G. Nagy and S. Reznikoff, Pseudo-diagonals and
uniqueness theorems, (2013), to appear in Proc. AMS.
[S] W. Szymański, General Cuntz-Krieger uniqueness theorem,
Internat. J. Math. 13 (2002) 549–555.
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Gauge Actions

The universal C*-algebra of a k -graph Λ has a gauge action
α : Tk → Aut C∗(Λ) given by

αt (Sλ) = td(λ)Sλ = td1
1 td2

2 . . . tdk
k Sλ,

where t = (t1, t2, . . . tk ) and d(λ) = (d1,d2, . . .dk ).

Gauge-Invariant Uniqueness Theorem (Kumjian-Pask):
If Φ : C∗(Λ)→ A is a nondegenerate ∗-representation and
intertwines a gauge action β : Tk → Aut(A) with α, then Φ is
injective.
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Recall Ωk := {(m,n) ∈ Nk × Nk |m ≤ n}, with degree map
d(m,n) = n −m and composition (m,n)(n, r) = (m, r).

The infinite path space Λ∞ is the set of all degree-preserving
covariant functors x : Ωk → Λ.

x ∈ Λ∞

r(x)

r(α)

α

s(α)

α = x((2,4), (6,6)) ∈ Λ(4,2)
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For α ∈ Λ and y ∈ Λ∞, if s(α) = r(y) then αy is the unique
x ∈ Λ∞ s.t. x(0,N) = αy(d(α),N) for all N ≥ d(α).

x = αy ∈ Λ∞

α

y

Using the topology generated by the cylinder sets

Z (α) = {x ∈ Λ∞ | x(0,d(α)) = α}
= {x ∈ Λ∞ | ∃y ∈ Λ∞ s.t. x = αy},

Λ∞ is a locally compact Hausdorff space.
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The shift map: For x ∈ Λ∞ and N ∈ Nk , σN(x) is defined to be
the element of Λ∞ given by σN(x)(m,n) = x(m + N,n + N).
x ∈ Λ∞ is eventually periodic if there is an N ∈ Nk and an
p ∈ Zk such that σN(x) = σN+p(x); otherwise x is aperiodic.

x ∈ Λ∞

N = (1,2)

σN(x)

p = (4,−1)

σN+p(x)
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Theorem (Kumjian-Pask) If Λ satisfies

(A) for every v ∈ Λ0 there is an aperiodic path x ∈ vΛ∞,

then any nondegenerate representation of C∗(Λ) is injective.

Theorem (Raeburn, Sims, Yeend)
If Λ satisfies

(B) For each v ∈ Λ0 there is an x ∈ vΛ∞ s.t.
∀α, β ∈ Λ (α 6= β ⇒ αx 6= βx)

then any nondegenerate representation of C∗(Λ) is injective.

Remarks:
I When Λ has no sources, (A)⇒ (B).
I (B)⇒ (A) holds for 1-graphs.
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The super-normal subalgebra

Observation: C∗(Λ) = span{SµS∗ν |, µ, ν ∈ Λ, s(µ) = s(ν)}.
Recall Pα := SαS∗α.

Defn. We call the element SαS∗β super-normal if it is normal
and commutes with D := C∗({Pµ}).

Prop. The following are equivalent for α 6= β.
(i) SαS∗β is super-normal.
(ii) For all γ ∈ Λ, Pαγ = Pβγ .
(iii) For all γ ∈ s(α)Λ, the pair (αγ, βγ) is a generalized cycle

without entry, in the sense of Evans and Sims.
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α

λ

Example (k = 1): Suppose λ is a cycle without entry,
r(λ) = s(α), and β = λ ◦ α. Then it is easy to verify that
for all γ ∈ Λ, Pαγ = Pβγ , so SαS∗β is super-normal.

On the other hand:

Fact: If s(α) = s(β) but α 6= β, and there exists an aperiodic
x ∈ s(α)Λ∞, then SαS∗β is not super-normal.
Therefore, if Λ satisfies Condition (A) then the only
super-normal generators are the projections Pµ = SµS∗µ.
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Let M = C∗({SαS∗β super-normal}).

Theorem (Brown-Nagy-R, 2013)
For a representation Φ : C∗(Λ)→ B, TFAE:

(i) Φ is injective
(ii) Φ is injective on M .

Rmk: By the observation on the previous page, if Λ satisfies
Condition (A) then M = D := C∗({Pµ}).

The proof involves examining a representation of C∗(Λ) in
B(`2(X )), for X ⊂ Λ∞ the set of “regular paths” of Λ.
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For α, β ∈ Λ, let Fα,β := {x ∈ Λ∞ | ∃ y ∈ Λ∞ x = αy = βy}.

x ∈ Λ∞

α

β

y

y

Facts:
I x ∈ Fα,β is eventually periodic of period p = d(β)− d(α).
I Any eventually periodic x is in some Fα,β.
I Fα,β is closed, and if α = β, then Fα,β = Z (α).
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The regular paths are the elements of

X := Λ∞ \
⋃

α,β∈Λ

∂Fα,β.

I X is dense in Λ∞ (uses Baire Category).
I X is closed under the shift.
I When k = 1,

X = {infinite “essentially aperiodic” paths}.

α

λ

Aperiodic paths are essentially aperiodic.

If λ cycle with no entry, α ∈ Λ, r(λ) = s(α), then
x = αλ∞ is essentially aperiodic.
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There is a Cuntz-Krieger Λ family (Tα, α ∈ Λ) in B(`2(X )),
given by

Tαδx =

{
δαx if x ∈ s(α)Λ∞

0 otherwise.

We define the aperiodic representation:

πap : C∗(Λ)→ B(`2(X ))

Sλ 7→ Tλ

We first prove that for representations of πap(C∗(Λ)) injectivity
on πap(M ) lifts.
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Abstract Uniqueness Theorem (Brown-Nagy-R, 2013)
Let A be a C*-algebra and M ⊂ A an abelian C*-subalgebra.
Suppose there is a set S of pure states on M satisfying

(i) each ψ ∈ S extends uniquely to a state ψ̃ on A, and
(ii) the collection S̃ := {ψ̃ |ψ ∈ S} is “jointly faithful” on A.

Then a ∗-homomorphism Φ : A→ B is injective iff Φ|M is
injective. Moreover, M ′ is a masa in A.

Corollary
A ∗-representation Φ : πap(C∗(Λ))→ B is injective iff it is
injective on πap(M ).
Proof: The hypotheses of the Abstract Uniqueness Theorem
hold with S a set of “evaluation states”. (See extra slides after
biblio. for proof sketches.)
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To handle representations of C∗(Λ):
Define the “twisted aperiodic representation”

Ψap : C∗(Λ)→ B(`2(X × Zk )).

Now the gauge invariance theorem applies.
Adapt the previous argument to Ψap(C∗(Λ)). Pull back the
jointly faithful set of uniquely extending states to C∗(Λ) to prove:

Theorem (Brown-Nagy-R, 2013)
For a representation Φ : C∗(Λ)→ B, TFAE:

(i) Φ is injective.
(ii) Φ is injective on C∗(M ).
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(Renault, ‘80) A C*-subalgebra B ⊆ A is Cartan if
I B is a masa in A,
I ∃ a faithful conditional expectation A → B,
I The normalizer of B in A generates A, and
I B contains an approximate unit of A.

Theorem (Nagy-R, 2011)
If Λ is a 1-graph then M ⊆ C∗(Λ) is Cartan.

Defn. B ⊆ A has the Unique Extension Property (UEP) if every
pure state on B extends uniquely to a pure state on A.

• A Cartan C*-subalgebra with the UEP is a C*-Diagonal.
• For k = 1, M is a pseudo-diagonal: densely many pure
states extend uniquely and there is a faithful conditional exp.
• For arbitrary k , M ′ is a MASA. Is it a pseudo-diagonal?
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Thank you!
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Sketch of corollary proof:
Let A = πap(C∗(Λ)), M = πap(M ), and D = πap(D).

•Why M is abelian: Note that if T ∈ D′ then T commutes with
all px :=SOT-limn→∞Qx(0,n) so T ∈ `∞(X ). Thus D′ is abelian,
and M ⊆ D′ by definition.

• The states in S: For each x ∈ X define evD
x (Qα) = χZ (α)(x).

Let φ be an extension of evD
x to A. We show that φ(TαT ∗β )

depends only on x , α, and β. To do this, we extend α and β to µ
and ν with Tν = Tµ. Denote the unique extension φx and let
S = {φx |M | x ∈ X}.

•Why the extensions φx are jointly faithful on A: Easy to see
that φx (T ) = 〈T δx , δx〉 and so if T = (T 1/2)2 and φx (T ) = 0 for
all x then T 1/2 = 0 too.
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Ideas in proof of Abstract Uniqueness Theorem:

We are assuming the states ψ ∈ S on M extends uniquely to
states ψ̃ ∈ S̃ on A, and the collection of the extensions is jointly
faithful on A.

• If kerφ|M ⊆ kerψ then kerφ ⊆ kerπψ (the GNS representation
associated with ψ).

• If S̃ is jointly faithful then ∩ψ∈S kerπψ = {0}.
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The conditional expectation when k = 1:
For x ∈ X , let px =SOT-limn→∞Qx(0,n) ∈ B(`2(X )).

I px is the projection onto span{δx ,m |m ∈ Zk}
I φx (TαT ∗β )px = pxTαT ∗βpx .

Define

Eap : B(`2(X ))→ {px | x ∈ X}′

A 7→
∑
x∈X

pxApx

Eap is a faithful conditional expectation; moreover Ψap
intertwines it with a faithful conditional expectation
EΛ : C∗(Λ)→M .
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