Closed Unitary and Similarity Orbits of Normal Operators in Purely Infinite C[∗] -Algebras

Paul Skoufranis

University of California - Los Angeles

May 27, 2013

Paul Skoufranis (UCLA) Orbits in Purely Infinite C^* -Algebras May 27, 2013 1 / 19

Let $\mathfrak A$ be a unital C * -algebra. Two operators $A, B \in \mathfrak A$ are said to be approximately unitarily equivalent in \mathfrak{A} , denoted $A \sim_{\mathfrak{a} \mu} B$, if there exists a sequence of unitary operators $(U_n)_{n\geq 1}\subseteq \mathfrak{A}$ such that

$$
\lim_{n\to\infty}||A-U_nBU_n^*||=0.
$$

Theorem (Weyl-von Neumann-Berg Theorem)

Let $N_1, N_2 \in \mathcal{B}(\mathcal{H})$ be normal operators on a separable Hilbert space \mathcal{H} . Then the following are equivalent:

- \bullet N₁ \sim _{au} N₂.
- **2** rank $(\chi_U(N_1))$ = rank $(\chi_U(N_2))$ for all open subsets U of \mathbb{C} .
- \bullet $\sigma(N_1) = \sigma(N_2)$ and dim(ker($\lambda I_H N_1$)) = dim(ker($\lambda I_H N_2$)) for all isolated $\lambda \in \sigma(N_1)$.

Theorem (Brown-Douglas-Fillmore; 1973)

Let N_1 and N_2 be normal operators in the Calkin algebra. Then the following are equivalent:

- \bullet N₁ \sim_{aut} N₂.
- $2 \;\; N_1= \mathit{UN}_2U^*$ for some unitary operator U in the Calkin algebra.
- \bullet $\sigma(N_1) = \sigma(N_2)$ and the Fredholm index of $\lambda I N_1$ and $\lambda I N_2$ agree for all $\lambda \notin \sigma(N_1)$.

Theorem (Dadarlat; 1995)

Let X be a compact metric space, let $\mathfrak A$ be a unital, simple, purely infinite C^* -algebra, and let $\varphi, \psi : C(X) \to \mathfrak{A}$ be two unital, injective * -homomorphisms. Then φ and ψ are approximately unitarily equivalent if and only if $[[\varphi]] = [[\psi]]$ in $KL(C(X), \mathfrak{A})$.

Corollary (Specific Case of Dadarlat's Result)

Let N_1 and N_2 be two normal operators in a unital, simple, purely infinite C^* -algebra. Then $N_1 \sim_{au} N_2$ if and only if

$$
\bullet \ \sigma(N_1)=\sigma(N_2),
$$

$$
\bullet [\lambda I_{\mathfrak{A}} - N_1]_1 = [\lambda I_{\mathfrak{A}} - N_2]_1 \text{ for all } \lambda \notin \sigma(N_1), \text{ and}
$$

 \bullet N₁ and N₂ have equivalent common spectral projections.

Theorem (Lin; 1996)

Let $\mathfrak A$ be a unital, simple, purely infinite C^{*}-algebra and let $N \in \mathfrak A$ be a normal operator. Then N can be approximated by normal operators with finite spectrum if and only if $\lambda I_{\mathfrak{A}} - N \in \mathfrak{A}_0^{-1}$ for all $\lambda \notin \sigma(N)$.

 Ω

Theorem (Lin; 1996)

Let $\mathfrak A$ be a unital, simple, purely infinite C^{*}-algebra and let $N \in \mathfrak A$ be a normal operator. Then N can be approximated by normal operators with finite spectrum if and only if $\lambda I_{\mathfrak{A}} - N \in \mathfrak{A}_0^{-1}$ for all $\lambda \notin \sigma(N)$.

Theorem (Alternate Proof)

Let $\mathfrak A$ be a unital, simple, purely infinite C^{*}-algebra and let $N_1, N_2 \in \mathfrak A$ be normal operators. If

- \bullet $\sigma(N_1) = \sigma(N_2)$,
- $2\hspace{0.1cm}\lambda\hspace{0.1cm}\lambda\hspace{0.1cm}\mathrm{l}_\mathfrak{A}-N_1,\lambda\hspace{0.1cm}\lambda\hspace{0.1cm}\mathrm{l}_\mathfrak{A}-N_2\in\mathfrak{A}_0^{-1}\hspace{0.1cm}\text{for all}\hspace{0.1cm}\lambda\notin\sigma(N_1),$ and

 \bullet N₁ and N₂ have equivalent common spectral projections, then $N_1 \sim_{\mathcal{U}} N_2$.

Sketch of Proof.

Sketch of Proof.

Suppose $\sigma(N_1) = \sigma(N_2) = [0, 1].$

K-Theory implies the remaining two projections are equivalent.

$$
U := \sum_{j=0}^{n} V_j + \sum_{j=0}^{n-1} W_j
$$

Sketch of Proof.

Suppose $\sigma(N_1) = \sigma(N_2) = [0, 1].$

K-Theory implies the remaining two projections are equivalent.

$$
U := \sum_{j=0}^{n} V_j + \sum_{j=0}^{n-1} W_j
$$

$$
||N_1-U^*N_2U||\leq\epsilon
$$

Let $\mathfrak A$ be a unital C * -algebra and let $\mathcal U(\mathfrak A)$ denote the group of unitaries. For an operator $A, B \in \mathfrak{A}$, the unitary orbit of A in \mathfrak{A} is the set

$$
\mathcal{U}(A) := \{ UAU^* \mid U \in \mathcal{U}(\mathfrak{A}) \}.
$$

The distance between the unitary orbits of A and B is

$$
dist(U(A),U(B)) = \inf \{ ||A' - B'|| \mid A' \in U(A), B' \in U(B) \}
$$

=
$$
\inf \{ ||A - UBU^*|| \mid U \in U(\mathfrak{A}) \}.
$$

 Ω

Let X and Y be subsets of $\mathbb C$. The Hausdorff distance between X and Y . denoted $d_H(X, Y)$, is

$$
d_H(X,Y) := \max \left\{ \sup_{x \in X} \text{dist}(x,Y), \sup_{y \in Y} \text{dist}(y,X) \right\}.
$$

Theorem (Davidson; 1986)

Let $N_1, N_2 \in \mathcal{B}(\mathcal{H})$ be normal operators. Then

 $dist(U(N_1), U(N_2)) \geq d_H(\sigma(N_1), \sigma(N_2)).$

If H is infinite dimensional and separable and if $\sigma(N_i) = \sigma_e(N_i)$, then the above is an equality.

 Ω

≮ロト ⊀伺ト ⊀∃ト

Let ₂₄ be a unital, simple, purely infinite C^{*}-algebra. For normal operators $N_1, N_2 \in \mathfrak{A}$ let $\rho(N_1, N_2)$ denote the maximum of $d_H(\sigma(N_1), \sigma(N_2))$ and

$$
\sup \left\{ dist(\lambda, \sigma(N_1)) + dist(\lambda, \sigma(N_2)) \ \middle| \ \begin{array}{c} \lambda \notin \sigma(N_1) \cup \sigma(N_2) \\ [\lambda I_{\mathfrak{A}} - N_1]_1 \neq [\lambda I_{\mathfrak{A}} - N_2]_1 \end{array} \right\}.
$$

Theorem (Davidson; 1984)

If N_1 and N_2 are normal operators in the Calkin algebra, then

 $\rho(N_1, N_2) \leq \text{dist}(\mathcal{U}(N_1), \mathcal{U}(N_2)) \leq 2\rho(N_1, N_2).$

Generalizing Davidson's proof gives:

Theorem

Let $\mathfrak A$ be a unital, simple, purely infinite C^{*}-algebra and let $N_1, N_2 \in \mathfrak A$ be normal operators. Then

 $dist(U(N_1), U(N_2)) > \rho(N_1, N_2).$

 Ω

Theorem (Skoufranis; 2013)

Let $\mathfrak A$ be a unital, simple, purely infinite C^* -algebra and let $N_1, N_2 \in \mathfrak A$ be normal operators such that $\lambda l_\mathfrak{A}-N_j\in\mathfrak{A}_0^{-1}$ for all $\lambda\notin\sigma(N_j).$ If N_1 and N_2 have equivalent common spectral projections, then

$$
dist(\mathcal{U}(N_1),\mathcal{U}(N_2))=d_H(\sigma(N_1),\sigma(N_2))\,.
$$

つひひ

Lemma (Skoufranis; 2013)

Let $\mathfrak A$ be a unital, simple, purely infinite C^{*}-algebra, let $V \in \mathfrak A$ be a non-unitary isometry, and let $P := VV^*$. Then there exists a unital embedding of the 2[∞]-UHF C*-algebra $\mathfrak{B}:=\overline{\bigcup_{\ell\geq 1}\mathcal{M}_{2^\ell}(\mathbb{C})}$ into $(I_{\mathfrak{A}} - P)\mathfrak{A}(I_{\mathfrak{A}} - P)$ such that $[Q]_0 = 0$ in \mathfrak{A} for every projection $Q \in \mathfrak{B}$.

つひひ

Theorem (Skoufranis; 2013)

Let $\mathfrak A$ be a unital, simple, purely infinite C^* -algebra. If $\mathsf N_1,\mathsf N_2\in\mathfrak A$ are normal operators with equivalent common spectral projections, then

 $dist(U(N_1), U(N_2)) \leq 2\rho(N_1, N_2).$

Theorem (Skoufranis; 2013)

Let $\mathfrak A$ be a unital, simple, purely infinite C^{*}-algebra and let $N_1, N_2 \in \mathfrak A$ be normal operators such that

 \bigcirc $[\lambda I_{\mathfrak{A}} - N_1]_1 = [\lambda I_{\mathfrak{A}} - N_2]_1$ for all $\lambda \notin \sigma(N_1) \cup \sigma(N_2)$, and

 \bullet N₁ and N₂ have equivalent common spectral projections. Then

$$
dist(U(N),U(M))=d_H(\sigma(N_1),\sigma(N_2)).
$$

∢ □ ▶ .⊀ *同* ▶ .∢ ∃ ▶

 QQ

Closed Similarity Orbits - Definitions

Definition

Let $\mathfrak A$ be a unital C * -algebra. The similarity orbit of an operator $A\in\mathfrak A$ is the set

$$
\mathcal{S}(A) := \left\{ VAV^{-1} \mid V \in \mathfrak{A}^{-1} \right\}.
$$

The closed similarity orbit of A is $\overline{S(A)}$ (the norm closure).

Closed Similarity Orbits - Definitions

Definition

Let $\mathfrak A$ be a unital C * -algebra. The similarity orbit of an operator $A\in\mathfrak A$ is the set

$$
\mathcal{S}(A) := \left\{ VAV^{-1} \mid V \in \mathfrak{A}^{-1} \right\}.
$$

The closed similarity orbit of A is $S(A)$ (the norm closure).

Theorem (Barría and Herrero; 1978)

If H is a separable Hilbert space and N, $M \in \mathcal{B}(\mathcal{H})$ are normal operators with $\sigma(M) = \sigma_e(M)$, $N \in S(M)$ if and only if

- $\mathbf{0} \ \sigma(M) \subseteq \sigma(N)$ and $\sigma_e(M) \subseteq \sigma_e(N)$,
- **2** if $\lambda \in \sigma(N)$ is isolated, ker($\lambda I_H M$) and ker($\lambda I_H N$) have the same dimension, and
- **3** if $\lambda \in \sigma_e(N)$ is not isolated in $\sigma_e(N)$, the component of λ in $\sigma_e(N)$ contains some non-isolated point of $\sigma_e(M)$.

Theorem (Apostol, Herrero, Voiculesu; 1982)

Let N and M be normal operators in the Calkin algebra. Then $N \in S(M)$ if and only if

- \bullet $\sigma_{e}(M) \subset \sigma_{e}(N),$
- 2 each component of $\sigma_e(N)$ intersects $\sigma_e(M)$,
- the Fredholm index of $\lambda I M$ and $\lambda I N$ agree for all $\lambda \notin \sigma_e(N)$, and
- \bigodot if $\lambda \in \sigma_e(N)$ is not isolated in $\sigma_e(N)$, the component of λ in $\sigma_e(N)$ contains some non-isolated point of $\sigma_e(M)$.

Theorem (Skoufranis; 2013)

Let $\mathfrak A$ be a unital, simple, purely infinite C^* -algebra and let $N, M \in \mathfrak A$ be normal operators. Then $N \in S(M)$ if and only if

- \bullet $\sigma(M) \subseteq \sigma(N)$,
- 2 each component of $\sigma(N)$ intersects $\sigma(M)$,
- \bullet $[\lambda I_{\mathfrak{A}} N]_1 = [\lambda I_{\mathfrak{A}} M]_1$ for all $\lambda \notin \sigma(N)$,
- \bigodot if $\lambda \in \sigma(N)$ is not isolated in $\sigma(N)$, the component of λ in $\sigma(N)$ contains some non-isolated point of $\sigma(M)$, and
- \bullet N and M have equivalent common spectral projections.

Theorem (Marcoux, Skoufranis; 2012)

Let $\mathfrak{B}:=\overline{\bigcup_{n\geq 1}\mathcal{M}_{2^n}(\mathbb{C})}$ be the 2 $^\infty$ -UHF C * -algebra. Then there exists a normal operator $N \in \mathfrak{B}$ with $\sigma(N) = \overline{\mathbb{D}}$ such that N is a norm limit of nilpotent matrices from $\bigcup_{n\geq 1} \mathcal{M}_{2^n}(\mathbb{C})$.

Lemma

Let $\mathfrak A$ be a unital, simple, purely infinite C^* -algebra, let $M \in \mathfrak A$ be a normal operator, let $V \in \mathfrak{A}$ be a non-unitary isometry, let $P := VV^*$, and let $\mathfrak{B}:=\overline{\bigcup_{\ell \geq 1} \mathcal{M}_{2^\ell}(\mathbb{C})}$ be the unital copy of the 2∞-UHF C*-algebra as constructed before. Suppose μ is a cluster point of $\sigma(M)$ and $Q \in \mathcal{M}_{2^{\ell}}(\mathbb{C}) \subseteq \mathfrak{B}$ is a nilpotent matrix for some $\ell \in \mathbb{N}$. Then $VMV^* + \mu(I_{\mathfrak{A}} - P) + Q \in \overline{\mathcal{S}(M)}$.

 Ω

Theorem (Skoufranis; 2013)

Let $\mathfrak A$ be a unital, simple, purely infinite C^{*}-algebra and let $N \in \mathfrak A$ be a normal operator. Then N is a limit of nilpotent operators if and only if $0\in \sigma(N)$, $\sigma(N)$ is connected, and $\lambda l_\mathfrak{A}-N\in\mathfrak{A}_0^{-1}$ whenever $\lambda\notin \sigma(N).$

 Ω

Thanks for Listening!

4 0 8

 \sim