Closed Unitary and Similarity Orbits of Normal Operators in Purely Infinite C*-Algebras

Paul Skoufranis

University of California - Los Angeles

May 27, 2013

Let \mathfrak{A} be a unital C*-algebra. Two operators $A, B \in \mathfrak{A}$ are said to be approximately unitarily equivalent in \mathfrak{A} , denoted $A \sim_{au} B$, if there exists a sequence of unitary operators $(U_n)_{n\geq 1} \subseteq \mathfrak{A}$ such that

$$\lim_{n\to\infty}\|A-U_nBU_n^*\|=0.$$

Theorem (Weyl-von Neumann-Berg Theorem)

Let $N_1, N_2 \in \mathcal{B}(\mathcal{H})$ be normal operators on a separable Hilbert space \mathcal{H} . Then the following are equivalent:

- $\ \, {\sf N}_1\sim_{\it au}{\sf N}_2.$
- **2** $rank(\chi_U(N_1)) = rank(\chi_U(N_2))$ for all open subsets U of \mathbb{C} .
- $\sigma(N_1) = \sigma(N_2)$ and $\dim(\ker(\lambda I_H N_1)) = \dim(\ker(\lambda I_H N_2))$ for all isolated $\lambda \in \sigma(N_1)$.

Theorem (Brown-Douglas-Fillmore; 1973)

Let N_1 and N_2 be normal operators in the Calkin algebra. Then the following are equivalent:

- $\ \, {\it N}_1\sim_{\it au} {\it N}_2.$
- **2** $N_1 = UN_2U^*$ for some unitary operator U in the Calkin algebra.
- **③** $\sigma(N_1) = \sigma(N_2)$ and the Fredholm index of $\lambda I N_1$ and $\lambda I N_2$ agree for all $\lambda \notin \sigma(N_1)$.

Theorem (Dadarlat; 1995)

Let X be a compact metric space, let \mathfrak{A} be a unital, simple, purely infinite C*-algebra, and let $\varphi, \psi : C(X) \to \mathfrak{A}$ be two unital, injective *-homomorphisms. Then φ and ψ are approximately unitarily equivalent if and only if $[[\varphi]] = [[\psi]]$ in $KL(C(X), \mathfrak{A})$.

Corollary (Specific Case of Dadarlat's Result)

Let N_1 and N_2 be two normal operators in a unital, simple, purely infinite C^* -algebra. Then $N_1 \sim_{au} N_2$ if and only if

2
$$[\lambda I_{\mathfrak{A}} - N_1]_1 = [\lambda I_{\mathfrak{A}} - N_2]_1$$
 for all $\lambda \notin \sigma(N_1)$, and

③ N_1 and N_2 have equivalent common spectral projections.

Theorem (Lin; 1996)

Let \mathfrak{A} be a unital, simple, purely infinite C^* -algebra and let $N \in \mathfrak{A}$ be a normal operator. Then N can be approximated by normal operators with finite spectrum if and only if $\lambda I_{\mathfrak{A}} - N \in \mathfrak{A}_0^{-1}$ for all $\lambda \notin \sigma(N)$.

Theorem (Lin; 1996)

Let \mathfrak{A} be a unital, simple, purely infinite C^* -algebra and let $N \in \mathfrak{A}$ be a normal operator. Then N can be approximated by normal operators with finite spectrum if and only if $\lambda I_{\mathfrak{A}} - N \in \mathfrak{A}_0^{-1}$ for all $\lambda \notin \sigma(N)$.

Theorem (Alternate Proof)

Let ${\mathfrak A}$ be a unital, simple, purely infinite C*-algebra and let $N_1,N_2\in {\mathfrak A}$ be normal operators. If

- 2 $\lambda I_{\mathfrak{A}} N_1, \lambda I_{\mathfrak{A}} N_2 \in \mathfrak{A}_0^{-1}$ for all $\lambda \notin \sigma(N_1)$, and

• N₁ and N₂ have equivalent common spectral projections, then N₁ \sim_{au} N₂.

• • • • • • • • • • • • •

Sketch of Proof.

Sketch of Proof.

Suppose $\sigma(N_1) = \sigma(N_2) = [0, 1]$.

Paul Skoufranis (UCLA)

Orbits in Purely Infinite C*-Algebras

Sketch of Proof.

Sketch of Proof.

Suppose $\sigma(N_1) = \sigma(N_2) = [0, 1]$.

K-Theory implies the remaining two projections are equivalent.

$$U := \sum_{j=0}^{n} V_j + \sum_{j=0}^{n-1} W_j$$

Sketch of Proof.

Suppose $\sigma(N_1) = \sigma(N_2) = [0, 1]$.

K-Theory implies the remaining two projections are equivalent.

$$U := \sum_{j=0}^{n} V_j + \sum_{j=0}^{n-1} W_j$$

$$|N_1 - U^* N_2 U|| \le \epsilon$$

Let \mathfrak{A} be a unital C*-algebra and let $\mathcal{U}(\mathfrak{A})$ denote the group of unitaries. For an operator $A, B \in \mathfrak{A}$, the unitary orbit of A in \mathfrak{A} is the set

$$\mathcal{U}(A) := \{ UAU^* \mid U \in \mathcal{U}(\mathfrak{A}) \}.$$

The distance between the unitary orbits of A and B is

$$\begin{aligned} \text{list}(\mathcal{U}(A),\mathcal{U}(B)) &= \inf\{\|A'-B'\| \mid A' \in \mathcal{U}(A), B' \in \mathcal{U}(B)\} \\ &= \inf\{\|A-UBU^*\| \mid U \in \mathcal{U}(\mathfrak{A})\}. \end{aligned}$$

Let X and Y be subsets of \mathbb{C} . The Hausdorff distance between X and Y, denoted $d_H(X, Y)$, is

$$d_H(X,Y) := \max \left\{ \sup_{x \in X} dist(x,Y), \sup_{y \in Y} dist(y,X) \right\}$$

Theorem (Davidson; 1986)

Let $N_1, N_2 \in \mathcal{B}(\mathcal{H})$ be normal operators. Then

 $dist(\mathcal{U}(N_1),\mathcal{U}(N_2)) \geq d_H(\sigma(N_1),\sigma(N_2)).$

If \mathcal{H} is infinite dimensional and separable and if $\sigma(N_j) = \sigma_e(N_j)$, then the above is an equality.

▶ < 클 ▶ 클 ∽ ९.C May 27, 2013 8 / 19

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let \mathfrak{A} be a unital, simple, purely infinite C*-algebra. For normal operators $N_1, N_2 \in \mathfrak{A}$ let $\rho(N_1, N_2)$ denote the maximum of $d_H(\sigma(N_1), \sigma(N_2))$ and

$$\sup\left\{dist(\lambda,\sigma(N_1))+dist(\lambda,\sigma(N_2)) \middle| \begin{array}{c}\lambda\notin\sigma(N_1)\cup\sigma(N_2)\\ [\lambda I_{\mathfrak{A}}-N_1]_1\neq [\lambda I_{\mathfrak{A}}-N_2]_1\end{array}\right\}$$

Theorem (Davidson; 1984)

If N_1 and N_2 are normal operators in the Calkin algebra, then

 $\rho(N_1, N_2) \leq dist(\mathcal{U}(N_1), \mathcal{U}(N_2)) \leq 2\rho(N_1, N_2).$

Generalizing Davidson's proof gives:

Theorem

Let \mathfrak{A} be a unital, simple, purely infinite C*-algebra and let $N_1, N_2 \in \mathfrak{A}$ be normal operators. Then

 $dist(\mathcal{U}(N_1),\mathcal{U}(N_2)) \geq \rho(N_1,N_2).$

Theorem (Skoufranis; 2013)

Let \mathfrak{A} be a unital, simple, purely infinite C^* -algebra and let $N_1, N_2 \in \mathfrak{A}$ be normal operators such that $\lambda I_{\mathfrak{A}} - N_j \in \mathfrak{A}_0^{-1}$ for all $\lambda \notin \sigma(N_j)$. If N_1 and N_2 have equivalent common spectral projections, then

$$dist(\mathcal{U}(N_1),\mathcal{U}(N_2))=d_H\left(\sigma(N_1),\sigma(N_2)\right).$$

Lemma (Skoufranis; 2013)

Let \mathfrak{A} be a unital, simple, purely infinite C^* -algebra, let $V \in \mathfrak{A}$ be a non-unitary isometry, and let $P := VV^*$. Then there exists a unital embedding of the 2^{∞} -UHF C^* -algebra $\mathfrak{B} := \overline{\bigcup_{\ell \geq 1} \mathcal{M}_{2^{\ell}}(\mathbb{C})}$ into $(I_{\mathfrak{A}} - P)\mathfrak{A}(I_{\mathfrak{A}} - P)$ such that $[Q]_0 = 0$ in \mathfrak{A} for every projection $Q \in \mathfrak{B}$.

Theorem (Skoufranis; 2013)

Let \mathfrak{A} be a unital, simple, purely infinite C^* -algebra. If $N_1, N_2 \in \mathfrak{A}$ are normal operators with equivalent common spectral projections, then

 $dist(\mathcal{U}(N_1),\mathcal{U}(N_2)) \leq 2\rho(N_1,N_2).$

Theorem (Skoufranis; 2013)

Let \mathfrak{A} be a unital, simple, purely infinite C*-algebra and let $N_1, N_2 \in \mathfrak{A}$ be normal operators such that

• $[\lambda I_{\mathfrak{A}} - N_1]_1 = [\lambda I_{\mathfrak{A}} - N_2]_1$ for all $\lambda \notin \sigma(N_1) \cup \sigma(N_2)$, and

2 N_1 and N_2 have equivalent common spectral projections. Then

$$dist(\mathcal{U}(N),\mathcal{U}(M))=d_{H}(\sigma(N_{1}),\sigma(N_{2})).$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Closed Similarity Orbits - Definitions

Definition

Let ${\mathfrak A}$ be a unital C*-algebra. The similarity orbit of an operator $A\in {\mathfrak A}$ is the set

$$\mathcal{S}(A) := \left\{ VAV^{-1} \mid V \in \mathfrak{A}^{-1}
ight\}.$$

The closed similarity orbit of A is $\overline{S(A)}$ (the norm closure).

Closed Similarity Orbits - Definitions

Definition

Let ${\mathfrak A}$ be a unital C*-algebra. The similarity orbit of an operator $A\in {\mathfrak A}$ is the set

$$\mathcal{S}(A) := \left\{ VAV^{-1} \mid V \in \mathfrak{A}^{-1}
ight\}.$$

The closed similarity orbit of A is $\overline{S(A)}$ (the norm closure).

Theorem (Barría and Herrero; 1978)

If \mathcal{H} is a separable Hilbert space and $N, M \in \mathcal{B}(\mathcal{H})$ are normal operators with $\sigma(M) = \sigma_e(M), N \in \overline{\mathcal{S}(M)}$ if and only if

- $\sigma(M) \subseteq \sigma(N)$ and $\sigma_e(M) \subseteq \sigma_e(N)$,
- ② if $\lambda \in \sigma(N)$ is isolated, ker($\lambda I_H M$) and ker($\lambda I_H N$) have the same dimension, and
- if $\lambda \in \sigma_e(N)$ is not isolated in $\sigma_e(N)$, the component of λ in $\sigma_e(N)$ contains some non-isolated point of $\sigma_e(M)$.

Theorem (Apostol, Herrero, Voiculesu; 1982)

Let N and M be normal operators in the Calkin algebra. Then $N \in \mathcal{S}(M)$ if and only if

- $\ \, \bullet_{e}(M) \subseteq \sigma_{e}(N),$
- **2** each component of $\sigma_e(N)$ intersects $\sigma_e(M)$,
- the Fredholm index of $\lambda I M$ and $\lambda I N$ agree for all $\lambda \notin \sigma_e(N)$, and
- if $\lambda \in \sigma_e(N)$ is not isolated in $\sigma_e(N)$, the component of λ in $\sigma_e(N)$ contains some non-isolated point of $\sigma_e(M)$.

Theorem (Skoufranis; 2013)

Let \mathfrak{A} be a unital, simple, purely infinite C^* -algebra and let $N, M \in \mathfrak{A}$ be normal operators. Then $N \in \overline{S(M)}$ if and only if

- $\ \, \bullet \ \, \sigma(M) \subseteq \sigma(N),$
- **2** each component of $\sigma(N)$ intersects $\sigma(M)$,
- $\ \, [\lambda I_{\mathfrak{A}} N]_1 = [\lambda I_{\mathfrak{A}} M]_1 \text{ for all } \lambda \notin \sigma(N),$
- if $\lambda \in \sigma(N)$ is not isolated in $\sigma(N)$, the component of λ in $\sigma(N)$ contains some non-isolated point of $\sigma(M)$, and
- **S** N and M have equivalent common spectral projections.

Theorem (Marcoux, Skoufranis; 2012)

Let $\mathfrak{B} := \overline{\bigcup_{n \ge 1} \mathcal{M}_{2^n}(\mathbb{C})}$ be the 2^{∞} -UHF C*-algebra. Then there exists a normal operator $N \in \mathfrak{B}$ with $\sigma(N) = \overline{\mathbb{D}}$ such that N is a norm limit of nilpotent matrices from $\bigcup_{n \ge 1} \mathcal{M}_{2^n}(\mathbb{C})$.

Lemma

Let \mathfrak{A} be a unital, simple, purely infinite C^* -algebra, let $M \in \mathfrak{A}$ be a normal operator, let $V \in \mathfrak{A}$ be a non-unitary isometry, let $P := VV^*$, and let $\mathfrak{B} := \overline{\bigcup_{\ell \ge 1} \mathcal{M}_{2^\ell}(\mathbb{C})}$ be the unital copy of the 2^{∞} -UHF C^* -algebra as constructed before. Suppose μ is a cluster point of $\sigma(M)$ and $Q \in \mathcal{M}_{2^\ell}(\mathbb{C}) \subseteq \mathfrak{B}$ is a nilpotent matrix for some $\ell \in \mathbb{N}$. Then $VMV^* + \mu(l_{\mathfrak{A}} - P) + Q \in \overline{\mathcal{S}(M)}$.

・ロン ・聞と ・ ほと ・ ほと

Theorem (Skoufranis; 2013)

Let \mathfrak{A} be a unital, simple, purely infinite C^* -algebra and let $N \in \mathfrak{A}$ be a normal operator. Then N is a limit of nilpotent operators if and only if $0 \in \sigma(N)$, $\sigma(N)$ is connected, and $\lambda l_{\mathfrak{A}} - N \in \mathfrak{A}_0^{-1}$ whenever $\lambda \notin \sigma(N)$.

Thanks for Listening!