Computing equilibrium states for self-similar actions

Michael Whittaker (University of Wollongong)

Canadian Operator Symposium 2013 Fields Institute

28 May 2013

Joint with Marcelo Laca, Iain Raeburn, and Jacqui Ramagge Equilibrium states on the Cuntz-Pimsner algebras of self-similar actions http://front.math.ucdavis.edu/1301.4722

Self-similar group actions

Continuing from Marcelo Laca's talk...

- Suppose X is a finite set of cardinality |X|;
 - let X^n denote the set of words of length n in X,

• let
$$X^* = \bigcup_{n \in \mathbb{N}} X^n$$
.

A faithful action of a group G on X* is self-similar if, for all g ∈ G and x ∈ X, there exist unique g|x ∈ G such that

$$g \cdot (xw) = (g \cdot x)(g|_x \cdot w)$$
 for all finite words $w \in X^*$.

The pair (G, X) is referred to as a *self-similar action* and the group element $g|_x$ is called the *restriction* of g to x.

Contracting self-similar actions and Moore diagrams

• A self-similar action (G, X) is *contracting* if there is a finite $S \subset G$ such that for every $g \in G$ there exists $n \in \mathbb{N}$ with

$$\{g|_{\mathbf{v}}: \mathbf{v} \in X^*, |\mathbf{v}| \geq n\} \subset S.$$

• The *nucleus* of a contracting (G, X) is the smallest such S:

$$\mathcal{N}:=\bigcup_{g\in G}\bigcap_{n=0}^{\infty}\{g|_{v}:v\in X^{*},|v|\geq n\}.$$

• Let \mathcal{N} be the nucleus of (G, X). The *Moore diagram* of \mathcal{N} is the labelled directed graph with vertices in \mathcal{N} and edges labelled:

$$g \xrightarrow{(x,y)} g|_x$$

for each self similarity relation $g \cdot (xw) = y(g|_x \cdot w)$.

Theorem (Laca-Raeburn-Ramagge-W '13)

- 1. If $\beta \in [0, \log |X|)$, there are no KMS_{β} states for σ ;
- 2. if $\beta \in (\log |X|, \infty]$, for each normalized trace τ on $C^*(G)$ define $\psi_{\beta,\tau}(S_v U_g S_w^*) = 0$ if $v \neq w$, and

$$\psi_{\beta,\tau}(S_{\mathsf{v}}U_{\mathsf{g}}S_{\mathsf{v}}^*) = (1 - |X|e^{-\beta})\sum_{k=0}^{\infty} e^{-\beta(k+|\mathsf{v}|)} \Big(\sum_{\substack{\mathsf{y}\in\mathsf{X}^k\\\mathsf{g}\cdot\mathsf{y}=\mathsf{y}}} \tau(\delta_{\mathsf{g}|_{\mathsf{y}}})\Big)$$

the map $\tau \mapsto \psi_{\beta,\tau}$ is an affine homeomorphism of Choquet simplices onto the KMS_{β} states of $\mathcal{T}(G, X)$.

3. the $KMS_{\log |X|}$ states of $\mathcal{T}(G, X)$ arise from KMS states of $\mathcal{O}(G, X)$; and there is at least this one:

$$\psi_{\log|X|}(S_v U_g S_w^*) = egin{cases} |X|^{-|v|} c_g & \textit{if } v = w \ 0 & \textit{otherwise} \end{cases}$$

If (G, X) is contractible, this is the only one.

The asymptotic proportion of points fixed by $g \in G$

Let τ be the usual trace on $C^*(G)$, i.e. $\tau(\delta_g) = 0$ unless g = e; then let $\beta \searrow \log |X|$,

$$\psi_{\beta,\tau}(U_g) = (1 - |X|e^{-\beta}) \sum_{k=0}^{\infty} e^{-\beta k} \Big(\sum_{\substack{y \in X^k \\ g \cdot y = y}} \tau(\delta_{g|_y}) \Big) \longrightarrow ??$$

For each $n \in \mathbb{N}$ and $g \in G$ define

$$F_g^n := \{v \in X^n : g \cdot v = v \text{ and } g|_v = e\}.$$

Then $|F_g^k||X|^{-k} \nearrow c_g \in [0,1)$ and since

$$\sum_{\substack{y \in X^k \\ g \cdot y = y}} \tau(\delta_{g|_y}) = |F_g^k|,$$

the above limit is also c_g . How do we actually compute c_g ?

Calculating c_g using the Moore diagram

 To calculate values of the KMS states explicitly, we need to evaluate the limit

$$c_g = \lim_{k \to \infty} |F_g^k| |X|^{-k}$$

• Each $v \in F_g^k$ corresponds to a path μ_v in the Moore diagram:

$$\mu_{\mathbf{v}} := g \xrightarrow{(v_1, v_1)} g|_{v_1} \xrightarrow{(v_2, v_2)} g|_{v_1 v_2} \xrightarrow{(v_3, v_3)} \cdots \xrightarrow{(v_k, v_k)} g|_{\mathbf{v}} = e$$

- Notice that all the labels have the form (x, x).
- Every path with labels (x, x) arises this way.

The odometer

- Let $X = \{0, 1\}$ and $G = \mathbb{Z}$
- (\mathbb{Z}, X) is a self-similar action described by:

$$1 \cdot 0w = 1w \qquad \qquad 1 \cdot 1w = 0(1 \cdot w)$$

for every finite word $w \in X^*$

• For example, $3 \in \mathbb{Z}$ acts on the word 01100 by

 $3 \cdot 01100 = 2 \cdot 11100 = 1 \cdot 00010 = 10010.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The odometer

- The nucleus of the odometer action is $\mathcal{N} = \{0, 1, -1\}.$
- The Moore diagram is:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The odometer

Proposition

The C*-algebra $\mathcal{O}(\mathbb{Z}, X)$ has a unique KMS_{log 2} state, which is given on the nucleus $\mathcal{N} = \{0, 1, -1\}$ by

$$\psi(U_n) = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n = \pm 1 \end{cases}$$

• Sketch of proof.

$$(0,1) \bigcirc -1 \xrightarrow{(1,0)} 0 \xrightarrow{(0,1)} 1 \bigcirc (1,0) \xrightarrow{reduces to} 0 \xrightarrow{(1,1)} 0 \xrightarrow{(1,1)} 1 \bigcirc (1,0) \xrightarrow{reduces to} 0 \xrightarrow{(0,0)} 0 \xrightarrow{(0,$$

The basilica group [Grigorchuk and Żuk 2003]

- Let $X = \{x, y\}$
- Generators a and b have (faithful) self-similar action defined by

$$a \cdot (xw) = y(b \cdot w)$$
 $a \cdot (yw) = xw$
 $b \cdot (xw) = x(a \cdot w)$ $b \cdot (yw) = yw$

for $w \in X^*$.

- The *basilica group* B is the group generated by {a, b}. The pair (B, X) is then a self-similar action.
- The nucleus is $\mathcal{N} = \{e, a, b, a^{-1}, b^{-1}, ba^{-1}, ab^{-1}\}.$
- The basilica group is torsion free, has exponential growth, and is amenable but not elementary amenable.

The basilica group

The Moore diagram of the nucleus:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The basilica group

Proposition

The C^{*}-algebra $\mathcal{O}(B, X)$ has a unique KMS_{log 2} state, which is given on the nucleus $\mathcal{N} = \{e, a, b, a^{-1}, b^{-1}, ab^{-1}, ba^{-1}\}$ by

$$\psi(u_g) = \begin{cases} 1 & \text{for } g = e \\ \frac{1}{2} & \text{for } g = b, b^{-1} \\ 0 & \text{for } g = a, a^{-1}, ab^{-1}, ba^{-1}. \end{cases}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The basilica group

Sketch of proof.

(日)、

-

Computation of c_b for the basilica group

The Grigorchuk group [Grigorchuk 1980]

• Let
$$X = \{x, y\}$$

• Generators *a*, *b*, *c*, and *d* have (faithful) self-similar action defined by

$$\begin{array}{ll} a \cdot xw = yw & a \cdot yw = xw \\ b \cdot xw = x(a \cdot w) & b \cdot yw = y(c \cdot w) \\ c \cdot xw = x(a \cdot w) & c \cdot yw = y(d \cdot w) \\ d \cdot xw = xw & d \cdot yw = y(b \cdot w). \end{array}$$

• The nucleus of the Grigorchuk group is

$$\mathcal{N} = \{e, a, b, c, d\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The Grigorchuk group has intermediate growth and is a finitely generated infinite torsion group.

The Grigorchuk group

The Moore diagram of the nucleus:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Grigorchuk group

Proposition

Let (G, X) be the self-similar action of the Grigorchuk group. Then $(\mathcal{O}(G, X), \sigma)$ has a unique $KMS_{\log 2}$ state ψ which is given on the nucleus $\mathcal{N} = \{e, a, b, c, d\}$ by

$$\psi(U_g) = \begin{cases} 1 & \text{for } g = e \\ 0 & \text{for } g = a \\ 1/7 & \text{for } g = b \\ 2/7 & \text{for } g = c \\ 4/7 & \text{for } g = d. \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Grigorchuk group

Sketch of proof.

Computation of c_d for the Grigorchuk group

References:

- 1. M. Laca and I. Raeburn, *Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers*, Adv. Math. **225** (2010), 643–688.
- 2. M. Laca, I. Raeburn, J. Ramagge, and M. Whittaker, Equilibrium states on the Cuntz-Pimsner algebras of self-similar actions, preprint (2013), ArXiv:
- V. Nekrashevych, C*-algebras and self-similar groups, J. reine angew. Math. 630 (2009), 59–123.
- 4. V. Nekrashevych, *Self-similar groups*, Mathematical Surveys and Monographs **vol. 117**,. Amer. Math. Soc., Providence, RI, 2005.