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Self-similar group actions

Continuing from Marcelo Laca’s talk...

Suppose X is a finite set of cardinality |X |;
let X n denote the set of words of length n in X ,

let X ∗ =
⋃
n∈N

X n.

A faithful action of a group G on X ∗ is self-similar if, for all
g ∈ G and x ∈ X , there exist unique g |x ∈ G such that

g · (xw) = (g · x)(g |x · w) for all finite words w ∈ X ∗.

The pair (G ,X ) is referred to as a self-similar action and the
group element g |x is called the restriction of g to x .



Contracting self-similar actions and Moore diagrams

A self-similar action (G ,X ) is contracting if there is a finite
S ⊂ G such that for every g ∈ G there exists n ∈ N with

{g |v : v ∈ X ∗, |v | ≥ n} ⊂ S .

The nucleus of a contracting (G ,X ) is the smallest such S :

N :=
⋃
g∈G

∞⋂
n=0

{g |v : v ∈ X ∗, |v | ≥ n}.

Let N be the nucleus of (G ,X ). The Moore diagram of N is
the labelled directed graph with vertices in N and edges
labelled:

g g |x
(x ,y)

for each self similarity relation g · (xw) = y(g |x · w).



Theorem (Laca-Raeburn-Ramagge-W ’13)

1. If β ∈ [0, log |X |), there are no KMSβ states for σ;

2. if β ∈ (log |X |,∞], for each normalized trace τ on C ∗(G )
define ψβ,τ (SvUgS∗w ) = 0 if v 6= w, and

ψβ,τ (SvUgS∗v ) = (1− |X |e−β)
∞∑
k=0

e−β(k+|v |)
( ∑

y∈X k

g ·y=y

τ(δg |y )
)

the map τ 7→ ψβ,τ is an affine homeomorphism of Choquet
simplices onto the KMSβ states of T (G ,X ).

3. the KMSlog |X | states of T (G ,X ) arise from KMS states of
O(G ,X ); and there is at least this one:

ψlog |X |(SvUgS∗w ) =

{
|X |−|v |cg if v = w

0 otherwise.

If (G ,X ) is contractible, this is the only one.



The asymptotic proportion of points fixed by g ∈ G

Let τ be the usual trace on C ∗(G ), i.e. τ(δg ) = 0 unless g = e;
then let β ↘ log |X |,

ψβ,τ (Ug ) = (1− |X |e−β)
∞∑
k=0

e−βk
( ∑

y∈X k

g ·y=y

τ(δg |y )
)
−→ ??

For each n ∈ N and g ∈ G define

F n
g := {v ∈ X n : g · v = v and g |v = e}.

Then |F k
g ||X |−k ↗ cg ∈ [0, 1) and since∑

y∈X k

g ·y=y

τ(δg |y ) = |F k
g |,

the above limit is also cg . How do we actually compute cg ?



Calculating cg using the Moore diagram

To calculate values of the KMS states explicitly, we need to
evaluate the limit

cg = lim
k→∞

|F k
g ||X |−k

Each v ∈ F k
g corresponds to a path µv in the Moore diagram:

µv :=g g |v1
(v1,v1)

g |v1v2
(v2,v2) · · ·

(v3,v3)
g |v = e

(vk ,vk )

Notice that all the labels have the form (x , x).

Every path with labels (x , x) arises this way.



The odometer

Let X = {0, 1} and G = Z
(Z,X ) is a self-similar action described by:

1 · 0w = 1w 1 · 1w = 0(1 · w)

for every finite word w ∈ X ∗

For example, 3 ∈ Z acts on the word 01100 by

3 · 01100 = 2 · 11100 = 1 · 00010 = 10010.



The odometer

The nucleus of the odometer action is N = {0, 1,−1}.
The Moore diagram is:

0

(1,1)

(0,0)

1
(0,1)

(1,0)−1
(1,0)

(0,1)



The odometer

Proposition

The C ∗-algebra O(Z,X ) has a unique KMSlog 2 state, which is
given on the nucleus N = {0, 1,−1} by

ψ(Un) =

{
1 for n = 0

0 for n = ±1

Sketch of proof.

0

(1,1)

(0,0)

1
(0,1)

(1,0)−1
(1,0)

(0,1)
reduces to

0

(1,1)

(0,0)

F k
g = F k

g−1 = ∅ so we have c1 = c−1 = limk→∞ 0 · 2−k = 0.



The basilica group [Grigorchuk and Żuk 2003]

Let X = {x , y}
Generators a and b have (faithful) self-similar action defined
by

a · (xw) = y(b · w) a · (yw) = xw

b · (xw) = x(a · w) b · (yw) = yw

for w ∈ X ∗.

The basilica group B is the group generated by {a, b}. The
pair (B,X ) is then a self-similar action.

The nucleus is N = {e, a, b, a−1, b−1, ba−1, ab−1}.
The basilica group is torsion free, has exponential growth, and
is amenable but not elementary amenable.



The basilica group

The Moore diagram of the nucleus:

e

(y ,y)(x ,x)

b

(y ,y)

a

(y ,x)

(x ,y)

(x ,x)

b−1

(y ,y)

a−1

(x ,y)

(y ,x)

(x ,x)

ab−1

(y ,x)

ba−1

(x ,y)(y ,x)

(x ,y)



The basilica group

Proposition

The C ∗-algebra O(B,X ) has a unique KMSlog 2 state, which is
given on the nucleus N = {e, a, b, a−1, b−1, ab−1, ba−1} by

ψ(ug ) =


1 for g = e
1
2 for g = b, b−1

0 for g = a, a−1, ab−1, ba−1.



The basilica group

Sketch of proof.

e

(y ,y)(x ,x)

b (y ,y)

a

(y ,x)

(x ,y)

(x ,x)

b−1
(y ,y)

a−1

(x ,y)

(y ,x)

(x ,x)

ab−1

(y ,x)

ba−1

(x ,y)(y ,x)

(x ,y)

reduces to
e

(y ,y)(x ,x)

b (y ,y) b−1
(y ,y)



Computation of cb for the basilica group

b

a e

e e

e e e e

e e e e e e e e

2−1

cb =
1

2



The Grigorchuk group [Grigorchuk 1980]

Let X = {x , y}
Generators a, b, c , and d have (faithful) self-similar action
defined by

a · xw = yw a · yw = xw
b · xw = x(a · w) b · yw = y(c · w)
c · xw = x(a · w) c · yw = y(d · w)
d · xw = xw d · yw = y(b · w).

The nucleus of the Grigorchuk group is

N = {e, a, b, c , d}.

The Grigorchuk group has intermediate growth and is a
finitely generated infinite torsion group.



The Grigorchuk group

The Moore diagram of the nucleus:

e(y ,y)

(x ,x)

b

a

(x ,y) (y ,x)

(x ,x)

c

(y ,y)

(x ,x)

d
(x ,x)

(y ,y)

(y ,y)



The Grigorchuk group

Proposition

Let (G ,X ) be the self-similar action of the Grigorchuk group.
Then (O(G ,X ), σ) has a unique KMSlog 2 state ψ which is given
on the nucleus N = {e, a, b, c , d} by

ψ(Ug ) =



1 for g = e

0 for g = a

1/7 for g = b

2/7 for g = c

4/7 for g = d .



The Grigorchuk group

Sketch of proof.

e(y ,y)

(x ,x)

b

a

(x ,y) (y ,x)

(x ,x)

c

(y ,y)

(x ,x)

d
(x ,x)

(y ,y)

(y ,y)

reduces to

e(y ,y)

(x ,x)

b

c

(y ,y)

d
(x ,x)

(y ,y)

(y ,y)



Computation of cd for the Grigorchuk group

d

e b

e e a c

e e e e a d

e e e e e e e e e b
...

2−1 2−4

2−7

cd =
1

2

∞∑
n=0

(1

2

)3n
=

1

2

( 1

1− 1
8

)
=

4

7
.
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