Computing equilibrium states for self-similar actions

Michael Whittaker (University of Wollongong)

Canadian Operator Symposium 2013 Fields Institute

28 May 2013

Joint with Marcelo Laca, Iain Raeburn, and Jacqui Ramagge Equilibrium states on the Cuntz-Pimsner algebras of self-similar actions http://front.math.ucdavis.edu/1301[.47](#page-0-0)[22](#page-1-0)

Self-similar group actions

Continuing from Marcelo Laca's talk...

- Suppose X is a finite set of cardinality $|X|$;
	- let $Xⁿ$ denote the set of words of length n in X,

• let
$$
X^* = \bigcup_{n \in \mathbb{N}} X^n
$$
.

A faithful action of a group G on X^* is self-similar if, for all $g \in G$ and $x \in X$, there exist unique $g|_x \in G$ such that

$$
g \cdot (xw) = (g \cdot x)(g\vert_x \cdot w) \quad \text{ for all finite words } w \in X^*.
$$

The pair (G, X) is referred to as a self-similar action and the group element $g|_{x}$ is called the *restriction* of g to x.

KORKAR KERKER EL VOLO

Contracting self-similar actions and Moore diagrams

• A self-similar action (G, X) is contracting if there is a finite $S \subset G$ such that for every $g \in G$ there exists $n \in \mathbb{N}$ with

$$
\{g|_v: v\in X^*, |v|\geq n\}\subset S.
$$

• The nucleus of a contracting (G, X) is the smallest such S:

$$
\mathcal{N} := \bigcup_{g \in G} \bigcap_{n=0}^{\infty} \{g|_{v} : v \in X^*, |v| \geq n\}.
$$

• Let $\mathcal N$ be the nucleus of (G, X) . The Moore diagram of $\mathcal N$ is the labelled directed graph with vertices in $\mathcal N$ and edges labelled:

$$
g \xrightarrow{(x,y)} g|_x
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

for each self similarity relation $g \cdot (xw) = y(g|_x \cdot w)$.

Theorem (Laca-Raeburn-Ramagge-W '13)

- 1. If $\beta \in [0, \log |X|)$, there are no KMS_{β} states for σ ;
- 2. if $\beta \in (\log |X|, \infty]$, for each normalized trace τ on $C^*(G)$ define $\psi_{\beta,\tau}(\mathsf{S}_{\mathsf{v}}\mathsf{U}_{\mathsf{g}}\mathsf{S}_{\mathsf{w}}^*)=0$ if $\mathsf{v}\neq\mathsf{w}$, and

$$
\psi_{\beta,\tau}(S_vU_gS_v^*) = (1-|X|e^{-\beta})\sum_{k=0}^{\infty}e^{-\beta(k+|v|)}\Big(\sum_{\substack{y\in X^k\\ g\cdot y=y}}\tau(\delta_{g|_y})\Big)
$$

the map $\tau \mapsto \psi_{\beta,\tau}$ is an affine homeomorphism of Choquet simplices onto the KMS_β states of $T(G, X)$.

3. the KMS $_{\log |X|}$ states of $\mathcal{T}(G,X)$ arise from KMS states of $\mathcal{O}(G, X)$; and there is at least this one:

$$
\psi_{\log |X|}(S_v U_g S_w^*) = \begin{cases} |X|^{-|v|} c_g & \text{if } v = w \\ 0 & \text{otherwise.} \end{cases}
$$

If (G, X) is contractible, this is the onl[y o](#page-2-0)[ne](#page-4-0)[.](#page-2-0)

The asymptotic proportion of points fixed by $g \in G$

Let τ be the usual trace on $C^*(G)$, i.e. $\tau(\delta_g)=0$ unless $g=e;$ then let $\beta \searrow$ log $|X|$,

$$
\psi_{\beta,\tau}(U_g) = (1-|X|e^{-\beta})\sum_{k=0}^{\infty} e^{-\beta k} \Big(\sum_{\substack{y \in X^k \\ g \cdot y = y}} \tau(\delta_{g|_y})\Big) \longrightarrow ??
$$

For each $n \in \mathbb{N}$ and $g \in G$ define

$$
F_g^n := \{v \in X^n : g \cdot v = v \text{ and } g|_v = e\}.
$$

Then $|F_{\cal g}^k||X|^{-k} \,\,\nearrow\,\,\, c_{\cal g} \in [0,1)$ and since

$$
\sum_{\substack{y\in X^k\\g:y=y}}\tau(\delta_{g|_y})=|F_g^k|,
$$

the above limit is also c_g . How do we actually compute c_g ?

Calculating c_g using the Moore diagram

To calculate values of the KMS states explicitly, we need to evaluate the limit

$$
c_g = \lim_{k \to \infty} |F_g^k||X|^{-k}
$$

Each $v \in F_g^k$ corresponds to a path μ_v in the Moore diagram:

$$
\mu_{v} := g \xrightarrow{(v_1,v_1)} g|_{v_1} \xrightarrow{(v_2,v_2)} g|_{v_1v_2} \xrightarrow{(v_3,v_3)} \cdots \xrightarrow{(v_k,v_k)} g|_{v} = e
$$

KID KA KERKER E VOOR

- Notice that all the labels have the form (x, x) .
- Every path with labels (x, x) arises this way.

The odometer

- Let $X = \{0, 1\}$ and $G = \mathbb{Z}$
- \bullet (\mathbb{Z}, X) is a self-similar action described by:

$$
1\cdot 0w=1w \qquad \qquad 1\cdot 1w=0(1\cdot w)
$$

for every finite word $w \in X^*$

• For example, $3 \in \mathbb{Z}$ acts on the word 01100 by

 $3 \cdot 01100 = 2 \cdot 11100 = 1 \cdot 00010 = 10010.$

KORK ERKER ADE YOUR

The odometer

- The nucleus of the odometer action is $\mathcal{N} = \{0, 1, -1\}.$
- The Moore diagram is:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

The odometer

Proposition

The C^{*}-algebra $O(\mathbb{Z}, X)$ has a unique $KMS_{\log 2}$ state, which is given on the nucleus $\mathcal{N} = \{0, 1, -1\}$ by

$$
\psi(U_n) = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n = \pm 1 \end{cases}
$$

• Sketch of proof.

$$
(0,1) \t\t\t\t\begin{array}{@{}c@{\hspace{1em}}c@{\hspace
$$

The basilica group [Grigorchuk and Zuk 2003]

- Let $X = \{x, y\}$
- Generators a and b have (faithful) self-similar action defined by

$$
a \cdot (xw) = y(b \cdot w) \qquad a \cdot (yw) = xw
$$

$$
b \cdot (xw) = x(a \cdot w) \qquad b \cdot (yw) = yw
$$

for $w \in X^*$.

- The *basilica group* B is the group generated by $\{a, b\}$. The pair (B, X) is then a self-similar action.
- The nucleus is $\mathcal{N} = \{e, a, b, a^{-1}, b^{-1}, ba^{-1}, ab^{-1}\}.$
- The basilica group is torsion free, has exponential growth, and is amenable but not elementary amenable.

KORKAR KERKER EL VOLO

The basilica group

The Moore diagram of the nucleus:

イロト イ部 トイ君 トイ君 ト È 2990

The basilica group

Proposition

The C^{*}-algebra $O(B, X)$ has a unique KMS_{log2} state, which is given on the nucleus $\mathcal{N}=\{\text{e}, \text{a}, \text{b}, \text{a}^{-1}, \text{b}^{-1}, \text{a}\text{b}^{-1}, \text{b}\text{a}^{-1}\}$ by

$$
\psi(u_g) = \begin{cases} 1 & \text{for } g = e \\ \frac{1}{2} & \text{for } g = b, b^{-1} \\ 0 & \text{for } g = a, a^{-1}, ab^{-1}, ba^{-1}. \end{cases}
$$

KORKA SERKER ORA

The basilica group

Sketch of proof.

 $2Q$

∍

K ロ ト K 伊 ト K ヨ ト

B

Computation of c_b for the basilica group

The Grigorchuk group [Grigorchuk 1980]

• Let
$$
X = \{x, y\}
$$

• Generators a, b, c , and d have (faithful) self-similar action defined by

$a \cdot xw = yw$	$a \cdot yw = xw$
$b \cdot xw = x(a \cdot w)$	$b \cdot yw = y(c \cdot w)$
$c \cdot xw = x(a \cdot w)$	$c \cdot yw = y(d \cdot w)$
$d \cdot xw = xw$	$d \cdot yw = y(b \cdot w)$

• The nucleus of the Grigorchuk group is

$$
\mathcal{N} = \{e, a, b, c, d\}.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

• The Grigorchuk group has intermediate growth and is a finitely generated infinite torsion group.

The Grigorchuk group

The Moore diagram of the nucleus:

イロメ イ団メ イ君メ イ君メー 活 2990

The Grigorchuk group

Proposition

Let (G, X) be the self-similar action of the Grigorchuk group. Then $(\mathcal{O}(G, X), \sigma)$ has a unique KMS_{log 2} state ψ which is given on the nucleus $\mathcal{N} = \{e, a, b, c, d\}$ by

$$
\psi(U_g) = \begin{cases}\n1 & \text{for } g = e \\
0 & \text{for } g = a \\
1/7 & \text{for } g = b \\
2/7 & \text{for } g = c \\
4/7 & \text{for } g = d.\n\end{cases}
$$

KORK ERKER ADE YOUR

The Grigorchuk group

Sketch of proof.

 $2Q$

∍

Þ **B**

K ロ ▶ | K 伊 ▶ | K ヨ

Computation of c_d for the Grigorchuk group

References:

- 1. M. Laca and I. Raeburn, Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers, Adv. Math. 225 (2010), 643–688.
- 2. M. Laca, I. Raeburn, J. Ramagge, and M. Whittaker, Equilibrium states on the Cuntz-Pimsner algebras of self-similar actions, preprint (2013), ArXiv:
- 3. V. Nekrashevych, C^{*}-algebras and self-similar groups, J. reine angew. Math. 630 (2009), 59–123.
- 4. V. Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs vol. 117,. Amer. Math. Soc., Providence, RI, 2005.

4 D > 4 P + 4 B + 4 B + B + 9 Q O