The ideal free strategy with weak Allee effect

Daniel S. Munther

York University

April 12, 2013

Ecology and dispersal

Which patterns of dispersal provide an evolutionary advantage in a variable environment?

Unbiased dispersal - independent of habitat, population density, etc.

• Biased dispersal - depends on one or more factors

Generalized two species model

(Cantrell et al. 2010)

$$
u_t = \mu \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty),
$$

\n
$$
v_t = \nu \nabla \cdot [\nabla v - v \nabla Q(x)] + v[m(x) - u - v] \quad \text{in } \Omega \times (0, \infty),
$$

\n
$$
[\nabla u - u \nabla P] \cdot n = [\nabla v - v \nabla Q] \cdot n = 0 \text{ on } \partial \Omega \times (0, \infty)
$$
 (1)

- **•** Species have same population dynamics but different movement strategies
- $m(x) > 0$ is nonconstant (spatially inhomogeneous)
- Semi-trivial steady states: $(u^*,0)$ and $(0, v^*)$
- • Is there a strategy $P(x)$ which cannot be invaded?

Single species distribution

Diffusion creates a mismatch between population density at steady state and habitat quality $m(x)$ (Cantrell et al. 2010)

$$
\mu \nabla \cdot [\nabla u - u \nabla P(x)] + u[m(x) - u] = 0 \text{ in } \Omega,
$$

$$
[\nabla u - u \nabla P(x)] \cdot n = 0 \text{ on } \partial \Omega.
$$

• If
$$
P(x) = \ln m(x)
$$
, $u \equiv m$ is a positive steady state.

• No net movement:

$$
\nabla u - u \nabla P(x) = \nabla m - m \nabla \ln m = \nabla m - \nabla m = 0
$$

- Fitness equilibrated throughout the habitat: $\frac{m}{u} \equiv 1$.
- We call $P = \ln m$ an Ideal Free Strategy (IFS).

Habitat Selection Theory (Fretwell and Lucas 1970):

- **1** Choose most suitable habitat (ideal)
- **2** Can move into any desired region (free)

Ideal Free Distribution: A species will aggregate in a location proportionately to the amount of available resources in that location

Before feeding, randomly distributed

Evolutionary stable strategy

• Cantrell et al. showed that $P = \ln m$ is a local evolutionary stable strategy (ESS) and no other strategy can be a local ESS.

Theorem

(Averill et al.) Suppose that $P = \ln m$ and $Q - \ln m$ is nonconstant. Then $(0, v^*)$ is unstable and $(u^*, 0)$ is globally asymptotically stable.

- Biologically, $P = \ln m$ is a global ESS.
- • Main Question: Does this result still hold when $u(m - u - v)$ is replaced by $u^2(m - u - v)$ in model (1)?

Modified model (Munther, JDE 2013)

$$
u_t = \mu \nabla \cdot [\nabla u - u \nabla \ln(m)] + u^2(m - u - v) \quad \text{in } \Omega \times (0, \infty),
$$

\n
$$
v_t = \nu \nabla \cdot [\nabla v - \beta v \nabla \ln(m)] + v(m - u - v) \quad \text{in } \Omega \times (0, \infty), \quad (2)
$$

\n
$$
[\nabla u - u \nabla \ln(m)] \cdot n = [\nabla v - \beta v \nabla \ln(m)] \cdot n = 0 \quad \text{on } \partial \Omega \times (0, \infty).
$$

Why is this interesting?

- \bullet u is subject to weak Allee effect (species no longer have the same population dynamics)
- **•** Interplay between IFS and weak Allee effect
- • Invasion dynamics not useful for any $\beta \in [0, \infty)$

$\beta = 0$ case

Theorem (1)

Suppose $m\in C^2(\bar{\Omega})$ is positive and non-constant. Then for $\beta=0$ and any μ , $\nu > 0$, any solution (u, v) of (2) with nonnegative, not identically zero initial data converges to $(m, 0)$ in $L^{\infty}(\Omega)$ as $t \to \infty$.

- \bullet u cannot only invade v, but it drives v to extinction no matter its diffusion rate
- **IFS** offsets the weak Allee effect

Proof of Theorem (1)

- Recast model as dynamical system $S[u, v]$ on $C(\overline{\Omega}) \times C(\overline{\Omega})$.
- The order interval $G = [(0, v^*), (m, 0)]$ is a basin of attraction.

• Define
$$
E(u, v) = \int_{\Omega} \frac{m^2}{u} + 2m \ln u - u + \frac{v^2}{2}
$$
.

•
$$
\frac{dE}{dt} = -\mu \int_{\Omega} \frac{2m|\nabla(u/m)|^2 (1-(u/m))}{(u/m)^3} - \nu \int_{\Omega} |\nabla v|^2
$$

$$
- \int_{\Omega} ((m-u)^2 - v^2)(m-u-v) \le 0 \text{ on } G.
$$

By LaSalle's invariance principal for infinite dimensions, $S[u, v] \rightarrow (m, 0)$.

$\beta \ll 1$ case

Theorem (2)

Suppose $m\in C^2(\bar\Omega)$ is positive and non-constant. Then there exists $0 < \beta^* < 1$ such that for all $\beta \in (0,\beta^*)$ and any μ , $\nu > 0$, any solution (u, v) of (2) with nonnegative, not identically zero initial data converges to $(m, 0)$ in $L^{\infty}(\Omega)$ as $t \to \infty$.

- Again, u is sole winner as IFS is able to still offset the Allee effect.
- • Proof for Theorem (2) is more tricky.

Remarks

- Conjecture: Theorem (2) holds for all $\beta \in (0,1)$. First, $(0, v^*)$ is unstable for $\beta \in (0, 1)$, since $\int_{\Omega} m^2(m - v^*) > 0$. Second, numerics indicate no positive steady states.
- For the $\beta = 1$ case, both species are playing IFS and hence coexist. System (2) has a continuum of positive steady states of the form $(s, m, (1 - s)m)$ for $s \in (0, 1)$.
- For the $\beta >> 1$ case, we can show $(0, v^*)$ is unstable. Conjecture: u (IFS) should be the sole winner as in Theorem (2) . For m with single max in Ω , we can prove this (Adrian Lam).

Intermediate $\beta \in (1, 1 + \epsilon)$ case

Current work (with Adrian Lam):

- We can show that $\int_{\Omega} m^2(m v^*)$ < 0.
- Using upper/lower solution argument, eliminate positive steady states near $(0, v^*)$.
- By monotonicity, we can show that $(0, v^*)$ is locally asymptotically stable.

Fundamentally different:

- The winning strategy is no longer a "resource matching" strategy.
- **•** Biological explanation?

Intermediate $\beta > 1$ case

Numerical example:

Figure: $m(x) = 3e^{-50(x-.2)^2} + 1.7e^{-40(x-.8)^2} + .2$ (black) and u (red) and v (blue), $\mu = 1000$, $\nu = 1000$, $\beta = 1.7$ a) two species at $T = 1.5$, b) $T = 10^5$.

- The growth rate for u near $x = 0.8$ is $m(x) v(x, t) > 0$ for all $t > T_0$.
- • For β in this range, v can defeat u even when u has significant initial numbers.

Summary:

- For $\beta \in [0,1)$ and $[\beta^*,\infty)$, the ideal free disperser dominates.
- For $\beta = 1$, coexistence as both species are ideal free dispersers
- For intermediate $\beta > 1$, the ideal free strategy cannot invade.

Future work:

- Prove global stability of $(0, v^*)$ for $\beta \in (1, 1 + \epsilon)$.
- • *u* subject to a strong Allee effect

References

- R.S. Cantrell, C. Cosner, and Y. Lou, Evolution of dispersal and ideal free distribution, Math Bios. Eng., Vol 7 (2010) 17-36.
- I. Averill, Y. Lou, and D. Munther, On several conjectures from evolution of dispersal, J. Biol. Dynamics, 6 (2012) 117-130.
- D. Munther, The ideal free strategy with weak Allee effect, J. Differential Equations, 254 (2013) 1728-1740.

Acknowledgement

Adrian Lam (MBI), Yuan Lou (OSU), and Jianhong Wu

Support:

- o NSERC
- Canada Research Chairs Program
- **•** Fields Institute
- • Mitacs and Mprime Centre for Disease Modeling