WALKS ON ORDINALS AND THEIR CHARACTERISTICS

Stevo Todorcevic

Fields Institute, Sept. 6, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

- 1. Initial Motivations
- 2. Von Neumann's ordinals and Cantor's normal form

- 3. The classical notion of walk
- 4. The minimal walk and its characteristics
- 5. The oscillation of traces
- 6. Matric theory on ordinals
- 7. The canonical tree
- 8. The canonical linear ordering
- 9. The canonical ultrafilter

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Theorem (Ramsey, 1930)

Let L be a finite relational signature and let \mathcal{K}_L be the collection of all L-structures on the domain ω .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Ramsey, 1930)

Let L be a finite relational signature and let \mathcal{K}_L be the collection of all L-structures on the domain ω . Then the class \mathcal{K}_L has a finite **Ramsey basis**, *i.e.*, a finite list

$$\mathfrak{B}_1, ..., \mathfrak{B}_{n(L)}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

of L-structures on ω

Theorem (Ramsey, 1930)

Let L be a finite relational signature and let \mathcal{K}_L be the collection of all L-structures on the domain ω . Then the class \mathcal{K}_L has a finite **Ramsey basis**, *i.e.*, a finite list

 $\mathfrak{B}_1, ..., \mathfrak{B}_{n(L)}$

of L-structures on ω such that for every $\mathfrak{A} \in \mathcal{K}_L$ there is $1 \leq i \leq n(L)$ and an infinite set $M \subseteq \omega$ such that

 $\mathfrak{A} \upharpoonright M = \mathfrak{B}_i \upharpoonright M.$

Theorem (Ramsey, 1930)

Let L be a finite relational signature and let \mathcal{K}_L be the collection of all L-structures on the domain ω . Then the class \mathcal{K}_L has a finite **Ramsey basis**, *i.e.*, a finite list

 $\mathfrak{B}_1, ..., \mathfrak{B}_{n(L)}$

of L-structures on ω such that for every $\mathfrak{A} \in \mathcal{K}_L$ there is $1 \leq i \leq n(L)$ and an infinite set $M \subseteq \omega$ such that

 $\mathfrak{A} \upharpoonright M = \mathfrak{B}_i \upharpoonright M.$

Question

Can there be a similar result for other index-sets Γ in place of ω ? What about the set ω_1 of all countable ordinals?

The special case: Equivalence relations

▲ロト ▲圖 ▶ ▲ 国 ト ▲ 国 ・ の Q () ・

The special case: Equivalence relations

Theorem (Ramsey 1930)

For every positive integer k the class of equivalence relations $\ensuremath{\mathcal{E}}$ on

$$[\omega]^k = \{x \subseteq \omega : |x| = k\}$$

with finite quotients $[\omega]^k / \mathcal{E}$ has the 1-element Ramsey basis

$$\mathcal{E}_k = \{(a, b) \in [\omega]^k \times [\omega]^k : a = a\},\$$

the equivalence relation with only one equivalence class.

The special case: Equivalence relations

Theorem (Ramsey 1930)

For every positive integer k the class of $\textbf{equivalence relations}~\mathcal{E}$ on

$$[\omega]^k = \{x \subseteq \omega : |x| = k\}$$

with finite quotients $[\omega]^k / \mathcal{E}$ has the 1-element Ramsey basis

$$\mathcal{E}_k = \{(a, b) \in [\omega]^k \times [\omega]^k : a = a\},$$

the equivalence relation with only one equivalence class.

Theorem (Erdős-Rado 1950)

For every positive integer k the class of **all** equivalence relations on $[\omega]^k$ has the 2^k -element Ramsey basis

$$E_I \ (I \in \mathcal{P}(k)),$$

where for $I \subseteq \{0, 1, ..., k - 1\}$ and $a, b \in [\omega]^k$ we set $a \in E_I$ b iff $a \upharpoonright I = b \upharpoonright I$.

Accessible cardinals

Remark

- 1. No other **accessible** index set Γ can have such a strong property, a 1-element Ramsey basis for even equivalence relations on $[\Gamma]^2$.
- 2. For example, the class of equivalence relations on $[\mathbb{R}]^2$ has no finite Ramsey basis (Galvin-Shelah 1973).

Accessible cardinals

Remark

- 1. No other **accessible** index set Γ can have such a strong property, a 1-element Ramsey basis for even equivalence relations on $[\Gamma]^2$.
- 2. For example, the class of equivalence relations on $[\mathbb{R}]^2$ has no finite Ramsey basis (Galvin-Shelah 1973).

Question

Are there **accessible** index sets Γ for which the class of equivalence relations on $[\Gamma]^2$ admits a **finite** Ramsey basis? What about the set ω_1 of all countable ordinals?

Theorem (Erdős-Hajnal-Rado, 1965)

If Γ is, for example, equal to

$$\beth_{\omega} = \sup\{2^{\omega}, 2^{2^{\omega}}, ...\}$$

then for every positive integer k there is an equivalence relation \mathcal{E}_k on $[\Gamma]^k$ with 2^{k-1} classes such that for every other equivalence relation \mathcal{E} on $[\Gamma]^k$ with **finite quotient space** there is $X \subseteq \Gamma$ of cardinality Γ such that

$$\mathcal{E} \upharpoonright [X]^k \subseteq \mathcal{E}_k \upharpoonright [X]^k.$$

Moreover \mathcal{E}_k is **irreducible** in the sense that

$$|[X]^k/\mathcal{E}_k|=2^{k-1}$$

for every $X \subseteq \Gamma$ of cardinality Γ .

Fix three orthogonal total orderings

 $<, <_{S}, <_{A}$

of ω_1 with < the usual well-ordering of ω_1 .

Fix three orthogonal total orderings

 $<,<_S,<_A$

of ω_1 with < the usual well-ordering of ω_1 . Let \mathcal{GS}_2 be the equivalence relation on $[\omega_1]^2$ defined by letting $\{\alpha, \beta\}$ be equivalent to $\{\gamma, \delta\}$ iff

 $(\forall R \in \{<,<_{\mathcal{S}},<_{\mathcal{A}}\})[\alpha R\beta \Leftrightarrow \gamma R\delta].$

Fix three orthogonal total orderings

 $<, <_S, <_A$

of ω_1 with < the usual well-ordering of ω_1 . Let \mathcal{GS}_2 be the equivalence relation on $[\omega_1]^2$ defined by letting $\{\alpha, \beta\}$ be equivalent to $\{\gamma, \delta\}$ iff

$$(\forall R \in \{<,<_{\mathcal{S}},<_{\mathcal{A}}\})[\alpha R\beta \Leftrightarrow \gamma R\delta].$$

Theorem (Sierpinski 1933; Galvin-Shelah 1973) The equivalence relation \mathcal{GS}_2 is irreducible, *i.e.*,

$$|[X]^2/\mathcal{GS}_2| = 4$$

for all uncountable $X \subseteq \omega_1$.

1. The cofinality of the continuum is at least ω_2 , so in particular CH is false.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 1. The cofinality of the continuum is at least ω_2 , so in particular CH is false.
- The class of graphs on uncountable vertex-sets have a finite basis. In particular any **open graph** on an uncountable separable metric space has an uncountable complete or discrete subgraph.

- 1. The cofinality of the continuum is at least ω_2 , so in particular CH is false.
- The class of graphs on uncountable vertex-sets have a finite basis. In particular any **open graph** on an uncountable separable metric space has an uncountable complete or discrete subgraph.
- 3. The class of uncountable **linear orderings** has a 5-element basis.

- 1. The cofinality of the continuum is at least ω_2 , so in particular CH is false.
- The class of graphs on uncountable vertex-sets have a finite basis. In particular any **open graph** on an uncountable separable metric space has an uncountable complete or discrete subgraph.
- 3. The class of uncountable **linear orderings** has a 5-element basis.
- 4. The class of uncountable **Hausdorff spaces** have a finite basis. In particular, the class of uncountable regular spaces has a 3-element basis.

- 1. The cofinality of the continuum is at least ω_2 , so in particular CH is false.
- The class of graphs on uncountable vertex-sets have a finite basis. In particular any **open graph** on an uncountable separable metric space has an uncountable complete or discrete subgraph.
- 3. The class of uncountable **linear orderings** has a 5-element basis.
- 4. The class of uncountable **Hausdorff spaces** have a finite basis. In particular, the class of uncountable regular spaces has a 3-element basis.
- 5. If a graph G on the vertex-set ω_1 has an uncountable complete or discrete subgraph iff G has such a subgraph in a **forcing extension** which preserves ω_1

Von Neumann's ordinals and Cantor's normal form

Von Neumann's ordinals:

$$\beta = \{\alpha : \alpha < \beta\}$$

$$\begin{split} 0 = \emptyset, \quad 1 = \{0\}, \quad 2 = \{0, 1\}, \quad 3 = \{0, 1, 2\}, ..., \\ \omega = \{0, 1, 2,\}, \quad \omega + 1 = \omega \cup \{\omega\}, \quad \omega + 2 = \omega \cup \{\omega, \omega + 1\}, \end{split}$$

Von Neumann's ordinals and Cantor's normal form

Von Neumann's ordinals:

$$\beta = \{\alpha : \alpha < \beta\}$$

$$\begin{array}{ll} 0=\emptyset, & 1=\{0\}, & 2=\{0,1\}, & 3=\{0,1,2\},...,\\ \omega=\{0,1,2,....\}, & \omega+1=\omega\cup\{\omega\}, & \omega+2=\omega\cup\{\omega,\omega+1\},.....\end{array}$$

Cantor's normal form:

$$\alpha = n_1 \omega^{\alpha_1} + n_2 \omega^{\alpha_2} + \dots + n_k \omega^{\alpha_k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $\alpha_1 > \alpha_2 > \cdots > \alpha_k \ge 0$ are ordinals and $n_1, n_2, ..., n_k$ natural numbers.

Fundamental sequences below $\varepsilon_0 = \min\{\alpha : \alpha = \omega^{\alpha}\}$

<□ > < @ > < E > < E > E のQ @

Fundamental sequences below $\varepsilon_0 = \min\{\alpha : \alpha = \omega^{\alpha}\}$

$$\mathcal{C}_{lpha} = \{ c_{lpha}(0), c_{lpha}(1), c_{lpha}(2), \}
earrow lpha :$$
 $c_{lpha+1}(n) = lpha,$

 $c_{\omega}(n) = n,$

$$c_{\beta+\omega^{\alpha+1}}(n)=\beta+n\omega^{\alpha},$$

$$c_{\beta+\omega^{\alpha}}(n)=eta+\omega^{c_{\alpha}(n)},$$

$$c_{arepsilon_0}(n+1)=\omega^{c_{arepsilon_0}(n)}.$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQで

<□ > < @ > < E > < E > E のQ @

$$\alpha \curvearrowright c_{\alpha}(n) \curvearrowright c_{c_{\alpha}(n)}(n+1) \curvearrowright c_{c_{\alpha}(n)}(n+1)(n+2) \cdots$$

$$\alpha \curvearrowright c_{\alpha}(n) \curvearrowright c_{c_{\alpha}(n)}(n+1) \curvearrowright c_{c_{\alpha}(n)}(n+1)(n+2) \cdots$$

Theorem (S. S. Wainer, 1970)

For a given integer n, the length of the classical walk from α to 0 starting with $\alpha \curvearrowright c_{\alpha}(n)$ is equal to $H_{\alpha}(n)$.

$$\alpha \curvearrowright c_{\alpha}(n) \curvearrowright c_{c_{\alpha}(n)}(n+1) \curvearrowright c_{c_{\alpha}(n)}(n+1)(n+2) \cdots$$

Theorem (S. S. Wainer, 1970)

For a given integer n, the length of the classical walk from α to 0 starting with $\alpha \curvearrowright c_{\alpha}(n)$ is equal to $H_{\alpha}(n)$.

Definition (G.H. Hardy, 1904)

 $egin{aligned} &H_0(n)=n,\ &H_{lpha+1}(n)=H_{lpha}(n+1),\ &H_{lpha}(n)=H_{c_{lpha}(n)}(n). \end{aligned}$

Minimal step from β towards $\alpha < \beta$:

Minimal step from β towards $\alpha < \beta$:

 $\beta \curvearrowright c_{\beta}(n(\alpha,\beta)),$

where

$$n(\alpha,\beta) = \min\{n : c_{\beta}(n) \ge \alpha\}.$$

・ロト・日本・モト・モート ヨー うへで

Minimal step from β towards $\alpha < \beta$:

 $\beta \curvearrowright c_{\beta}(n(\alpha,\beta)),$

where

$$n(\alpha,\beta) = \min\{n : c_{\beta}(n) \ge \alpha\}.$$

Minimal walk from β towards α is a finite decreasing sequence

$$\beta = \beta_0 \frown \beta_1 \frown \cdots \frown \beta_k = \alpha$$

Minimal step from β towards $\alpha < \beta$:

 $\beta \curvearrowright c_{\beta}(n(\alpha,\beta)),$

where

$$n(\alpha,\beta) = \min\{n : c_{\beta}(n) \ge \alpha\}.$$

Minimal walk from β towards α is a finite decreasing sequence

$$\beta = \beta_0 \frown \beta_1 \frown \cdots \frown \beta_k = \alpha$$

such that for all i < k, the step $\beta_i \frown \beta_{i+1}$ is the minimal step from β_i towards α , i.e.

$$\beta_{i+1} = c_{\beta_i}(n(\alpha, \beta_i)).$$
The full code of the walk

The full code of the walk

The full code of the minimal walk is given by the formula

$$\rho_0(\alpha,\beta) = n(\alpha,\beta)^{\frown} \rho_0(\alpha, c_\beta(n(\alpha,\beta))),$$

with the boundary value

 $\rho_0(\alpha, \alpha) = \emptyset.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The full code of the walk

The full code of the minimal walk is given by the formula

$$\rho_0(\alpha,\beta) = n(\alpha,\beta)^{\frown} \rho_0(\alpha, c_\beta(n(\alpha,\beta))),$$

with the boundary value

$$\rho_0(\alpha,\alpha) = \emptyset.$$

Note that this is simply the sequence of integers

$$\rho_0(\alpha,\beta) = (n(\alpha,\beta_i):i < k)$$

that code the steps of the minimal walk

$$\beta = \beta_0 \curvearrowright \beta_1 \curvearrowright \cdots \curvearrowright \beta_k = \alpha.$$

The weight characteristic of the walk is given by

The weight characteristic of the walk is given by

$$\rho_1(\alpha,\beta) = \max \begin{cases} n(\alpha,\beta), \\ \rho_1(\alpha,c_\beta(n(\alpha,\beta))) \end{cases}$$

with the boundary value

$$\rho_1(\alpha,\alpha)=0.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The weight characteristic of the walk is given by

$$\rho_1(\alpha,\beta) = \max \begin{cases} n(\alpha,\beta), \\ \rho_1(\alpha,c_\beta(n(\alpha,\beta))) \end{cases}$$

with the boundary value

$$\rho_1(\alpha,\alpha)=0.$$

The length of the walk is given by

$$\rho_2(\alpha,\beta) = \rho_2(\alpha, c_\beta(n(\alpha,\beta))) + 1$$

with the boundary value

$$\rho_2(\alpha,\alpha)=0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The fundamental property of $\rho_0(\alpha, \beta)$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

The fundamental property of $\rho_0(\alpha, \beta)$

If the finite sequence of integers

$$\rho_0(\alpha,\beta) = \langle n_0, n_1, n_2, ..., n_k \rangle$$

is identified with the rational number

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The fundamental property of $\rho_0(\alpha, \beta)$

If the finite sequence of integers

$$\rho_0(\alpha,\beta) = \langle n_0, n_1, n_2, ..., n_k \rangle$$

is identified with the rational number

$$\frac{1}{n_0+\frac{1}{n_1+\frac{1}{n_2+\dots\frac{1}{n_k}}}}$$

then the Von Neumann equality

$$\beta = \{\alpha : \alpha < \beta\}$$

becomes the identification

$$\beta \cong \{\rho_0(\alpha,\beta) : \alpha < \beta\} \subseteq \mathbb{Q}.$$

Two fundamental properties of $\rho_1(\alpha, \beta)$

<□ > < @ > < E > < E > E のQ @

Two fundamental properties of $\rho_1(\alpha,\beta)$

(Enumeration:) For every β and every n,

$$\{\alpha < \beta : \rho_1(\alpha, \beta) = n\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

is a finite set.

Two fundamental properties of $\rho_1(\alpha, \beta)$

(Enumeration:) For every β and every n,

$$\{\alpha < \beta : \rho_1(\alpha, \beta) = n\}$$

is a finite set.

(Coherence:) For all $\alpha < \beta$,

$$\{\xi < \alpha : \rho_1(\xi, \alpha) \neq \rho_1(\xi, \beta)\}$$

is a finite set.

Two fundamental properties of $\rho_2(\alpha, \beta)$

<□ > < @ > < E > < E > E のQ @

Two fundamental properties of $\rho_2(\alpha, \beta)$

(Unboundedness:)

For every pair A and B of uncountable subsets of ω_1 ,

 $\sup\{\rho_2(\alpha,\beta): \alpha \in A, \beta \in B, \ \alpha < \beta\} = \infty.$

Two fundamental properties of $\rho_2(\alpha, \beta)$

(**Unboundedness:**) For every pair A and B of uncountable subsets of ω_1 ,

$$\sup\{\rho_2(\alpha,\beta): \alpha \in A, \beta \in B, \ \alpha < \beta\} = \infty.$$

 $(\ell_{\infty}$ -Coherence:) For every $\alpha < \beta < \omega_1$,

$$\sup_{\xi < \alpha} |\rho_1(\xi, \alpha) - \rho_2(\xi, \beta)| < \infty.$$

▲□▶ ▲圖▶ ▲≧▶ ▲≣▶ = 目 - のへで

$$\rho(\alpha,\beta) = \max \begin{cases} n(\alpha,\beta) \\ \rho(\alpha,c_{\beta}(n(\alpha,\beta))) \\ \rho(c_{\beta}(n),\alpha) & n < n(\alpha,\beta). \end{cases}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

with the boundary value $\rho(\alpha, \alpha) = 0$.

$$\rho(\alpha,\beta) = \max \begin{cases} n(\alpha,\beta) \\ \rho(\alpha,c_{\beta}(n(\alpha,\beta))) \\ \rho(c_{\beta}(n),\alpha) & n < n(\alpha,\beta). \end{cases}$$

with the boundary value $\rho(\alpha, \alpha) = 0$. (Enumeration:) For every β and every n,

$$\{\alpha < \beta : \rho(\alpha, \beta) = n\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

is a finite set.

$$\rho(\alpha,\beta) = \max \begin{cases} n(\alpha,\beta) \\ \rho(\alpha,c_{\beta}(n(\alpha,\beta))) \\ \rho(c_{\beta}(n),\alpha) & n < n(\alpha,\beta). \end{cases}$$

with the boundary value $\rho(\alpha, \alpha) = 0$. (Enumeration:) For every β and every n,

$$\{\alpha < \beta : \rho(\alpha, \beta) = n\}$$

is a finite set. (Triangle inequalities:) For all $\alpha < \beta < \gamma$,

$$\rho(\alpha, \gamma) \leq \max\{\rho(\alpha, \beta), \rho(\beta, \gamma)\},$$

$$\rho(\alpha,\beta) \leq \max\{\rho(\alpha,\gamma),\rho(\beta,\gamma)\}.$$

э

Some applications of the ρ -structure

Recall that a normalized sequence (x_n) in some normed space $(X, \|\cdot\|)$ is **unconditional** whenever there is a constant $C \ge 1$ such that

$$\left\|\sum_{i\in I}a_ix_i\right\|\leq C\left\|\sum_{j\in J}a_jx_j\right\|$$

for any pair $I \subseteq J$ of finite subsets of ω and for every sequence $(a_j : j \in J)$ of scalars.

Some applications of the ρ -structure

Recall that a normalized sequence (x_n) in some normed space $(X, \|\cdot\|)$ is **unconditional** whenever there is a constant $C \ge 1$ such that

$$\left\|\sum_{i\in I}a_ix_i\right\|\leq C\left\|\sum_{j\in J}a_jx_j\right\|$$

for any pair $I \subseteq J$ of finite subsets of ω and for every sequence $(a_j : j \in J)$ of scalars.

Theorem (Argyros-LopezAbad-T., 2005)

There is a reflexive space of density \aleph_1 with no infinite unconditional basic sequence.

Some applications of the ρ -structure

Recall that a normalized sequence (x_n) in some normed space $(X, \|\cdot\|)$ is **unconditional** whenever there is a constant $C \ge 1$ such that

$$\left\|\sum_{i\in I}a_ix_i\right\|\leq C\left\|\sum_{j\in J}a_jx_j\right\|$$

for any pair $I \subseteq J$ of finite subsets of ω and for every sequence $(a_j : j \in J)$ of scalars.

Theorem (Argyros-LopezAbad-T., 2005)

There is a reflexive space of density \aleph_1 with no infinite unconditional basic sequence.

Theorem (LopezAbad-T., 2011)

For every $k < \omega$ there is a weakly null sequence of length ω_k with no infinite unconditional basic subsequence.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

To any characteristic $a : [\omega_1]^2 \to \omega$, we associate the corresponding tree

$$T(\mathbf{a}) = \{\mathbf{a}(\cdot,\beta) \upharpoonright \alpha : \alpha \leq \beta < \omega_1\}$$

and the corresponding distance function

$$\Delta_{\boldsymbol{a}}: [\omega_1]^2 \to \omega_1 \cup \{\infty\}$$

defined by

$$\Delta_{\mathbf{a}}(\alpha,\beta) = \min\{\xi < \alpha : \mathbf{a}(\xi,\alpha) \neq \mathbf{a}(\xi,\beta)\}.$$

To any characteristic $a : [\omega_1]^2 \to \omega$, we associate the corresponding **tree**

$$T(\mathbf{a}) = \{\mathbf{a}(\cdot,\beta) \upharpoonright \alpha : \alpha \leq \beta < \omega_1\}$$

and the corresponding distance function

$$\Delta_{\boldsymbol{a}}: [\omega_1]^2 \to \omega_1 \cup \{\infty\}$$

defined by

$$\Delta_{\mathbf{a}}(\alpha,\beta) = \min\{\xi < \alpha : \mathbf{a}(\xi,\alpha) \neq \mathbf{a}(\xi,\beta)\}.$$

Definition

A characteristics $a : [\omega_1]^2 \to \omega$ is Lipschitz if for every map $f : A \to \omega_1$ on an uncountable subset A of ω_1 such that $f(\alpha) > \alpha$ for all $\alpha \in A$ there is uncountable $B \subseteq A$ such that

To any characteristic $a : [\omega_1]^2 \to \omega$, we associate the corresponding tree

$$T(\mathbf{a}) = \{\mathbf{a}(\cdot,\beta) \upharpoonright \alpha : \alpha \leq \beta < \omega_1\}$$

and the corresponding distance function

$$\Delta_a: [\omega_1]^2 \to \omega_1 \cup \{\infty\}$$

defined by

$$\Delta_{\mathbf{a}}(\alpha,\beta) = \min\{\xi < \alpha : \mathbf{a}(\xi,\alpha) \neq \mathbf{a}(\xi,\beta)\}.$$

Definition

A characteristics $a : [\omega_1]^2 \to \omega$ is Lipschitz if for every map $f : A \to \omega_1$ on an uncountable subset A of ω_1 such that $f(\alpha) > \alpha$ for all $\alpha \in A$ there is uncountable $B \subseteq A$ such that

$$\Delta_{a}(\alpha,\beta) = \Delta(f(\alpha),f(\beta)) \neq \infty \text{ for all } \alpha,\beta \in B, \alpha < \beta.$$

The metric equivalence

<ロ> <@> < E> < E> E のQの

The metric equivalence

Two characteristics $a : [\omega_1]^2 \to \omega$ and $b : [\omega_1]^2 \to \omega$ are **metrically** equivalent if there is an uncountable $X \subseteq \omega_1$ such that

- (i) $\Delta_{a}(\alpha,\beta) \neq \infty$ and $\Delta_{b}(\alpha,\beta) \neq \infty$ for all $\alpha,\beta \in X$ with $\alpha < \beta$,
- (ii) for every quadruple $\alpha, \beta, \gamma, \delta \in X$ such that $\alpha < \beta$ and $\gamma < \delta$,

 $\Delta_{a}(\alpha,\beta) > \Delta_{a}(\gamma,\delta)$ if and only if $\Delta_{b}(\alpha,\beta) > \Delta_{b}(\gamma,\delta)$.

The metric equivalence

Two characteristics $a : [\omega_1]^2 \to \omega$ and $b : [\omega_1]^2 \to \omega$ are **metrically** equivalent if there is an uncountable $X \subseteq \omega_1$ such that

- (i) $\Delta_{a}(\alpha,\beta) \neq \infty$ and $\Delta_{b}(\alpha,\beta) \neq \infty$ for all $\alpha,\beta \in X$ with $\alpha < \beta$,
- (ii) for every quadruple $\alpha, \beta, \gamma, \delta \in X$ such that $\alpha < \beta$ and $\gamma < \delta$,

 $\Delta_{a}(\alpha,\beta) > \Delta_{a}(\gamma,\delta) \text{ if and only if } \Delta_{b}(\alpha,\beta) > \Delta_{b}(\gamma,\delta).$

Theorem (T., 2007)

Assuming $\mathfrak{mm} > \omega_1$, every pair of Lipschitz characteristics $a : [\omega_1]^2 \to \omega$ and $b : [\omega_1]^2 \to \omega$ are metrically equivalent.

Theorem (T., 2000)

- 1. The characteristics ρ , ρ_0 , ρ_1 , ρ_2 of the minimal walk are all Lipschitz.
- Assuming mm > ω₁, all Lipschitz trees are shift equivalent in the sense that for every pair a : [ω₁]² → ω and b : [ω₁]² → ω of Lipschitz characteristics there is a strictly increasing partial map σ : ω₁ → ω₁ such that

$$T(a) \equiv T(b)^{(\sigma)}$$
 or $T(b) \equiv T(a)^{(\sigma)}$.

 Assuming mm > ω₁, the class [T(ρ₁)] of Lipschitz trees is Σ₁-definable in (H(ω₁), ∈) and it is cofinal and coinitial in the class of all counterexamples to König's lemma at the level ω₁.

Corollary

Assuming $\mathfrak{m}\mathfrak{m} > \omega_1$, up to the metric equivalence, the characteristics ρ , ρ_0 , ρ_1 , ρ_2 of the minimal walk do not depend on the choice of the fundamental sequence C_{α} ($\alpha < \omega_1$).

The upper trace and its oscillations

The upper trace and its oscillations

The upper trace of the walk

$$\beta = \beta_0 \frown \beta_1 \frown \cdots \frown \beta_k = \alpha$$

from β towards $\alpha < \beta$ is the set

$$\operatorname{Tr}(\alpha,\beta) = \{\beta_i : i \leq k\}.$$

The upper trace and its oscillations

The upper trace of the walk

$$\beta = \beta_0 \frown \beta_1 \frown \cdots \frown \beta_k = \alpha$$

from β towards $\alpha < \beta$ is the set

$$\operatorname{Tr}(\alpha,\beta) = \{\beta_i : i \leq k\}.$$

The oscillation mapping is given by

$$o_0(\alpha, \beta) = osc(Tr(\Delta(\alpha, \beta) - 1, \alpha), Tr(\Delta(\alpha, \beta) - 1, \beta)),$$

where

$$\Delta(\alpha,\beta) = \min\{\xi : \rho_0(\xi,\alpha) \neq \rho_0(\xi,\beta)\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

The fundamental property of the oscillation mapping

Theorem (T., 1987)

For every uncountable $\Gamma \subseteq \omega_1$ and every integer $n \ge 2$ there exist $\alpha < \beta$ in Γ such that $o_0(\alpha, \beta) = n$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The fundamental property of the oscillation mapping

Theorem (T., 1987)

For every uncountable $\Gamma \subseteq \omega_1$ and every integer $n \ge 2$ there exist $\alpha < \beta$ in Γ such that $o_0(\alpha, \beta) = n$.

Corollary

The class of equivalence relations on $[\omega_1]^2$ does not have a finite Ramsey basis.

The fundamental property of the oscillation mapping

Theorem (T., 1987)

For every uncountable $\Gamma \subseteq \omega_1$ and every integer $n \ge 2$ there exist $\alpha < \beta$ in Γ such that $o_0(\alpha, \beta) = n$.

Corollary

The class of equivalence relations on $[\omega_1]^2$ does not have a finite Ramsey basis.

Corollary

The class of graphs on ω_1 does not have a finite basis.
The fundamental property of the oscillation mapping

Theorem (T., 1987)

For every uncountable $\Gamma \subseteq \omega_1$ and every integer $n \ge 2$ there exist $\alpha < \beta$ in Γ such that $o_0(\alpha, \beta) = n$.

Corollary

The class of equivalence relations on $[\omega_1]^2$ does not have a finite Ramsey basis.

Corollary

The class of graphs on ω_1 does not have a finite basis.

Question

Can similar results be proved for other basis problems mentioned above?

The canonical ordering on ω_1 For $\alpha \neq \beta$ in ω_1 , set

$$\alpha <_{\rho_0} \beta$$
 iff $\rho_0(\Delta(\alpha, \beta), \alpha) < \rho_0(\Delta(\alpha, \beta), \beta)$.

Let

$$C(\rho_0) = (\omega_1, <_{\rho_0}).$$

Theorem (T., 1987)

- 1. $C(\rho_0)$ is a linearly ordered set whose cartesian square can be decomposed into countably many chains.
- 2. Assuming $\mathfrak{m} > \omega_1$, the ordering $C(\rho_0)$ is a minimal uncountable linear ordering and its equivalence class

$$[C(\rho_0)] = \{ K \in \mathcal{LO} : K \le C(\rho_0) \text{ and } C(\rho_0) \le K \}$$

does not depend on the choice of the sequence C_{α} ($\alpha < \omega_1$).

3. Assuming $\mathfrak{m} > \omega_1$, the class $[C(\rho_0)]$ is Σ_1 -definable in $(H(\omega_2), \in).$

Assuming $\mathfrak{mm} > \omega_1$,

$$C(
ho_0) \leq L$$
 or $C(
ho_0)^* \leq L$

for every non-separable linear ordering L such that

 $\omega_1 \nleq L$ and $\omega_1^* \nleq L$.

Assuming $\mathfrak{mm} > \omega_1$,

$$C(
ho_0) \leq L$$
 or $C(
ho_0)^* \leq L$

for every non-separable linear ordering L such that

 $\omega_1 \nleq L$ and $\omega_1^* \nleq L$.

Theorem (Baumgartner, 1973)

Assume $\mathfrak{mm} > \omega_1$ and let B be any set of reals of cardinality \aleph_1 with its usual ordering. Then

 $B \leq L$

for every separable linear ordering L.

$\mathcal{A} = \{ L \in \mathcal{LO} : B \nleq L, \ \omega_1 \nleq L \text{ and } \omega_1^* \nleq L \}.$

$$\mathcal{A} = \{ L \in \mathcal{LO} : B \nleq L, \ \omega_1 \nleq L \text{ and } \omega_1^* \nleq L \}.$$

Theorem (Martinez-Ranero, 2010)

Assuming $\mathfrak{mm} > \omega_1$, the class \mathcal{A} is well-quasi-ordered, i.e., for every sequence

 $(L_i:i<\omega)\subseteq \mathcal{A}$

there exist i < j such that $L_i \leq L_j$.

$$\mathcal{A} = \{ L \in \mathcal{LO} : B \nleq L, \ \omega_1 \nleq L \text{ and } \omega_1^* \nleq L \}.$$

Theorem (Martinez-Ranero, 2010)

Assuming $\mathfrak{mm} > \omega_1$, the class \mathcal{A} is well-quasi-ordered, i.e., for every sequence

 $(L_i:i<\omega)\subseteq \mathcal{A}$

there exist i < j such that $L_i \leq L_j$.

Remark

Note that this includes to the following classical result which verifies an old conjecture of Fraïssé.

$$\mathcal{A} = \{ L \in \mathcal{LO} : B \nleq L, \ \omega_1 \nleq L \text{ and } \omega_1^* \nleq L \}.$$

Theorem (Martinez-Ranero, 2010)

Assuming $\mathfrak{mm} > \omega_1$, the class \mathcal{A} is well-quasi-ordered, i.e., for every sequence

 $(L_i:i<\omega)\subseteq \mathcal{A}$

there exist i < j such that $L_i \leq L_j$.

Remark

Note that this includes to the following classical result which verifies an old conjecture of Fraïssé.

Theorem (Laver, 1970)

The class \mathcal{LO}_{ω} of **countable** linear orderings is well-quasi-ordered.

Oscillation on lower trace

Oscillation on lower trace

The lower trace of the minimal walk

$$\beta = \beta_0 \frown \beta_1 \frown \cdots \frown \beta_k = \alpha$$

is the set

$$L(\alpha,\beta) = \{\max\{\max(C_{\beta_i} \cap \alpha) : i \leq j\} : j < k\}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Oscillation on lower trace

The lower trace of the minimal walk

$$\beta = \beta_0 \frown \beta_1 \frown \cdots \frown \beta_k = \alpha$$

is the set

$$L(\alpha,\beta) = \{\max\{\max(C_{\beta_i} \cap \alpha) : i \leq j\} : j < k\}.$$

The corresponding oscillation function is defined as follows

$$\begin{split} \mathrm{o}_1(\alpha,\beta) &= |\{\xi \in \mathsf{L}(\alpha,\beta) : \rho_1(\xi,\alpha) \leq \rho_1(\xi,\beta) \land \rho_1(\xi^+,\alpha) > \rho_1(\xi^+,\beta)\}|, \end{split}$$
 where for $\xi \in \mathsf{L}(\alpha,\beta),$

$$\xi^+ = \min(L(\alpha,\beta) \setminus \xi + 1).$$

1. For every pair A, B of uncountable subsets of ω_1 , the set

 ${o_1(\alpha,\beta): \alpha \in A, \beta \in B, \alpha < \beta}$

is a syndetic set of integers.

1. For every pair A, B of uncountable subsets of ω_1 , the set

 ${o_1(\alpha,\beta): \alpha \in A, \beta \in B, \alpha < \beta}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is a syndetic set of integers.

2. There is a regular hereditarily Lindelöf space that is not separable.

1. For every pair A, B of uncountable subsets of ω_1 , the set

$$\{o_1(\alpha,\beta): \alpha \in A, \beta \in B, \alpha < \beta\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is a syndetic set of integers.

- 2. There is a regular hereditarily Lindelöf space that is not separable.
- 3. The class of uncountable regular spaces has no finite basis.

1. For every pair A, B of uncountable subsets of ω_1 , the set

 ${o_1(\alpha,\beta): \alpha \in A, \beta \in B, \alpha < \beta}$

is a syndetic set of integers.

- 2. There is a regular hereditarily Lindelöf space that is not separable.
- 3. The class of uncountable regular spaces has no finite basis.

Theorem (T., 1985)

Assuming $\mathfrak{mm} > \omega_1$, every regular hereditarily separable space is Lindelöf.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. For every pair A, B of uncountable subsets of ω_1 , the set

 ${o_1(\alpha,\beta): \alpha \in A, \beta \in B, \alpha < \beta}$

is a syndetic set of integers.

- 2. There is a regular hereditarily Lindelöf space that is not separable.
- 3. The class of uncountable regular spaces has no finite basis.

Theorem (T., 1985)

Assuming $\mathfrak{mm} > \omega_1$, every regular hereditarily separable space is Lindelöf.

Question ($\mathfrak{mm} > \omega_1$)

Does the class of uncountable (regular) **first countable** spaces have finite basis?

Assume $\mathfrak{mm} > \omega_1$. Show that every compact space K either

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. K contains an uncountable discrete subspace, or

Assume $\mathfrak{mm} > \omega_1$. Show that every compact space K either

- 1. K contains an uncountable discrete subspace, or
- there is a continuous map f : K → M onto a metric space such that |f⁻¹(x)| ≤ 2 for all x ∈ M.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume $\mathfrak{mm} > \omega_1$. Show that every compact space K either

- 1. K contains an uncountable discrete subspace, or
- there is a continuous map f : K → M onto a metric space such that |f⁻¹(x)| ≤ 2 for all x ∈ M.

Example

The split interval is the product $[0,1]\times\{0,1\}$ ordered lexicographically. It has no uncountable discrete subspace and is a 2-to-1 preimage of the unit interval.

Assume $\mathfrak{mm} > \omega_1$. Show that every compact space K either

- 1. K contains an uncountable discrete subspace, or
- there is a continuous map f : K → M onto a metric space such that |f⁻¹(x)| ≤ 2 for all x ∈ M.

Example

The split interval is the product $[0,1] \times \{0,1\}$ ordered lexicographically. It has no uncountable discrete subspace and is a 2-to-1 preimage of the unit interval.

Theorem (T., 1999)

Let K be a compact subset of a Tychonoff cube $[0,1]^X$ consisting of Baire-class-1 functions on some Polish space X. Then either

1. K contains an uncountable discrete subspace, or

Assume $\mathfrak{mm} > \omega_1$. Show that every compact space K either

- 1. K contains an uncountable discrete subspace, or
- there is a continuous map f : K → M onto a metric space such that |f⁻¹(x)| ≤ 2 for all x ∈ M.

Example

The split interval is the product $[0,1] \times \{0,1\}$ ordered lexicographically. It has no uncountable discrete subspace and is a 2-to-1 preimage of the unit interval.

Theorem (T., 1999)

Let K be a compact subset of a Tychonoff cube $[0,1]^X$ consisting of Baire-class-1 functions on some Polish space X. Then either

- 1. K contains an uncountable discrete subspace, or
- 2. K is an at most 2-to-1 preimage of a compact metric space.

For a characteristic $a: [\omega_1]^2 \rightarrow \omega$ and $X \subseteq \omega_1$, we set

 $\Delta_{\mathbf{a}}[X] = \{\Delta_{\mathbf{a}}(\alpha,\beta) : \alpha,\beta \in X, \alpha < \beta \text{ and } \Delta_{\mathbf{a}}(\alpha,\beta) \neq \infty\}.$

For a characteristic $a : [\omega_1]^2 \to \omega$ and $X \subseteq \omega_1$, we set

$$\Delta_{\boldsymbol{a}}[X] = \{\Delta_{\boldsymbol{a}}(\alpha,\beta) : \alpha,\beta \in X, \alpha < \beta \text{ and } \Delta_{\boldsymbol{a}}(\alpha,\beta) \neq \infty\}.$$

Proposition

If a characteristic $a : [\omega_1]^2 \to \omega$ is Lipschitz then for every pair X and Y of uncountable subsets of ω_1 there is an uncountable subset Z of X such that $\Delta_a[Z] \subseteq \Delta_a[X] \cap \Delta_a[Y]$.

For a characteristic $a: [\omega_1]^2 \to \omega$ and $X \subseteq \omega_1$, we set

$$\Delta_{\boldsymbol{a}}[X] = \{\Delta_{\boldsymbol{a}}(\alpha,\beta) : \alpha,\beta \in X, \alpha < \beta \text{ and } \Delta_{\boldsymbol{a}}(\alpha,\beta) \neq \infty\}.$$

Proposition

If a characteristic $a : [\omega_1]^2 \to \omega$ is Lipschitz then for every pair X and Y of uncountable subsets of ω_1 there is an uncountable subset Z of X such that $\Delta_a[Z] \subseteq \Delta_a[X] \cap \Delta_a[Y]$.

Corollary

If a characteristic a : $[\omega_1]^2 \rightarrow \omega$ is Lipschitz then the family

 $\{\Delta_a[X] : X \subseteq \omega_1 \text{ and } X \text{ is uncountable}\}$

generates a uniform filter \mathcal{U}_a on ω_1 .

Theorem (T., 2000)

- 1. Assuming $\mathfrak{m} > \omega_1$, for every Lipschitz characteristic $a : [\omega_1]^2 \to \omega$, the filter \mathcal{U}_a is in fact an ultrafilter.
- Assuming mm > ω₁, for Lipschitz characteristics a : [ω₁]² → ω and b : [ω₁]² → ω,

$$T(a) \equiv T(b) \text{ iff } \mathcal{U}_a = \mathcal{U}_b.$$

3. Assuming $\mathfrak{mm} > \omega_1$, for every pair of Lipschitz characteristics $a : [\omega_1]^2 \to \omega$ and $b : [\omega_1]^2 \to \omega$,

$$\mathcal{U}_{a} \equiv_{\mathrm{RK}} \mathcal{U}_{b}.$$

Corollary

Assuming $\mathfrak{mm} > \omega_1$, the filter \mathcal{U}_{ρ_0} is a Σ_1 -definable, in $(\mathcal{H}(\omega_1), \in)$, uniform ultrafilter on ω_1 whose Rudin-Keisler class does not depend on the choice of the fundamental sequence C_{α} ($\alpha < \omega_1$) that defines the characteristic ρ_0 of the minimal walk.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Recall that to any characteristic $a : [\omega_1]^2 \to \omega$ we associate the corresponding filter on ω_1 ,

 $\mathcal{U}_{a} = \{Y \subseteq \omega_{1} : (\exists X \subseteq \omega_{1}) \ [X \text{ is uncountable and } \Delta_{a}[X] \subseteq Y]\}.$

It is also natural to consider its Rudin-Keisler images to ω via maps $f: \omega_1 \to \omega$,

$$f[\mathcal{U}_a] = \{X \subseteq \omega : f^{-1}(X) \in \mathcal{U}_a\}.$$

Thus we have,

Recall that to any characteristic $a : [\omega_1]^2 \to \omega$ we associate the corresponding filter on ω_1 ,

 $\mathcal{U}_{a} = \{Y \subseteq \omega_{1} : (\exists X \subseteq \omega_{1}) \ [X \text{ is uncountable and } \Delta_{a}[X] \subseteq Y]\}.$

It is also natural to consider its Rudin-Keisler images to ω via maps $f: \omega_1 \to \omega$,

$$f[\mathcal{U}_a] = \{X \subseteq \omega : f^{-1}(X) \in \mathcal{U}_a\}.$$

Thus we have,

Theorem (T., 2000)

Assuming $\mathfrak{m} > \omega_1$, for every Lipschitz characteristic $a : [\omega_1]^2 \to \omega$ and every $f : \omega_1 \to \omega$, the filter

 $\mathcal{V}^f_a = f[\mathcal{U}_a]$

is an ultrafilter on ω that is Σ_1 -definable in $(H(\omega_1), \in)$.

・ロト ・四ト ・ヨト ・ヨト ・ ヨ・ うへの

Recall that to any characteristic $a : [\omega_1]^2 \to \omega$ we associate the corresponding filter on ω_1 ,

 $\mathcal{U}_{a} = \{Y \subseteq \omega_{1} : (\exists X \subseteq \omega_{1}) \ [X \text{ is uncountable and } \Delta_{a}[X] \subseteq Y]\}.$

It is also natural to consider its Rudin-Keisler images to ω via maps $f: \omega_1 \to \omega$,

$$f[\mathcal{U}_a] = \{X \subseteq \omega : f^{-1}(X) \in \mathcal{U}_a\}.$$

Thus we have,

Theorem (T., 2000)

Assuming $\mathfrak{m} > \omega_1$, for every Lipschitz characteristic $a : [\omega_1]^2 \to \omega$ and every $f : \omega_1 \to \omega$, the filter

 $\mathcal{V}_a^f = f[\mathcal{U}_a]$

is an ultrafilter on ω that is Σ_1 -definable in $(H(\omega_1), \in)$.

Question

Which kind of ultrafilter is \mathcal{V}_a^f ? How canonical is it? $(\mathbb{R}) \in \mathbb{R}$

 $h \upharpoonright M$ is **one-to-one** or **constant**.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $h \upharpoonright M$ is **one-to-one** or **constant**.

Proposition (T., 1990)

Assume that every set of reals in $L(\mathbb{R})$ is 2^c-universally Baire. Then every selective ultrafilter on ω is $L(\mathbb{R})$ -generic filter for the forcing notion $\mathcal{P}(\omega)/\text{Fin}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $h \upharpoonright M$ is **one-to-one** or **constant**.

Proposition (T., 1990)

Assume that every set of reals in $L(\mathbb{R})$ is 2^c-universally Baire. Then every selective ultrafilter on ω is $L(\mathbb{R})$ -generic filter for the forcing notion $\mathcal{P}(\omega)/\text{Fin}$.

Remark

This assumption is fulfilled if, for example, there exist some large cardinals in the universe.

 $h \upharpoonright M$ is **one-to-one** or **constant**.

Proposition (T., 1990)

Assume that every set of reals in $L(\mathbb{R})$ is 2^c-universally Baire. Then every selective ultrafilter on ω is $L(\mathbb{R})$ -generic filter for the forcing notion $\mathcal{P}(\omega)/\text{Fin}$.

Remark

This assumption is fulfilled if, for example, there exist some large cardinals in the universe.

Theorem (T., 2007)

Assuming $\mathfrak{m} > \omega_1$, for every Lipschitz characteristic $a : [\omega_1]^2 \to \omega$ and every mapping $f : \omega_1 \to \omega$, the filter $\mathcal{V}_a^f = f[\mathcal{U}_a]$ is a selective ultrafilter on ω .

Theorem (T., 2007)

Suppose that $a : [\omega_1]^2 \to \omega$ and $b : [\omega_1]^2 \to \omega$ are two metrically equivalent Lipschitz characteristics.

Theorem (T., 2007)

Suppose that $a : [\omega_1]^2 \to \omega$ and $b : [\omega_1]^2 \to \omega$ are two metrically equivalent Lipschitz characteristics. Suppose that $f : \omega_1 \to \omega$ and $g : \omega_1 \to \omega$ map \mathcal{U}_a and \mathcal{U}_b to two non-principal filters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$ on ω .
Theorem (T., 2007)

Suppose that a : $[\omega_1]^2 \to \omega$ and b : $[\omega_1]^2 \to \omega$ are two metrically equivalent Lipschitz characteristics. Suppose that $f : \omega_1 \to \omega$ and $g : \omega_1 \to \omega$ map \mathcal{U}_a and \mathcal{U}_b to two non-principal filters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$ on ω . Then, assuming $\mathfrak{m} > \omega_1$, the selective ultrafilters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$

are Rudin-Keisler equivalent.

Theorem (T., 2007)

Suppose that $a : [\omega_1]^2 \to \omega$ and $b : [\omega_1]^2 \to \omega$ are two metrically equivalent Lipschitz characteristics. Suppose that $f : \omega_1 \to \omega$ and $g : \omega_1 \to \omega$ map \mathcal{U}_a and \mathcal{U}_b to two non-principal filters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$ on ω . Then, assuming $\mathfrak{m} > \omega_1$, the selective ultrafilters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$ are Rudin-Keisler equivalent.

Question

Suppose that $a : [\omega_1]^2 \to \omega$ is equal to one of the standard characteristics ρ, ρ_0, ρ_1 , or ρ_2 of the minimal walk.

Theorem (T., 2007)

Suppose that $a : [\omega_1]^2 \to \omega$ and $b : [\omega_1]^2 \to \omega$ are two metrically equivalent Lipschitz characteristics. Suppose that $f : \omega_1 \to \omega$ and $g : \omega_1 \to \omega$ map \mathcal{U}_a and \mathcal{U}_b to two non-principal filters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$ on ω . Then, assuming $\mathfrak{m} > \omega_1$, the selective ultrafilters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$ are Rudin-Keisler equivalent.

Question

Suppose that $a : [\omega_1]^2 \to \omega$ is equal to one of the standard characteristics ρ, ρ_0, ρ_1 , or ρ_2 of the minimal walk. Is there a **canonical map** $f : \omega_1 \to \omega$ so that the corresponding filter $f[\mathcal{U}_a]$ on ω is non-principal? Let Λ be the set of countable limit ordinals. Let

$$d_{\lambda}:\omega_{1}\rightarrow\omega$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

be the distance function to Λ , i.e., $d(\lambda + n) = n$ for $\lambda \in \Lambda$.

Let Λ be the set of countable limit ordinals. Let

$$d_{\lambda}:\omega_1\to\omega$$

be the distance function to Λ , i.e., $d(\lambda + n) = n$ for $\lambda \in \Lambda$. Then for every characteristic

$$\mathbf{a} = \rho, \rho_0, \rho_1, \rho_2$$

of the minimal walk considered above, the Rudin-Keisler image

$$\mathcal{V}_a = d_{\Lambda}[\mathcal{U}_a]$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

is non-principal.

Let Λ be the set of countable limit ordinals. Let

$$d_{\lambda}:\omega_{1}\rightarrow\omega$$

be the distance function to Λ , i.e., $d(\lambda + n) = n$ for $\lambda \in \Lambda$. Then for every characteristic

$$a = \rho, \rho_0, \rho_1, \rho_2$$

of the minimal walk considered above, the Rudin-Keisler image

 $\mathcal{V}_a = d_{\Lambda}[\mathcal{U}_a]$

is non-principal.

Theorem (T., 2007)

Assuming $\mathfrak{mm} > \omega_1$, the selective ultrafilter \mathcal{V}_{ρ_0} has its Rudin-Keisler class

 $[\mathcal{V}_{\rho_0}]_{\mathrm{RK}} = \{h[\mathcal{V}_{\rho_0}] : h \text{ a permutation of } \omega\}$

independent on the choice of the fundamental sequence C_{α} ($\alpha < \omega_1$) and Σ_1 -definable in the structure ($H(\omega_1), \in$).