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A basis problem

Theorem (Ramsey, 1930)

Let L be a finite relational signature and let KL be the collection of
all L-structures on the domain ω. Then the class KL has a finite
Ramsey basis, i.e., a finite list

B1, ...,Bn(L)

of L-structures on ω such that for every A ∈ KL there is
1 ≤ i ≤ n(L) and an infinite set M ⊆ ω such that

A � M = Bi � M.

Question
Can there be a similar result for other index-sets Γ in place of ω?
What about the set ω1 of all countable ordinals?
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The special case: Equivalence relations

Theorem (Ramsey 1930)

For every positive integer k the class of equivalence relations E
on

[ω]k = {x ⊆ ω : |x | = k}

with finite quotients [ω]k/E has the 1-element Ramsey basis

Ek = {(a, b) ∈ [ω]k × [ω]k : a = a},

the equivalence relation with only one equivalence class.

Theorem (Erdős-Rado 1950)

For every positive integer k the class of all equivalence relations on
[ω]k has the 2k -element Ramsey basis

EI (I ∈ P(k)),

where for I ⊆ {0, 1, ..., k − 1} and a, b ∈ [ω]k we set a EI b iff
a � I = b � I .
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Accessible cardinals

Remark

1. No other accessible index set Γ can have such a strong
property, a 1-element Ramsey basis for even equivalence
relations on [Γ]2.

2. For example, the class of equivalence relations on [R]2 has no
finite Ramsey basis (Galvin-Shelah 1973).

Question
Are there accessible index sets Γ for which the class of
equivalence relations on [Γ]2 admits a finite Ramsey basis?
What about the set ω1 of all countable ordinals?
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Theorem (Erdős-Hajnal-Rado, 1965)

If Γ is, for example, equal to

iω = sup{2ω, 22ω , ...}

then for every positive integer k there is an equivalence relation Ek
on [Γ]k with 2k−1 classes such that for every other equivalence
relation E on [Γ]k with finite quotient space there is X ⊆ Γ of
cardinality Γ such that

E � [X ]k ⊆ Ek � [X ]k .

Moreover Ek is irreducible in the sense that

|[X ]k/Ek | = 2k−1

for every X ⊆ Γ of cardinality Γ.



An equivalence relation on [ω1]2

Fix three orthogonal total orderings

<,<S , <A

of ω1 with < the usual well-ordering of ω1.
Let GS2 be the equivalence relation on [ω1]2 defined by letting
{α, β} be equivalent to {γ, δ} iff

(∀R ∈ {<,<S , <A})[αRβ ⇔ γRδ].

Theorem (Sierpinski 1933; Galvin-Shelah 1973)

The equivalence relation GS2 is irreducible, i.e.,

|[X ]2/GS2| = 4

for all uncountable X ⊆ ω1.
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(T.,1982) If GS2 forms the basis then ...

1. The cofinality of the continuum is at least ω2, so in
particular CH is false.

2. The class of graphs on uncountable vertex-sets have a finite
basis. In particular any open graph on an uncountable
separable metric space has an uncountable complete or
discrete subgraph.

3. The class of uncountable linear orderings has a 5-element
basis.

4. The class of uncountable Hausdorff spaces have a finite
basis. In particular, the class of uncountable regular spaces
has a 3-element basis.

5. If a graph G on the vertex-set ω1 has an uncountable
complete or discrete subgraph iff G has such a subgraph in a
forcing extension which preserves ω1
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Von Neumann’s ordinals and Cantor’s normal form

Von Neumann’s ordinals:

β = {α : α < β}

0 = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, ...,

ω = {0, 1, 2, ....}, ω + 1 = ω ∪ {ω}, ω + 2 = ω ∪ {ω, ω + 1}, .....

Cantor’s normal form:

α = n1ω
α1 + n2ω

α2 + · · ·+ nkω
αk

where α1 > α2 > · · · > αk ≥ 0 are ordinals and n1, n2, ..., nk

natural numbers.
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Fundamental sequences below ε0 = min{α : α = ωα}

Cα = {cα(0), cα(1), cα(2), ....} ↗ α :

cα+1(n) = α,

cω(n) = n,

cβ+ωα+1(n) = β + nωα,

cβ+ωα(n) = β + ωcα(n),

cε0(n + 1) = ωcε0 (n).
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Classical walks below ε0 = min{α : α = ωα}

αy cα(n) y ccα(n)(n + 1) y cccα(n)(n+1)(n + 2) · ··

Theorem (S. S. Wainer, 1970)

For a given integer n, the length of the classical walk from α to 0
starting with αy cα(n) is equal to Hα(n).

Definition (G.H. Hardy, 1904)

H0(n) = n,

Hα+1(n) = Hα(n + 1),

Hα(n) = Hcα(n)(n).
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Minimal Walks (T., 1984)

Minimal step from β towards α < β :

β y cβ(n(α, β)),

where

n(α, β) = min{n : cβ(n) ≥ α}.

Minimal walk from β towards α is a finite decreasing sequence

β = β0 y β1 y · · ·y βk = α

such that for all i < k, the step βi y βi+1 is the minimal step
from βi towards α, i.e.

βi+1 = cβi (n(α, βi )).
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The full code of the walk

The full code of the minimal walk is given by the formula

ρ0(α, β) = n(α, β)_ρ0(α, cβ(n(α, β))),

with the boundary value

ρ0(α, α) = ∅.

Note that this is simply the sequence of integers

ρ0(α, β) = (n(α, βi ) : i < k)

that code the steps of the minimal walk

β = β0 y β1 y · · ·y βk = α.
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The weight characteristic of the walk is given by

ρ1(α, β) = max

{
n(α, β),

ρ1(α, cβ(n(α, β)))

with the boundary value

ρ1(α, α) = 0.

The length of the walk is given by

ρ2(α, β) = ρ2(α, cβ(n(α, β))) + 1

with the boundary value

ρ2(α, α) = 0.
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The fundamental property of ρ0(α, β)

If the finite sequence of integers

ρ0(α, β) = 〈n0, n1, n2, ..., nk〉

is identified with the rational number

1

n0 + 1
n1+ 1

n2+... 1
nk

then the Von Neumann equality

β = {α : α < β}

becomes the identification

β ∼= {ρ0(α, β) : α < β} ⊆ Q.
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Two fundamental properties of ρ1(α, β)

(Enumeration:)
For every β and every n,

{α < β : ρ1(α, β) = n}

is a finite set.

(Coherence:)
For all α < β,

{ξ < α : ρ1(ξ, α) 6= ρ1(ξ, β)}

is a finite set.
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Two fundamental properties of ρ2(α, β)

(Unboundedness:)
For every pair A and B of uncountable subsets of ω1,

sup{ρ2(α, β) : α ∈ A, β ∈ B, α < β} =∞.

(`∞-Coherence:)
For every α < β < ω1,

sup
ξ<α
|ρ1(ξ, α)− ρ2(ξ, β)| <∞.
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The metric characteristic

ρ(α, β) = max


n(α, β)

ρ(α, cβ(n(α, β)))

ρ(cβ(n), α) n < n(α, β).

with the boundary value ρ(α, α) = 0.
(Enumeration:)
For every β and every n,

{α < β : ρ(α, β) = n}

is a finite set.
(Triangle inequalities:)
For all α < β < γ,

ρ(α, γ) ≤ max{ρ(α, β), ρ(β, γ)},

ρ(α, β) ≤ max{ρ(α, γ), ρ(β, γ)}.
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with the boundary value ρ(α, α) = 0.
(Enumeration:)
For every β and every n,

{α < β : ρ(α, β) = n}
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(Triangle inequalities:)
For all α < β < γ,

ρ(α, γ) ≤ max{ρ(α, β), ρ(β, γ)},

ρ(α, β) ≤ max{ρ(α, γ), ρ(β, γ)}.



Some applications of the ρ-structure

Recall that a normalized sequence (xn) in some normed space
(X , ‖ · ‖) is unconditional whenever there is a constant C ≥ 1
such that ∥∥∥∑

i∈I
aixi

∥∥∥ ≤ C
∥∥∥∑

j∈J
ajxj

∥∥∥
for any pair I ⊆ J of finite subsets of ω and for every sequence
(aj : j ∈ J) of scalars.

Theorem (Argyros-LopezAbad-T., 2005)

There is a reflexive space of density ℵ1 with no infinite
unconditional basic sequence.

Theorem (LopezAbad-T., 2011)

For every k < ω there is a weakly null sequence of length ωk with
no infinite unconditional basic subsequence.
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The characteristic tree

To any characteristic a : [ω1]2 → ω, we associate the corresponding
tree

T (a) = {a( ·, β) � α : α ≤ β < ω1}
and the corresponding distance function

∆a : [ω1]2 → ω1 ∪ {∞}

defined by

∆a(α, β) = min{ξ < α : a(ξ, α) 6= a(ξ, β)}.

Definition
A characteristics a : [ω1]2 → ω is Lipschitz if for every map
f : A→ ω1 on an uncountable subset A of ω1 such that f (α) > α
for all α ∈ A there is uncountable B ⊆ A such that

∆a(α, β) = ∆(f (α), f (β)) 6=∞ for all α, β ∈ B, α < β.
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The metric equivalence

Two characteristics a : [ω1]2 → ω and b : [ω1]2 → ω are metrically
equivalent if there is an uncountable X ⊆ ω1 such that

(i) ∆a(α, β) 6=∞ and ∆b(α, β) 6=∞ for all α, β ∈ X with
α < β,

(ii) for every quadruple α, β, γ, δ ∈ X such that α < β and γ < δ,

∆a(α, β) > ∆a(γ, δ) if and only if ∆b(α, β) > ∆b(γ, δ).

Theorem (T., 2007)

Assuming mm > ω1, every pair of Lipschitz characteristics
a : [ω1]2 → ω and b : [ω1]2 → ω are metrically equivalent.
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Theorem (T., 2000)

1. The characteristics ρ, ρ0, ρ1, ρ2 of the minimal walk are all
Lipschitz.

2. Assuming mm > ω1, all Lipschitz trees are shift equivalent in
the sense that for every pair a : [ω1]2 → ω and b : [ω1]2 → ω
of Lipschitz characteristics there is a strictly increasing partial
map σ : ω1 → ω1 such that

T (a) ≡ T (b)(σ) or T (b) ≡ T (a)(σ).

3. Assuming mm > ω1, the class [T (ρ1)] of Lipschitz trees is
Σ1-definable in (H(ω1),∈) and it is cofinal and coinitial in the
class of all counterexamples to König’s lemma at the level ω1.

Corollary

Assuming mm > ω1, up to the metric equivalence, the
characteristics ρ, ρ0, ρ1, ρ2 of the minimal walk do not depend on
the choice of the fundamental sequence Cα (α < ω1).



The upper trace and its oscillations

The upper trace of the walk

β = β0 y β1 y · · ·y βk = α

from β towards α < β is the set

Tr(α, β) = {βi : i ≤ k}.

The oscillation mapping is given by

o0(α, β) = osc(Tr(∆(α, β)− 1, α),Tr(∆(α, β)− 1, β)),

where

∆(α, β) = min{ξ : ρ0(ξ, α) 6= ρ0(ξ, β)}.
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The fundamental property of the oscillation mapping

Theorem (T., 1987)

For every uncountable Γ ⊆ ω1 and every integer n ≥ 2 there exist
α < β in Γ such that o0(α, β) = n.

Corollary

The class of equivalence relations on [ω1]2 does not have a finite
Ramsey basis.

Corollary

The class of graphs on ω1 does not have a finite basis.

Question
Can similar results be proved for other basis problems mentioned
above?
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The canonical ordering on ω1

For α 6= β in ω1, set

α <ρ0 β iff ρ0(∆(α, β), α) < ρ0(∆(α, β), β).

Let
C (ρ0) = (ω1, <ρ0).

Theorem (T., 1987)

1. C (ρ0) is a linearly ordered set whose cartesian square can be
decomposed into countably many chains.

2. Assuming m > ω1, the ordering C (ρ0) is a minimal
uncountable linear ordering and its equivalence class

[C (ρ0)] = {K ∈ LO : K ≤ C (ρ0) and C (ρ0) ≤ K}

does not depend on the choice of the sequence Cα (α < ω1).

3. Assuming m > ω1, the class [C (ρ0)] is Σ1-definable in
(H(ω2),∈).



Theorem (Moore, 2005)

Assuming mm > ω1,

C (ρ0) ≤ L or C (ρ0)∗ ≤ L

for every non-separable linear ordering L such that

ω1 � L and ω∗1 � L.

Theorem (Baumgartner, 1973)

Assume mm > ω1 and let B be any set of reals of cardinality ℵ1

with its usual ordering. Then

B ≤ L

for every separable linear ordering L.
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Let
A = {L ∈ LO : B � L, ω1 � L and ω∗1 � L}.

Theorem (Martinez-Ranero, 2010)

Assuming mm > ω1, the class A is well-quasi-ordered, i.e., for
every sequence

(Li : i < ω) ⊆ A

there exist i < j such that Li ≤ Lj .

Remark
Note that this includes to the following classical result which
verifies an old conjecture of Fräıssé.

Theorem (Laver, 1970)

The class LOω of countable linear orderings is well-quasi-ordered.
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Theorem (Laver, 1970)

The class LOω of countable linear orderings is well-quasi-ordered.



Oscillation on lower trace

The lower trace of the minimal walk

β = β0 y β1 y · · ·y βk = α

is the set

L(α, β) = {max{max(Cβi ∩ α) : i ≤ j} : j < k}.

The corresponding oscillation function is defined as follows

o1(α, β) = |{ξ ∈ L(α, β) : ρ1(ξ, α) ≤ ρ1(ξ, β)∧ρ1(ξ+, α) > ρ1(ξ+, β)}|,

where for ξ ∈ L(α, β),

ξ+ = min(L(α, β) \ ξ + 1).
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Theorem (Moore, 2005)

1. For every pair A,B of uncountable subsets of ω1, the set

{o1(α, β) : α ∈ A, β ∈ B, α < β}

is a syndetic set of integers.

2. There is a regular hereditarily Lindelöf space that is not
separable.

3. The class of uncountable regular spaces has no finite basis.

Theorem (T., 1985)

Assuming mm > ω1, every regular hereditarily separable space is
Lindelöf.

Question (mm > ω1)

Does the class of uncountable (regular) first countable spaces
have finite basis?
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Conjecture (Fremlin, 1988)

Assume mm > ω1. Show that every compact space K either

1. K contains an uncountable discrete subspace, or

2. there is a continuous map f : K → M onto a metric space
such that |f −1(x)| ≤ 2 for all x ∈ M.

Example

The split interval is the product [0, 1]× {0, 1} ordered
lexicographically. It has no uncountable discrete subspace and is a
2-to-1 preimage of the unit interval.

Theorem (T., 1999)

Let K be a compact subset of a Tychonoff cube [0, 1]X consisting
of Baire-class-1 functions on some Polish space X . Then either

1. K contains an uncountable discrete subspace, or

2. K is an at most 2-to-1 preimage of a compact metric space.
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The canonical ultrafilter on ω1

For a characteristic a : [ω1]2 → ω and X ⊆ ω1, we set

∆a[X ] = {∆a(α, β) : α, β ∈ X , α < β and ∆a(α, β) 6=∞}.

Proposition

If a characteristic a : [ω1]2 → ω is Lipschitz then for every pair X
and Y of uncountable subsets of ω1 there is an uncountable subset
Z of X such that ∆a[Z ] ⊆ ∆a[X ] ∩∆a[Y ].

Corollary

If a characteristic a : [ω1]2 → ω is Lipschitz then the family

{∆a[X ] : X ⊆ ω1 and X is uncountable}

generates a uniform filter Ua on ω1.
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Theorem (T., 2000)

1. Assuming m > ω1, for every Lipschitz characteristic
a : [ω1]2 → ω, the filter Ua is in fact an ultrafilter.

2. Assuming mm > ω1, for Lipschitz characteristics a : [ω1]2 → ω
and b : [ω1]2 → ω,

T (a) ≡ T (b) iff Ua = Ub.

3. Assuming mm > ω1, for every pair of Lipschitz characteristics
a : [ω1]2 → ω and b : [ω1]2 → ω,

Ua ≡RK Ub.

Corollary

Assuming mm > ω1, the filter Uρ0 is a Σ1-definable, in (H(ω1),∈),
uniform ultrafilter on ω1 whose Rudin-Keisler class does not
depend on the choice of the fundamental sequence Cα (α < ω1)
that defines the characteristic ρ0 of the minimal walk.



The canonical selective ultrafilter on ω

Recall that to any characteristic a : [ω1]2 → ω we associate the
corresponding filter on ω1,

Ua = {Y ⊆ ω1 : (∃X ⊆ ω1) [X is uncountable and ∆a[X ] ⊆ Y ]}.
It is also natural to consider its Rudin-Keisler images to ω via
maps f : ω1 → ω,

f [Ua] = {X ⊆ ω : f −1(X ) ∈ Ua}.
Thus we have,

Theorem (T., 2000)

Assuming m > ω1, for every Lipschitz characteristic a : [ω1]2 → ω
and every f : ω1 → ω, the filter

V fa = f [Ua]

is an ultrafilter on ω that is Σ1-definable in (H(ω1),∈).

Question
Which kind of ultrafilter is V fa ? How canonical is it?
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Recall that an ultrafilter W on ω is selective if for every
h : ω → ω there is M ∈ W such that

h � M is one-to-one or constant.

Proposition (T., 1990)

Assume that every set of reals in L(R) is 2c-universally Baire. Then
every selective ultrafilter on ω is L(R)-generic filter for the forcing
notion P(ω)/Fin.

Remark
This assumption is fulfilled if, for example, there exist some large
cardinals in the universe.

Theorem (T., 2007)

Assuming m > ω1, for every Lipschitz characteristic a : [ω1]2 → ω
and every mapping f : ω1 → ω, the filter V fa = f [Ua] is a selective
ultrafilter on ω.
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Theorem (T., 2007)

Suppose that a : [ω1]2 → ω and b : [ω1]2 → ω are two metrically
equivalent Lipschitz characteristics.

Suppose that f : ω1 → ω and g : ω1 → ω map Ua and Ub to two
non-principal filters f [Ua] and g [Ub] on ω.
Then, assuming m > ω1, the selective ultrafilters f [Ua] and g [Ub]
are Rudin-Keisler equivalent.

Question
Suppose that a : [ω1]2 → ω is equal to one of the standard
characteristics ρ, ρ0, ρ1, or ρ2 of the minimal walk.
Is there a canonical map f : ω1 → ω so that the corresponding
filter f [Ua] on ω is non-principal?
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Let Λ be the set of countable limit ordinals. Let

dλ : ω1 → ω

be the distance function to Λ, i.e., d(λ+ n) = n for λ ∈ Λ.

Then for every characteristic

a = ρ, ρ0, ρ1, ρ2

of the minimal walk considered above, the Rudin-Keisler image

Va = dΛ[Ua]

is non-principal.

Theorem (T., 2007)

Assuming mm > ω1, the selective ultrafilter Vρ0 has its
Rudin-Keisler class

[Vρ0 ]RK = {h[Vρ0 ] : h a permutation of ω}

independent on the choice of the fundamental sequence Cα
(α < ω1) and Σ1-definable in the structure (H(ω1),∈).
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