WALKS ON ORDINALS AND THEIR CHARACTERISTICS

Stevo Todorcevic

Fields Institute, Sept. 6, 2012

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Outline

- 1. Initial Motivations
- 2. Von Neumann's ordinals and Cantor's normal form

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

- 3. The classical notion of walk
- 4. The minimal walk and its characteristics
- 5. The oscillation of traces
- 6. Matric theory on ordinals
- 7. The canonical tree
- 8. The canonical linear ordering
- 9. The canonical ultrafilter

K ロ X K 메 X K B X X B X X D X O Q Q O

Theorem (Ramsey, 1930)

Let L be a finite relational signature and let K_L be the collection of all L-structures on the domain ω .

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Theorem (Ramsey, 1930)

Let L be a finite relational signature and let K_L be the collection of all L-structures on the domain ω . Then the class \mathcal{K}_1 has a finite Ramsey basis, i.e., a finite list

$$
\mathfrak{B}_1,...,\mathfrak{B}_{n(L)}
$$

KORK ERKER ADE YOUR

of L-structures on ω

Theorem (Ramsey, 1930)

Let L be a finite relational signature and let K_L be the collection of all L-structures on the domain ω . Then the class \mathcal{K}_1 has a finite Ramsey basis, i.e., a finite list

 $\mathfrak{B}_1, ..., \mathfrak{B}_{n(L)}$

of L-structures on ω such that for every $\mathfrak{A} \in \mathcal{K}_1$ there is $1 \le i \le n(L)$ and an infinite set $M \subseteq \omega$ such that

 $\mathfrak{A} \restriction M = \mathfrak{B}_i \restriction M$.

KORK ERKER ADE YOUR

Theorem (Ramsey, 1930)

Let L be a finite relational signature and let K_L be the collection of all L-structures on the domain ω . Then the class \mathcal{K}_1 has a finite Ramsey basis, i.e., a finite list

 $\mathfrak{B}_1, ..., \mathfrak{B}_{n(L)}$

of L-structures on ω such that for every $\mathfrak{A} \in \mathcal{K}_1$ there is $1 \le i \le n(L)$ and an infinite set $M \subseteq \omega$ such that

 $\mathfrak{A} \restriction M = \mathfrak{B}_i \restriction M$.

Question

Can there be a similar result for other index-sets Γ in place of ω ? What about the set ω_1 of all countable ordinals?

KORKAR KERKER EL VOLO

The special case: Equivalence relations

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

The special case: Equivalence relations

Theorem (Ramsey 1930)

For every positive integer k the class of **equivalence relations** $\mathcal E$ on

$$
[\omega]^k = \{x \subseteq \omega : |x| = k\}
$$

with finite quotients $[\omega]^k/\mathcal{E}$ has the 1-element Ramsey basis

$$
\mathcal{E}_k = \{ (a,b) \in [\omega]^k \times [\omega]^k : a = a \},
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

the equivalence relation with only one equivalence class.

The special case: Equivalence relations

Theorem (Ramsey 1930)

For every positive integer k the class of **equivalence relations** $\mathcal E$ on

$$
[\omega]^k = \{x \subseteq \omega : |x| = k\}
$$

with finite quotients $[\omega]^k/\mathcal{E}$ has the 1-element Ramsey basis

$$
\mathcal{E}_k = \{ (a,b) \in [\omega]^k \times [\omega]^k : a = a \},
$$

the equivalence relation with only one equivalence class.

Theorem (Erdős-Rado 1950)

For every positive integer k the class of all equivalence relations on $[\omega]^k$ has the 2^k-element Ramsey basis

$$
E_I (I \in \mathcal{P}(k)),
$$

where for $I \subseteq \{0, 1, ..., k-1\}$ and $a, b \in [\omega]^k$ we set a E_I b if $a \upharpoonright l = b \upharpoonright l.$ 4 D > 4 P + 4 B + 4 B + B + 9 Q O

Accessible cardinals

Remark

- 1. No other **accessible** index set Γ can have such a strong property, a 1-element Ramsey basis for even equivalence relations on $[\Gamma]^2$.
- 2. For example, the class of equivalence relations on $[\mathbb{R}]^2$ has no finite Ramsey basis (Galvin-Shelah 1973).

KORK ERKER ADE YOUR

Accessible cardinals

Remark

- 1. No other **accessible** index set Γ can have such a strong property, a 1-element Ramsey basis for even equivalence relations on $[\Gamma]^2$.
- 2. For example, the class of equivalence relations on $[\mathbb{R}]^2$ has no finite Ramsey basis (Galvin-Shelah 1973).

KORKAR KERKER EL VOLO

Question

Are there accessible index sets Γ for which the class of equivalence relations on $[\Gamma]^2$ admits a **finite** Ramsey basis? What about the set ω_1 of all countable ordinals?

Theorem (Erdős-Hajnal-Rado, 1965)

If Γ is, for example, equal to

$$
\beth_\omega=\sup\{2^\omega,2^{2^\omega},...\}
$$

then for every positive integer k there is an equivalence relation \mathcal{E}_k on $[\Gamma]^k$ with 2^{k-1} classes such that for every other equivalence relation $\mathcal E$ on $[\Gamma]^k$ with finite quotient space there is $X \subseteq \Gamma$ of cardinality Γ such that

$$
\mathcal{E}\restriction [X]^k\subseteq \mathcal{E}_k\restriction [X]^k.
$$

Moreover \mathcal{E}_k is **irreducible** in the sense that

$$
|[X]^k/\mathcal{E}_k|=2^{k-1}
$$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

for every $X \subseteq \Gamma$ of cardinality Γ .

K ロ X K 메 X K B X X B X X D X O Q Q O

Fix three **orthogonal** total orderings

 \lt , \lt _S, \lt _A

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

of ω_1 with ω_1 the usual well-ordering of ω_1 .

Fix three **orthogonal** total orderings

<, <^S , <^A

of ω_1 with ω_1 the usual well-ordering of ω_1 . Let \mathcal{GS}_2 be the equivalence relation on $[\omega_1]^2$ defined by letting $\{\alpha,\beta\}$ be equivalent to $\{\gamma,\delta\}$ iff

 $(\forall R \in \{<,\leq,\leq_A\})[\alpha R\beta \Leftrightarrow \gamma R\delta].$

KORKAR KERKER EL VOLO

Fix three **orthogonal** total orderings

<, <^S , <^A

of ω_1 with ω_1 the usual well-ordering of ω_1 . Let \mathcal{GS}_2 be the equivalence relation on $[\omega_1]^2$ defined by letting $\{\alpha, \beta\}$ be equivalent to $\{\gamma, \delta\}$ iff

$$
(\forall R \in \{<, <_{\mathcal{S}}, <_{A}\})[\alpha R \beta \Leftrightarrow \gamma R \delta].
$$

Theorem (Sierpinski 1933; Galvin-Shelah 1973) The equivalence relation $\mathcal{G}\mathcal{S}_2$ is **irreducible**, *i.e.*,

$$
|[X]^2/\mathcal{GS}_2|=4
$$

KORKAR KERKER EL VOLO

for all uncountable $X \subseteq \omega_1$.

K ロ X K 메 X K B X X B X X D X O Q Q O

1. The cofinality of the continuum is at least ω_2 , so in particular CH is false.

KO KKOK KEK KEK LE I KORO

- 1. The cofinality of the continuum is at least ω_2 , so in particular CH is false.
- 2. The class of graphs on uncountable vertex-sets have a finite basis. In particular any **open graph** on an uncountable separable metric space has an uncountable complete or discrete subgraph.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- 1. The cofinality of the continuum is at least ω_2 , so in particular CH is false.
- 2. The class of graphs on uncountable vertex-sets have a finite basis. In particular any **open graph** on an uncountable separable metric space has an uncountable complete or discrete subgraph.
- 3. The class of uncountable linear orderings has a 5-element basis.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- 1. The cofinality of the continuum is at least ω_2 , so in particular CH is false.
- 2. The class of graphs on uncountable vertex-sets have a finite basis. In particular any **open graph** on an uncountable separable metric space has an uncountable complete or discrete subgraph.
- 3. The class of uncountable linear orderings has a 5-element basis.
- 4. The class of uncountable Hausdorff spaces have a finite basis. In particular, the class of uncountable regular spaces has a 3-element basis.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- 1. The cofinality of the continuum is at least ω_2 , so in particular CH is false.
- 2. The class of graphs on uncountable vertex-sets have a finite basis. In particular any **open graph** on an uncountable separable metric space has an uncountable complete or discrete subgraph.
- 3. The class of uncountable linear orderings has a 5-element basis.
- 4. The class of uncountable Hausdorff spaces have a finite basis. In particular, the class of uncountable regular spaces has a 3-element basis.
- 5. If a graph G on the vertex-set ω_1 has an uncountable complete or discrete subgraph iff G has such a subgraph in a **forcing extension** which preserves ω_1

Von Neumann's ordinals and Cantor's normal form

Von Neumann's ordinals:

$$
\beta = \{\alpha : \alpha < \beta\}
$$

$$
0 = \emptyset, \quad 1 = \{0\}, \quad 2 = \{0, 1\}, \quad 3 = \{0, 1, 2\}, \dots,
$$

$$
\omega = \{0, 1, 2, \dots\}, \quad \omega + 1 = \omega \cup \{\omega\}, \quad \omega + 2 = \omega \cup \{\omega, \omega + 1\}, \dots
$$

KID KAR KE KE KE A BI YA GI

Von Neumann's ordinals and Cantor's normal form

Von Neumann's ordinals:

$$
\beta = \{\alpha : \alpha < \beta\}
$$

$$
0 = \emptyset, \quad 1 = \{0\}, \quad 2 = \{0, 1\}, \quad 3 = \{0, 1, 2\}, \dots,
$$

$$
\omega = \{0, 1, 2, \dots\}, \quad \omega + 1 = \omega \cup \{\omega\}, \quad \omega + 2 = \omega \cup \{\omega, \omega + 1\}, \dots.
$$

Cantor's normal form:

$$
\alpha = n_1 \omega^{\alpha_1} + n_2 \omega^{\alpha_2} + \cdots + n_k \omega^{\alpha_k}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

where $\alpha_1 > \alpha_2 > \cdots > \alpha_k \geq 0$ are ordinals and $n_1, n_2, ..., n_k$ natural numbers.

Fundamental sequences below $\varepsilon_0 = \min\{\alpha : \alpha = \omega^{\alpha}\}\$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Fundamental sequences below $\varepsilon_0 = \min\{\alpha : \alpha = \omega^{\alpha}\}\$

$$
C_{\alpha} = \{c_{\alpha}(0), c_{\alpha}(1), c_{\alpha}(2),\} \nearrow \alpha :
$$

$$
c_{\alpha+1}(n)=\alpha,
$$

$$
c_{\omega}(n)=n,
$$

$$
c_{\beta+\omega^{\alpha+1}}(n)=\beta+n\omega^{\alpha},
$$

$$
c_{\beta+\omega^{\alpha}}(n)=\beta+\omega^{c_{\alpha}(n)},
$$

$$
c_{\varepsilon_0}(n+1)=\omega^{c_{\varepsilon_0}(n)}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

$$
\alpha \curvearrowright c_{\alpha}(n) \curvearrowright c_{c_{\alpha}(n)}(n+1) \curvearrowright c_{c_{c_{\alpha}(n)}(n+1)}(n+2)\cdot\cdot\cdot
$$

$$
\alpha \curvearrowright c_{\alpha}(n) \curvearrowright c_{c_{\alpha}(n)}(n+1) \curvearrowright c_{c_{c_{\alpha}(n)}(n+1)}(n+2)\cdot\cdot\cdot
$$

Theorem (S. S. Wainer, 1970)

For a given integer n, the length of the classical walk from α to 0 starting with $\alpha \sim c_{\alpha}(n)$ is equal to $H_{\alpha}(n)$.

KORK ERKER ADE YOUR

$$
\alpha \curvearrowright c_{\alpha}(n) \curvearrowright c_{c_{\alpha}(n)}(n+1) \curvearrowright c_{c_{c_{\alpha}(n)}(n+1)}(n+2)\cdot\cdot\cdot
$$

Theorem (S. S. Wainer, 1970)

For a given integer n, the length of the classical walk from α to 0 starting with $\alpha \sim c_{\alpha}(n)$ is equal to $H_{\alpha}(n)$.

Definition (G.H. Hardy, 1904)

 $H_0(n) = n$, $H_{\alpha+1}(n) = H_{\alpha}(n+1),$ $H_{\alpha}(n) = H_{c_{\alpha}(n)}(n).$

KORK ERKER ADE YOUR

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @

Minimal step from β towards $\alpha < \beta$:

K ロ ▶ K 레 ▶ K 로 ▶ K 로 ▶ - 로 - K 이 이 이 이

Minimal step from β towards $\alpha < \beta$:

 $\beta \curvearrowright c_{\beta}(n(\alpha, \beta)),$

where

$$
n(\alpha,\beta)=\min\{n:c_{\beta}(n)\geq\alpha\}.
$$

KID KA KERKER E VOOR

Minimal step from β towards $\alpha < \beta$:

 $\beta \curvearrowright c_{\beta}(n(\alpha, \beta)),$

where

$$
n(\alpha,\beta)=\min\{n:c_{\beta}(n)\geq\alpha\}.
$$

Minimal walk from β towards α is a finite decreasing sequence

$$
\beta = \beta_0 \cap \beta_1 \cap \cdots \cap \beta_k = \alpha
$$

Minimal step from β towards $\alpha < \beta$:

 $\beta \curvearrowright c_{\beta}(n(\alpha, \beta)),$

where

$$
n(\alpha,\beta)=\min\{n:c_{\beta}(n)\geq\alpha\}.
$$

Minimal walk from β towards α is a finite decreasing sequence

$$
\beta = \beta_0 \cap \beta_1 \cap \cdots \cap \beta_k = \alpha
$$

such that for all $i < k$, the step $\beta_i \sim \beta_{i+1}$ is the minimal step from β_i towards α , i.e.

$$
\beta_{i+1}=c_{\beta_i}(n(\alpha,\beta_i)).
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^
The full code of the walk

The full code of the walk

The full code of the minimal walk is given by the formula

$$
\rho_0(\alpha,\beta)=n(\alpha,\beta)^{\frown}\rho_0(\alpha,c_{\beta}(n(\alpha,\beta))),
$$

with the boundary value

 $\rho_0(\alpha, \alpha) = \emptyset.$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The full code of the walk

The full code of the minimal walk is given by the formula

$$
\rho_0(\alpha,\beta)=n(\alpha,\beta)^{\frown}\rho_0(\alpha,c_{\beta}(n(\alpha,\beta))),
$$

with the boundary value

$$
\rho_0(\alpha,\alpha)=\emptyset.
$$

Note that this is simply the sequence of integers

$$
\rho_0(\alpha,\beta)=(n(\alpha,\beta_i):i
$$

that code the steps of the minimal walk

$$
\beta = \beta_0 \cap \beta_1 \cap \cdots \cap \beta_k = \alpha.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The weight characteristic of the walk is given by

KO > K @ > K 할 > K 할 > L 할 > 10 K O Q O

The weight characteristic of the walk is given by

$$
\rho_1(\alpha, \beta) = \max \begin{cases} n(\alpha, \beta), \\ \rho_1(\alpha, c_\beta(n(\alpha, \beta))) \end{cases}
$$

with the boundary value

$$
\rho_1(\alpha,\alpha)=0.
$$

The weight characteristic of the walk is given by

$$
\rho_1(\alpha,\beta) = \max \begin{cases} n(\alpha,\beta), \\ \rho_1(\alpha,c_\beta(n(\alpha,\beta))) \end{cases}
$$

with the boundary value

$$
\rho_1(\alpha,\alpha)=0.
$$

The length of the walk is given by

$$
\rho_2(\alpha,\beta)=\rho_2(\alpha,c_{\beta}(n(\alpha,\beta)))+1
$$

with the boundary value

$$
\rho_2(\alpha,\alpha)=0.
$$

The fundamental property of $\rho_0(\alpha, \beta)$

The fundamental property of $\rho_0(\alpha, \beta)$

If the finite sequence of integers

$$
\rho_0(\alpha,\beta)=\langle n_0,n_1,n_2,...,n_k\rangle
$$

is identified with the rational number

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

The fundamental property of $\rho_0(\alpha, \beta)$

If the finite sequence of integers

$$
\rho_0(\alpha,\beta)=\langle n_0,n_1,n_2,...,n_k\rangle
$$

is identified with the rational number

$$
\frac{1}{n_0+\frac{1}{n_1+\frac{1}{n_2+\dots+\frac{1}{n_k}}}}
$$

then the Von Neumann equality

$$
\beta = \{\alpha : \alpha < \beta\}
$$

becomes the identification

$$
\beta \cong \{\rho_0(\alpha,\beta) : \alpha < \beta\} \subseteq \mathbb{Q}.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Two fundamental properties of $\rho_1(\alpha, \beta)$

Two fundamental properties of $\rho_1(\alpha, \beta)$

(Enumeration:) For every β and every *n*,

$$
\{\alpha < \beta : \rho_1(\alpha, \beta) = n\}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

is a finite set.

Two fundamental properties of $\rho_1(\alpha, \beta)$

(Enumeration:) For every β and every n ,

$$
\{\alpha < \beta : \rho_1(\alpha, \beta) = n\}
$$

is a finite set.

(Coherence:) For all $\alpha < \beta$,

$$
\{\xi < \alpha : \rho_1(\xi, \alpha) \neq \rho_1(\xi, \beta)\}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

is a finite set.

Two fundamental properties of $\rho_2(\alpha, \beta)$

Two fundamental properties of $\rho_2(\alpha, \beta)$

(Unboundedness:)

For every pair A and B of uncountable subsets of ω_1 ,

$$
\sup\{\rho_2(\alpha,\beta): \alpha\in A, \beta\in B, \ \alpha<\beta\}=\infty.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Two fundamental properties of $\rho_2(\alpha, \beta)$

(Unboundedness:)

For every pair A and B of uncountable subsets of ω_1 ,

$$
\sup\{\rho_2(\alpha,\beta): \alpha\in A, \beta\in B, \ \alpha<\beta\}=\infty.
$$

 $(\ell_{\infty}$ -Coherence:) For every $\alpha < \beta < \omega_1$,

$$
\sup_{\xi<\alpha}|\rho_1(\xi,\alpha)-\rho_2(\xi,\beta)|<\infty.
$$

KORKA SERKER ORA

$$
\rho(\alpha,\beta) = \max \begin{cases} n(\alpha,\beta) \\ \rho(\alpha,c_{\beta}(n(\alpha,\beta))) \\ \rho(c_{\beta}(n),\alpha) \end{cases} \quad n < n(\alpha,\beta).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

with the boundary value $\rho(\alpha, \alpha) = 0$.

$$
\rho(\alpha,\beta) = \max \begin{cases} n(\alpha,\beta) \\ \rho(\alpha,c_{\beta}(n(\alpha,\beta))) \\ \rho(c_{\beta}(n),\alpha) \end{cases} \quad n < n(\alpha,\beta).
$$

with the boundary value $\rho(\alpha, \alpha) = 0$. (Enumeration:) For every β and every *n*,

$$
\{\alpha < \beta : \rho(\alpha, \beta) = n\}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

is a finite set.

$$
\rho(\alpha,\beta) = \max \begin{cases} n(\alpha,\beta) \\ \rho(\alpha,c_{\beta}(n(\alpha,\beta))) \\ \rho(c_{\beta}(n),\alpha) \end{cases} \quad n < n(\alpha,\beta).
$$

with the boundary value $\rho(\alpha, \alpha) = 0$. (Enumeration:) For every β and every *n*,

$$
\{\alpha < \beta : \rho(\alpha, \beta) = n\}
$$

is a finite set. (Triangle inequalities:) For all $\alpha < \beta < \gamma$,

$$
\rho(\alpha,\gamma) \leq \max\{\rho(\alpha,\beta),\rho(\beta,\gamma)\},\
$$

$$
\rho(\alpha,\beta)\leq \max\{\rho(\alpha,\gamma),\rho(\beta,\gamma)\}.
$$

 QQ

Some applications of the ρ -structure

Recall that a normalized sequence (x_n) in some normed space $(X, \|\cdot\|)$ is **unconditional** whenever there is a constant $C > 1$ such that

$$
\Big\|\sum_{i\in I}a_ix_i\Big\|\leq C\Big\|\sum_{j\in J}a_jx_j\Big\|
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

for any pair $I \subseteq J$ of finite subsets of ω and for every sequence $(a_j : j \in J)$ of scalars.

Some applications of the ρ -structure

Recall that a normalized sequence (x_n) in some normed space $(X, \|\cdot\|)$ is **unconditional** whenever there is a constant $C > 1$ such that

$$
\Big\|\sum_{i\in I}a_ix_i\Big\|\leq C\Big\|\sum_{j\in J}a_jx_j\Big\|
$$

KORKAR KERKER E VOOR

for any pair $I \subseteq J$ of finite subsets of ω and for every sequence $(a_j : j \in J)$ of scalars.

Theorem (Argyros-LopezAbad-T., 2005)

There is a reflexive space of density \aleph_1 with no infinite unconditional basic sequence.

Some applications of the ρ -structure

Recall that a normalized sequence (x_n) in some normed space $(X, \|\cdot\|)$ is **unconditional** whenever there is a constant $C \geq 1$ such that

$$
\Big\|\sum_{i\in I}a_ix_i\Big\|\leq C\Big\|\sum_{j\in J}a_jx_j\Big\|
$$

for any pair $I \subseteq J$ of finite subsets of ω and for every sequence $(a_j : j \in J)$ of scalars.

Theorem (Argyros-LopezAbad-T., 2005)

There is a reflexive space of density \aleph_1 with no infinite unconditional basic sequence.

Theorem (LopezAbad-T., 2011)

For every $k < \omega$ there is a weakly null sequence of length ω_k with no infinite unconditional basic subsequence.

To any characteristic $\textit{a} : [\omega_1]^2 \rightarrow \omega,$ we associate the corresponding tree

$$
\mathcal{T}(a) = \{a(\cdot,\beta) \restriction \alpha : \alpha \leq \beta < \omega_1\}
$$

and the corresponding distance function

$$
\Delta_a : [\omega_1]^2 \to \omega_1 \cup \{\infty\}
$$

defined by

$$
\Delta_{\mathsf{a}}(\alpha,\beta)=\min\{\xi<\alpha:\mathsf{a}(\xi,\alpha)\neq\mathsf{a}(\xi,\beta)\}.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

To any characteristic $\textit{a} : [\omega_1]^2 \rightarrow \omega,$ we associate the corresponding tree

$$
\mathcal{T}(a) = \{a(\cdot,\beta) \restriction \alpha : \alpha \leq \beta < \omega_1\}
$$

and the corresponding distance function

$$
\Delta_a : [\omega_1]^2 \to \omega_1 \cup \{\infty\}
$$

defined by

$$
\Delta_{\mathsf{a}}(\alpha,\beta)=\min\{\xi<\alpha:\mathsf{a}(\xi,\alpha)\neq\mathsf{a}(\xi,\beta)\}.
$$

Definition

A characteristics a : $[\omega_1]^2 \rightarrow \omega$ is **Lipschitz** if for every map $f: A \to \omega_1$ on an uncountable subset A of ω_1 such that $f(\alpha) > \alpha$ for all $\alpha \in A$ there is uncountable $B \subseteq A$ such that

To any characteristic $\textit{a} : [\omega_1]^2 \rightarrow \omega,$ we associate the corresponding tree

$$
\mathcal{T}(a) = \{a(\cdot,\beta) \restriction \alpha : \alpha \leq \beta < \omega_1\}
$$

and the corresponding distance function

$$
\Delta_a : [\omega_1]^2 \to \omega_1 \cup \{\infty\}
$$

defined by

$$
\Delta_{\mathsf{a}}(\alpha,\beta)=\min\{\xi<\alpha:\mathsf{a}(\xi,\alpha)\neq\mathsf{a}(\xi,\beta)\}.
$$

Definition

A characteristics a : $[\omega_1]^2 \rightarrow \omega$ is **Lipschitz** if for every map $f: A \to \omega_1$ on an uncountable subset A of ω_1 such that $f(\alpha) > \alpha$ for all $\alpha \in A$ there is uncountable $B \subseteq A$ such that

$$
\Delta_a(\alpha,\beta)=\Delta(f(\alpha),f(\beta))\neq\infty \text{ for all } \alpha,\beta\in B, \alpha<\beta.
$$

KORKAR KERKER EL VOLO

The metric equivalence

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q*

The metric equivalence

Two characteristics $\emph{a}:[\omega_{1}]^{2}\rightarrow\omega$ and $\emph{b}:[\omega_{1}]^{2}\rightarrow\omega$ are <code>metrically</code> equivalent if there is an uncountable $X \subseteq \omega_1$ such that

- (i) $\Delta_a(\alpha, \beta) \neq \infty$ and $\Delta_b(\alpha, \beta) \neq \infty$ for all $\alpha, \beta \in X$ with $\alpha < \beta$.
- (ii) for every quadruple $\alpha, \beta, \gamma, \delta \in X$ such that $\alpha < \beta$ and $\gamma < \delta$,

 $\Delta_{a}(\alpha, \beta) > \Delta_{a}(\gamma, \delta)$ if and only if $\Delta_{b}(\alpha, \beta) > \Delta_{b}(\gamma, \delta)$.

KORKAR KERKER EL VOLO

The metric equivalence

Two characteristics $\emph{a}:[\omega_{1}]^{2}\rightarrow\omega$ and $\emph{b}:[\omega_{1}]^{2}\rightarrow\omega$ are <code>metrically</code> equivalent if there is an uncountable $X \subseteq \omega_1$ such that

- (i) $\Delta_a(\alpha, \beta) \neq \infty$ and $\Delta_b(\alpha, \beta) \neq \infty$ for all $\alpha, \beta \in X$ with $\alpha < \beta$.
- (ii) for every quadruple $\alpha, \beta, \gamma, \delta \in X$ such that $\alpha < \beta$ and $\gamma < \delta$,

 $\Delta_{a}(\alpha, \beta) > \Delta_{a}(\gamma, \delta)$ if and only if $\Delta_{b}(\alpha, \beta) > \Delta_{b}(\gamma, \delta)$.

KORKAR KERKER EL VOLO

Theorem (T., 2007)

Assuming $\mathfrak{m}\mathfrak{m} > \omega_1$, every pair of Lipschitz characteristics a : $[\omega_1]^2 \rightarrow \omega$ and $b: [\omega_1]^2 \rightarrow \omega$ are metrically equivalent.

Theorem (T., 2000)

- 1. The characteristics ρ , ρ_0 , ρ_1 , ρ_2 of the minimal walk are all Lipschitz.
- 2. Assuming $\mathfrak{m}\mathfrak{m} > \omega_1$, all Lipschitz trees are shift equivalent in the sense that for every pair a : $[\omega_1]^2 \rightarrow \omega$ and $b: [\omega_1]^2 \rightarrow \omega$ of Lipschitz characteristics there is a strictly increasing partial map $\sigma : \omega_1 \rightarrow \omega_1$ such that

$$
T(a) \equiv T(b)^{(\sigma)} \text{ or } T(b) \equiv T(a)^{(\sigma)}.
$$

3. Assuming $\mathfrak{m}\mathfrak{m} > \omega_1$, the class $\lceil T(\rho_1) \rceil$ of Lipschitz trees is Σ_1 -definable in $(H(\omega_1), \in)$ and it is cofinal and coinitial in the class of all counterexamples to König's lemma at the level ω_1 .

Corollary

Assuming $\mathfrak{m}\mathfrak{m} > \omega_1$, up to the metric equivalence, the characteristics ρ , ρ_0 , ρ_1 , ρ_2 of the minimal walk do not depend on thechoice of the fundamental sequence C_{α} $(\alpha < \omega_1)$ $(\alpha < \omega_1)$ $(\alpha < \omega_1)$ $(\alpha < \omega_1)$ $(\alpha < \omega_1)$ [.](#page-0-0)

 000

The upper trace and its oscillations

The upper trace and its oscillations

The upper trace of the walk

$$
\beta = \beta_0 \cap \beta_1 \cap \cdots \cap \beta_k = \alpha
$$

from β towards $\alpha < \beta$ is the set

$$
\mathrm{Tr}(\alpha,\beta)=\{\beta_i:i\leq k\}.
$$

The upper trace and its oscillations

The upper trace of the walk

$$
\beta = \beta_0 \cap \beta_1 \cap \cdots \cap \beta_k = \alpha
$$

from β towards $\alpha < \beta$ is the set

$$
\mathrm{Tr}(\alpha,\beta)=\{\beta_i:i\leq k\}.
$$

The oscillation mapping is given by

$$
o_0(\alpha, \beta) = osc(\text{Tr}(\Delta(\alpha, \beta) - 1, \alpha), \text{Tr}(\Delta(\alpha, \beta) - 1, \beta)),
$$

where

$$
\Delta(\alpha,\beta)=\min\{\xi:\rho_0(\xi,\alpha)\neq\rho_0(\xi,\beta)\}.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

The fundamental property of the oscillation mapping

Theorem (T., 1987)

For every uncountable $\Gamma \subseteq \omega_1$ and every integer $n \geq 2$ there exist $\alpha < \beta$ in Γ such that $o_0(\alpha, \beta) = n$.

KORK STRATER STRAKER

The fundamental property of the oscillation mapping

Theorem (T., 1987)

For every uncountable $\Gamma \subseteq \omega_1$ and every integer $n \geq 2$ there exist $\alpha < \beta$ in Γ such that $o_0(\alpha, \beta) = n$.

Corollary

The class of equivalence relations on $[\omega_1]^2$ does not have a finite Ramsey basis.

KORK ERKER ADE YOUR

The fundamental property of the oscillation mapping

Theorem (T., 1987)

For every uncountable $\Gamma \subseteq \omega_1$ and every integer $n \geq 2$ there exist $\alpha < \beta$ in Γ such that $o_0(\alpha, \beta) = n$.

Corollary

The class of equivalence relations on $[\omega_1]^2$ does not have a finite Ramsey basis.

KORK ERKER ADE YOUR

Corollary

The class of graphs on ω_1 does not have a finite basis.
The fundamental property of the oscillation mapping

Theorem (T., 1987)

For every uncountable $\Gamma \subseteq \omega_1$ and every integer $n \geq 2$ there exist $\alpha < \beta$ in Γ such that $o_0(\alpha, \beta) = n$.

Corollary

The class of equivalence relations on $[\omega_1]^2$ does not have a finite Ramsey basis.

Corollary

The class of graphs on ω_1 does not have a finite basis.

Question

Can similar results be proved for other basis problems mentioned above?

KORKAR KERKER EL VOLO

The canonical ordering on ω_1 For $\alpha \neq \beta$ in ω_1 , set

$$
\alpha <_{\rho_0} \beta \text{ iff } \rho_0(\Delta(\alpha, \beta), \alpha) < \rho_0(\Delta(\alpha, \beta), \beta).
$$

Let

$$
\mathcal{C}(\rho_0)=(\omega_1,<_{{\rho}_0}).
$$

Theorem (T., 1987)

- 1. $C(\rho_0)$ is a linearly ordered set whose cartesian square can be decomposed into countably many chains.
- 2. Assuming $m > \omega_1$, the ordering $C(\rho_0)$ is a minimal uncountable linear ordering and its equivalence class

$$
[C(\rho_0)] = \{K \in \mathcal{LO} : K \leq C(\rho_0) \text{ and } C(\rho_0) \leq K\}
$$

does not depend on the choice of the sequence C_{α} ($\alpha < \omega_1$).

3. Assuming $m > \omega_1$, the class $[C(\rho_0)]$ is Σ_1 -definable in $(H(\omega_2), \in).$ 4 D > 4 P + 4 B + 4 B + B + 9 Q O

Assuming $\mathfrak{m}\mathfrak{m} > \omega_1$,

$$
C(\rho_0) \leq L \text{ or } C(\rho_0)^* \leq L
$$

for every non-separable linear ordering L such that

 $\omega_1 \nleq L$ and $\omega_1^* \nleq L$.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Assuming $\mathfrak{m}\mathfrak{m} > \omega_1$,

$$
C(\rho_0) \leq L \text{ or } C(\rho_0)^* \leq L
$$

for every **non-separable** linear ordering L such that

 $\omega_1 \nleq L$ and $\omega_1^* \nleq L$.

Theorem (Baumgartner, 1973)

Assume mm $>\omega_1$ and let B be any set of reals of cardinality \aleph_1 with its usual ordering. Then

 $B < L$

for every separable linear ordering L.

$\mathcal{A} = \{L \in \mathcal{LO} : B \nleq L, \ \omega_1 \nleq L \text{ and } \omega_1^* \nleq L\}.$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q @

$$
\mathcal{A}=\{L\in\mathcal{LO}:B\nleq L,\ \omega_1\nleq L\ \text{and}\ \omega_1^*\nleq L\}.
$$

Theorem (Martinez-Ranero, 2010)

Assuming $mm > \omega_1$, the class A is well-quasi-ordered, i.e., for every sequence

 $(L_i:i<\omega)\subseteq \mathcal{A}$

KORKA SERKER ORA

there exist $i < j$ such that $L_i \le L_j$.

$$
\mathcal{A}=\{L\in\mathcal{LO}:B\nleq L,\ \omega_1\nleq L\ \text{and}\ \omega_1^*\nleq L\}.
$$

Theorem (Martinez-Ranero, 2010)

Assuming mm $>\omega_1$, the class A is well-quasi-ordered, i.e., for every sequence

 $(L_i:i<\omega)\subseteq \mathcal{A}$

KORK ERKER ADE YOUR

there exist $i < j$ such that $L_i \le L_j$.

Remark

Note that this includes to the following classical result which verifies an old conjecture of Fraïssé.

$$
\mathcal{A}=\{L\in\mathcal{LO}:B\nleq L,\ \omega_1\nleq L\ \text{and}\ \omega_1^*\nleq L\}.
$$

Theorem (Martinez-Ranero, 2010)

Assuming mm $>\omega_1$, the class A is well-quasi-ordered, i.e., for every sequence

 $(L_i:i<\omega)\subseteq \mathcal{A}$

there exist $i < j$ such that $L_i \le L_j$.

Remark

Note that this includes to the following classical result which verifies an old conjecture of Fraïssé.

Theorem (Laver, 1970)

The class \mathcal{LO}_{ω} of **countable** linear orderings is well-quasi-ordered.

KORKAR KERKER EL VOLO

Oscillation on lower trace

K ロ X K 메 X K B X X B X X D X O Q Q O

Oscillation on lower trace

The lower trace of the minimal walk

$$
\beta = \beta_0 \cap \beta_1 \cap \cdots \cap \beta_k = \alpha
$$

is the set

$$
L(\alpha,\beta)=\{\max\{\max(C_{\beta_i}\cap\alpha):i\leq j\}:j
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Oscillation on lower trace

The lower trace of the minimal walk

$$
\beta = \beta_0 \cap \beta_1 \cap \cdots \cap \beta_k = \alpha
$$

is the set

$$
L(\alpha,\beta)=\{\max\{\max(\textit{C}_{\beta_{i}}\cap\alpha):i\leq j\}:j
$$

The corresponding **oscillation function** is defined as follows

 $o_1(\alpha,\beta) = |\{\xi \in L(\alpha,\beta) : \rho_1(\xi,\alpha) \leq \rho_1(\xi,\beta) \wedge \rho_1(\xi^+,\alpha) > \rho_1(\xi^+,\beta)\}|,$ where for $\xi \in L(\alpha, \beta)$,

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

$$
\xi^+ = \min(L(\alpha,\beta) \setminus \xi + 1).
$$

1. For every pair A, B of uncountable subsets of ω_1 , the set

 $\{o_1(\alpha, \beta) : \alpha \in A, \beta \in B, \alpha < \beta\}$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

is a syndetic set of integers.

1. For every pair A, B of uncountable subsets of ω_1 , the set

 $\{o_1(\alpha, \beta) : \alpha \in A, \beta \in B, \alpha < \beta\}$

KORKA SERKER ORA

is a syndetic set of integers.

2. There is a regular hereditarily Lindelöf space that is not separable.

1. For every pair A, B of uncountable subsets of ω_1 , the set

 $\{o_1(\alpha, \beta) : \alpha \in A, \beta \in B, \alpha < \beta\}$

KORK ERKER ADE YOUR

is a syndetic set of integers.

- 2. There is a regular hereditarily Lindelöf space that is not separable.
- 3. The class of uncountable regular spaces has no finite basis.

1. For every pair A, B of uncountable subsets of ω_1 , the set

 $\{o_1(\alpha, \beta) : \alpha \in A, \beta \in B, \alpha < \beta\}$

is a syndetic set of integers.

- 2. There is a regular hereditarily Lindelöf space that is not separable.
- 3. The class of uncountable regular spaces has no finite basis.

Theorem (T., 1985)

Assuming $mm > \omega_1$, every regular hereditarily separable space is Lindelöf.

KORK ERKER ADE YOUR

1. For every pair A, B of uncountable subsets of ω_1 , the set

 $\{o_1(\alpha, \beta) : \alpha \in A, \beta \in B, \alpha < \beta\}$

is a syndetic set of integers.

- 2. There is a regular hereditarily Lindelöf space that is not separable.
- 3. The class of uncountable regular spaces has no finite basis.

Theorem (T., 1985)

Assuming $mm > \omega_1$, every regular hereditarily separable space is Lindelöf.

Question (mm $>\omega_1$)

Does the class of uncountable (regular) first countable spaces have finite basis?

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Assume $mm > \omega_1$. Show that every compact space K either

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

1. K contains an uncountable discrete subspace, or

Assume $mm > \omega_1$. Show that every compact space K either

- 1. K contains an uncountable discrete subspace, or
- 2. there is a continuous map $f: K \to M$ onto a metric space such that $|f^{-1}(x)|\leq 2$ for all $x\in M.$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Assume $mm > \omega_1$. Show that every compact space K either

- 1. K contains an uncountable discrete subspace, or
- 2. there is a continuous map $f: K \to M$ onto a metric space such that $|f^{-1}(x)|\leq 2$ for all $x\in M.$

Example

The split interval is the product $[0, 1] \times \{0, 1\}$ ordered lexicographically. It has no uncountable discrete subspace and is a 2-to-1 preimage of the unit interval.

KORK ERKER ADE YOUR

Assume $mm > \omega_1$. Show that every compact space K either

- 1. K contains an uncountable discrete subspace, or
- 2. there is a continuous map $f: K \to M$ onto a metric space such that $|f^{-1}(x)|\leq 2$ for all $x\in M.$

Example

The split interval is the product $[0, 1] \times \{0, 1\}$ ordered lexicographically. It has no uncountable discrete subspace and is a 2-to-1 preimage of the unit interval.

Theorem (T., 1999)

Let K be a compact subset of a Tychonoff cube $[0,1]^X$ consisting of Baire-class-1 functions on some Polish space X. Then either

KORKAR KERKER EL VOLO

1. K contains an uncountable discrete subspace, or

Assume $mm > \omega_1$. Show that every compact space K either

- 1. K contains an uncountable discrete subspace, or
- 2. there is a continuous map $f: K \to M$ onto a metric space such that $|f^{-1}(x)|\leq 2$ for all $x\in M.$

Example

The split interval is the product $[0, 1] \times \{0, 1\}$ ordered lexicographically. It has no uncountable discrete subspace and is a 2-to-1 preimage of the unit interval.

Theorem (T., 1999)

Let K be a compact subset of a Tychonoff cube $[0, 1]^{X}$ consisting of Baire-class-1 functions on some Polish space X. Then either

- 1. K contains an uncountable discrete subspace, or
- 2. K is an at most 2-to-1 preimage of a compact metric space.

K ロ X K 메 X K B X X B X X D X O Q Q O

For a characteristic $\textit{a}: [\omega_1]^2 \rightarrow \omega$ and $X \subseteq \omega_1,$ we set

 $\Delta_{a}[X] = {\Delta_{a}(\alpha, \beta) : \alpha, \beta \in X, \alpha < \beta \text{ and } \Delta_{a}(\alpha, \beta) \neq \infty}.$

KID KA KERKER E VOOR

For a characteristic $\textit{a}: [\omega_1]^2 \rightarrow \omega$ and $X \subseteq \omega_1,$ we set

 $\Delta_{a}[X] = {\Delta_{a}(\alpha, \beta) : \alpha, \beta \in X, \alpha < \beta \text{ and } \Delta_{a}(\alpha, \beta) \neq \infty}.$

Proposition

If a characteristic a : $[\omega_1]^2 \rightarrow \omega$ is Lipschitz then for every pair X and Y of uncountable subsets of ω_1 there is an uncountable subset Z of X such that $\Delta_a[Z] \subset \Delta_a[X] \cap \Delta_a[Y]$.

KORKAR KERKER EL VOLO

For a characteristic $\textit{a}: [\omega_1]^2 \rightarrow \omega$ and $X \subseteq \omega_1,$ we set

 $\Delta_{a}[X] = {\Delta_{a}(\alpha, \beta) : \alpha, \beta \in X, \alpha < \beta \text{ and } \Delta_{a}(\alpha, \beta) \neq \infty}.$

Proposition

If a characteristic a : $[\omega_1]^2 \rightarrow \omega$ is Lipschitz then for every pair X and Y of uncountable subsets of ω_1 there is an uncountable subset Z of X such that $\Delta_a[Z] \subset \Delta_a[X] \cap \Delta_a[Y]$.

Corollary

If a characteristic a : $[\omega_1]^2 \rightarrow \omega$ is Lipschitz then the family

 $\{\Delta_{a}[X]: X \subseteq \omega_1 \text{ and } X \text{ is uncountable}\}\$

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

generates a uniform filter \mathcal{U}_a on ω_1 .

Theorem (T., 2000)

- 1. Assuming $m > \omega_1$, for every Lipschitz characteristic a : $[\omega_1]^2 \rightarrow \omega,$ the filter \mathcal{U}_a is in fact an $\mathsf{ultrafilter}.$
- 2. Assuming $\mathfrak{m}\mathfrak{m}>\omega_1,$ for Lipschitz characteristics a : $[\omega_1]^2\rightarrow\omega$ and $b:[\omega_1]^2\to\omega,$

$$
T(a) \equiv T(b) \text{ iff } U_a = U_b.
$$

3. Assuming $\mathfrak{m}\mathfrak{m} > \omega_1$, for every pair of Lipschitz characteristics $\bm{s}:[\omega_1]^2\rightarrow\omega$ and $\bm{b}:[\omega_1]^2\rightarrow\omega,$

$$
\mathcal{U}_a \equiv_{\rm RK} \mathcal{U}_b.
$$

Corollary

Assuming $\frak{m}\frak{m}>\omega_1,$ the filter \mathcal{U}_{ρ_0} is a Σ_1 -definable, in $(H(\omega_1),\in)$, uniform ultrafilter on ω_1 whose Rudin-Keisler class does not depend on the choice of the fundamental sequence C_{α} $(\alpha < \omega_1)$ that defines the characteristic ρ_0 of the [m](#page-96-0)inima[l](#page-98-0) [w](#page-96-0)[al](#page-97-0)[k.](#page-98-0)

K ロ X K 메 X K B X X B X X D X O Q Q O

Recall that to any characteristic $\textit{a}:[\omega_1]^2\rightarrow \omega$ we associate the corresponding filter on ω_1 ,

 $U_a = \{ Y \subseteq \omega_1 : (\exists X \subseteq \omega_1) | X \text{ is uncountable and } \Delta_a[X] \subseteq Y \}.$

It is also natural to consider its Rudin-Keisler images to ω via maps $f: \omega_1 \to \omega$,

$$
f[\mathcal{U}_a]=\{X\subseteq \omega: f^{-1}(X)\in \mathcal{U}_a\}.
$$

KORK ERKER ADE YOUR

Thus we have,

Recall that to any characteristic $\textit{a}:[\omega_1]^2\rightarrow \omega$ we associate the corresponding filter on ω_1 ,

 $U_a = \{ Y \subseteq \omega_1 : (\exists X \subseteq \omega_1) | X \text{ is uncountable and } \Delta_a[X] \subseteq Y \}.$

It is also natural to consider its Rudin-Keisler images to ω via maps $f: \omega_1 \to \omega$,

$$
f[\mathcal{U}_a] = \{X \subseteq \omega : f^{-1}(X) \in \mathcal{U}_a\}.
$$

Thus we have,

Theorem (T., 2000)

Assuming $\mathfrak{m}>\omega_1,$ for every Lipschitz characteristic a : $[\omega_1]^2\rightarrow\omega$ and every $f: \omega_1 \rightarrow \omega$, the filter

 $\mathcal{V}_{a}^{f} = f[\mathcal{U}_{a}]$

KORKAR KERKER EL VOLO

is an ultrafilter on ω that is Σ_1 -definable in $(H(\omega_1), \in)$.

Recall that to any characteristic $\textit{a}:[\omega_1]^2\rightarrow \omega$ we associate the corresponding filter on ω_1 ,

 $U_a = \{ Y \subseteq \omega_1 : (\exists X \subseteq \omega_1) \mid X \text{ is uncountable and } \Delta_a[X] \subseteq Y \}.$

It is also natural to consider its Rudin-Keisler images to ω via maps $f: \omega_1 \to \omega$,

$$
f[\mathcal{U}_a]=\{X\subseteq \omega: f^{-1}(X)\in \mathcal{U}_a\}.
$$

Thus we have,

Theorem (T., 2000)

Assuming $\mathfrak{m}>\omega_1,$ for every Lipschitz characteristic a : $[\omega_1]^2\rightarrow\omega$ and every $f: \omega_1 \rightarrow \omega$, the filter

 $\mathcal{V}_{a}^{f} = f[\mathcal{U}_{a}]$

is an ultrafilter on ω that is Σ_1 -definable in $(H(\omega_1), \in)$.

Question

Which kind of ultrafilter [is](#page-102-0) \mathcal{V}_a^f \mathcal{V}_a^f \mathcal{V}_a^f \mathcal{V}_a^f \mathcal{V}_a^f [?](#page-101-0) How canonica h is [i](#page-97-0)t $\mathcal I$

Recall that an ultrafilter W on ω is **selective** if for every $h: \omega \to \omega$ there is $M \in \mathcal{W}$ such that

 $h \upharpoonright M$ is one-to-one or constant.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Recall that an ultrafilter W on ω is **selective** if for every $h:\omega\to\omega$ there is $M\in\mathcal{W}$ such that

 $h \upharpoonright M$ is one-to-one or constant.

Proposition (T., 1990)

Assume that every set of reals in $L(\mathbb{R})$ is 2^c-universally Baire. Then every selective ultrafilter on ω is $L(\mathbb{R})$ -generic filter for the forcing notion $\mathcal{P}(\omega)/\mathrm{Fin}$.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Recall that an ultrafilter W on ω is **selective** if for every $h:\omega\to\omega$ there is $M\in\mathcal{W}$ such that

 $h \upharpoonright M$ is one-to-one or constant.

Proposition (T., 1990)

Assume that every set of reals in $L(\mathbb{R})$ is 2^c-universally Baire. Then every selective ultrafilter on ω is $L(\mathbb{R})$ -generic filter for the forcing notion $\mathcal{P}(\omega)/\mathrm{Fin}$.

Remark

This assumption is fulfilled if, for example, there exist some large cardinals in the universe.

KORK ERKER ADE YOUR

Recall that an ultrafilter W on ω is **selective** if for every $h:\omega\to\omega$ there is $M\in\mathcal{W}$ such that

 $h \upharpoonright M$ is one-to-one or constant.

Proposition (T., 1990)

Assume that every set of reals in $L(\mathbb{R})$ is 2^c-universally Baire. Then every selective ultrafilter on ω is $L(\mathbb{R})$ -generic filter for the forcing notion $\mathcal{P}(\omega)/\mathrm{Fin}$.

Remark

This assumption is fulfilled if, for example, there exist some large cardinals in the universe.

Theorem (T., 2007)

Assuming $\mathfrak{m}>\omega_1,$ for every Lipschitz characteristic a : $[\omega_1]^2\rightarrow\omega$ and every mapping $f:\omega_1\to\omega,$ the filter $\mathcal{V}^f_a=f[\mathcal{U}_a]$ is a selective ultrafilter on ω.

Theorem (T., 2007)

Suppose that a : $[\omega_1]^2 \rightarrow \omega$ and b : $[\omega_1]^2 \rightarrow \omega$ are two metrically equivalent Lipschitz characteristics.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Theorem (T., 2007)

Suppose that a : $[\omega_1]^2 \rightarrow \omega$ and b : $[\omega_1]^2 \rightarrow \omega$ are two metrically equivalent Lipschitz characteristics.

Suppose that $f : \omega_1 \to \omega$ and $g : \omega_1 \to \omega$ map \mathcal{U}_a and \mathcal{U}_b to two non-principal filters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$ on ω .

KORKA SERKER ORA
Theorem (T., 2007)

Suppose that a : $[\omega_1]^2 \rightarrow \omega$ and b : $[\omega_1]^2 \rightarrow \omega$ are two metrically equivalent Lipschitz characteristics.

Suppose that $f: \omega_1 \to \omega$ and $g: \omega_1 \to \omega$ map \mathcal{U}_a and \mathcal{U}_b to two non-principal filters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$ on ω .

Then, assuming $m > \omega_1$, the selective ultrafilters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$ are Rudin-Keisler equivalent.

KORK ERKER ADAM ADA

Theorem (T., 2007)

Suppose that a : $[\omega_1]^2 \rightarrow \omega$ and b : $[\omega_1]^2 \rightarrow \omega$ are two metrically equivalent Lipschitz characteristics. Suppose that $f: \omega_1 \to \omega$ and $g: \omega_1 \to \omega$ map \mathcal{U}_a and \mathcal{U}_b to two non-principal filters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$ on ω . Then, assuming $m > \omega_1$, the selective ultrafilters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$ are Rudin-Keisler equivalent.

Question

Suppose that $\textit{a}: [\omega_{1}]^{2} \rightarrow \omega$ is equal to one of the standard characteristics ρ , ρ_0 , ρ_1 , or ρ_2 of the minimal walk.

KORKAR KERKER E VOOR

Theorem (T., 2007)

Suppose that a : $[\omega_1]^2 \rightarrow \omega$ and b : $[\omega_1]^2 \rightarrow \omega$ are two metrically equivalent Lipschitz characteristics. Suppose that $f: \omega_1 \to \omega$ and $g: \omega_1 \to \omega$ map \mathcal{U}_a and \mathcal{U}_b to two non-principal filters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$ on ω . Then, assuming $m > \omega_1$, the selective ultrafilters $f[\mathcal{U}_a]$ and $g[\mathcal{U}_b]$ are Rudin-Keisler equivalent.

Question

Suppose that $\textit{a}: [\omega_{1}]^{2} \rightarrow \omega$ is equal to one of the standard characteristics ρ , ρ_0 , ρ_1 , or ρ_2 of the minimal walk. Is there a **canonical map** $f : \omega_1 \rightarrow \omega$ so that the corresponding filter $f[\mathcal{U}_a]$ on ω is non-principal?

Let Λ be the set of countable limit ordinals. Let

$$
d_\lambda:\omega_1\to\omega
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

be the distance function to Λ , i.e., $d(\lambda + n) = n$ for $\lambda \in \Lambda$.

Let Λ be the set of countable limit ordinals. Let

$$
d_\lambda:\omega_1\to\omega
$$

be the distance function to Λ , i.e., $d(\lambda + n) = n$ for $\lambda \in \Lambda$. Then for every characteristic

$$
a=\rho,\rho_0,\rho_1,\rho_2
$$

of the minimal walk considered above, the Rudin-Keisler image

$$
\mathcal{V}_a = d_{\Lambda}[\mathcal{U}_a]
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

is non-principal.

Let Λ be the set of countable limit ordinals. Let

$$
d_\lambda:\omega_1\to\omega
$$

be the distance function to Λ , i.e., $d(\lambda + n) = n$ for $\lambda \in \Lambda$. Then for every characteristic

$$
a=\rho,\rho_0,\rho_1,\rho_2
$$

of the minimal walk considered above, the Rudin-Keisler image

 $V_a = d_\Lambda[\mathcal{U}_a]$

is non-principal.

Theorem (T., 2007)

Assuming $\mathfrak{m}\mathfrak{m} > \omega_1$, the selective ultrafilter \mathcal{V}_{ρ_0} has its Rudin-Keisler class

 $[\mathcal{V}_{\rho_0}]_{\rm RK}=\{h[\mathcal{V}_{\rho_0}]$: h a permutation of $\omega\}$

independent on the choice of the fundamental sequence C_{α} $(\alpha < \omega_1)$ $(\alpha < \omega_1)$ $(\alpha < \omega_1)$ and Σ_1 -definable in the structure $(H(\omega_1), \in)$ $(H(\omega_1), \in)$ $(H(\omega_1), \in)$ [.](#page-0-0)