Some Consequences of I_0 in Higher Degree Theory

Xianghui Shi Beijing Normal University

Workshop on Iterated Forcing and Large Cardinals Fields Institute, November 15, 2012 This is a joint work with W.Hugh Woodin.

Dedicated to Professor Richard Laver.

Main results Axiom I_0 Large Perfect Set Theorem Posner-Robinson Theorem Degree Determinacy

Higher Degree Theory Degree theoretic questions In L, $L[\mu]$ In $L[\bar{\mu}]$ and beyond Degree structures under I_0

Failure of Degree Determinacy Preparation Proof of main lemma, sketch

Axiom I_0

Motivation

- Part of I₀ theory.
- Part of higher degree theory.

Definition

$$\begin{split} I_{3.} & \exists j : V_{\lambda} \to V_{\lambda} & \mathcal{E}(V_{\lambda}) \neq \varnothing \\ I_{1.} & \exists j : V_{\lambda+1} \to V_{\lambda+1} & \mathcal{E}(V_{\lambda+1}) \neq \varnothing \\ I_{0.} & \exists j : L(V_{\lambda+1}) \to L(V_{\lambda+1}) & \mathcal{E}(L(V_{\lambda+1})) \neq \varnothing \end{split}$$

Here j stands for a nontrivial elem embedding with $\operatorname{crit}(j) < \lambda$. The \mathcal{E} inequalities on the right are Laver's notation.

- $\blacktriangleright I_0 \Rightarrow I_1 \Rightarrow I_3.$
- ► By Kunen, ZFC ⇒ *E*(V_{λ+2}) = Ø. These are the strongest large cardinals not known to be inconsistent with ZFC.
- There is a strong resemblance between structural properties of subsets of V_{λ+1} under ZFC + I₀ and those of subsets of ℝ = V_{ω+1} under ZF + DC + AD.

$$rac{\mathsf{AD}}{L(\mathbb{R})}\sim rac{I_0}{L(V_{\lambda+1})}$$

We add two more instances that re-affirm this analogy.

The analogy is not perfect. Our last result is an evidence in this direction.

Large Perfect Set Theorem

Theorem 1 (Large Perfect Set Theorem)

Assume I_0 . Then every subsets of $V_{\lambda+1}$ that is definable over $(V_{\lambda+1}, \in)$ has Large Perfect Set Property.

- The topology on $V_{\lambda+1}$ is given by the basic open sets $O_{a,\alpha} = \{ b \subset V_{\lambda} \mid b \cap V_{\alpha} = a \}, \ \alpha < \lambda, \ a \subset V_{\alpha}.$
- ▶ Let $\bar{\kappa} = \langle \kappa_n : n < \omega \rangle$ be the critical sequence: $\kappa_0 = \operatorname{crit}(j)$, and $\kappa_{n+1} = j(\kappa_n)$. Identify $V_{\lambda+1}$ as $|V_{\kappa_0}| \times \prod_i |V_{\kappa_{i+1}} - V_{\kappa_i}|$.
- ► $X \subseteq V_{\lambda+1}$ has LPS¹ Property if either $|X| \leq \lambda$ or $X \supseteq [T]$, where T is $\bar{\lambda}$ -splitting, for some $\bar{\lambda}$ with $\sup \lambda_i = \lambda$.

 $^{1}LPS = Large Perfect Set$

- This is a "projective" version.
- One can improve it to sets in L_λ(V_{λ+1}), using the machinery of U(j)-representable sets developed in Woodin's Suitable Extender Model, II.
- ► Cramer (2012) improves it to all sets in L(V_{λ+1}), using the technique of inverse limit reflection.

In the context of AD and $L(\mathbb{R})$,

- (Davis, 64). Every set of reals in $L(\mathbb{R})$ has PSP.
- ▶ (Sami, 95). This also follows from Turing Determinacy (TD).

Posner-Robinson Theorem

Fix a well-ordering $w: H(\lambda) \to \lambda$, a reasonable fragment $\Gamma \subsetneq \mathsf{ZFC}$. For $a, b \subset \lambda$:

- M[a] denotes the minimal Γ-model of the form L_α[w, a], α > λ. Let α_a, Γ-ordinal for a, denote the height of M[a].
- ▶ $a \leq_{\Gamma} b$ if $M[a] \subseteq M[b]$. $a \equiv_{\Gamma} b$ if $a \leq_{\Gamma} b$ and $b \leq_{\Gamma} a$
- Write \underline{a} for the degree of a, the \equiv_{Γ} -equivalence class of a.
- J_Γ(a), Γ-jump of G, is the theory of M[a]. It can be coded by a subset of λ.

The following is a corollary of LPS Theorem.

Theorem 2 (Posner-Robinson Theorem at λ)

Assume I_0 . Then for almost all (λ many exceptions) $X \subset \lambda$,

$$(\exists G \subset \lambda) [(X,G) \equiv_{\Gamma} J_{\Gamma}(G)].^2$$

²True for finer equivalence as well, e.g. $(x, G) \equiv_{\Sigma^0_1(V_\lambda)} G^{\sharp}$.

Classical Posner-Robinson

- 1. (Posner-Robinson, etc.) If $x \subset \omega$ and $x \notin \Delta_1^0$, then $(\exists G)[(x,G) \equiv_T G'].$
- 2. (Shore-Slaman) If $x \in \mathscr{P}(\omega) \setminus L_{\alpha}$, $\alpha < \omega_1^{CK}$, then $(\exists G)[(x,G) \equiv_T G^{(\alpha)}].$
- 3. (Woodin) If $x \in \mathscr{P}(\omega) \setminus L_{\omega_1^{CK}}$, then $(\exists G)[(x,G) \equiv_T O^G]$.
- 4. (Woodin) If $x \in \mathscr{P}(\omega) \setminus L$, then $(\exists G)[(x,G) \equiv_T G^{\sharp}]$.

Slaman-Steel (early 80's) used 2. in their (partial) solution to Martin Conjecture:

 $(\mathsf{ZF} + \mathsf{DC} + \mathsf{AD})$. Degree inv. functions on \mathbb{R} are pre-wellordered by $f \leq_m g$ iff $f(x) \leq_T g(x)$ on a cone. Let f' be s.t. $\underline{f'(x)} = \underline{x}'$. $\operatorname{rank}_{\leq_m}(f) = \alpha \quad \Rightarrow \quad \operatorname{rank}_{\leq_m}(f') = \alpha + 1$.

Degree Determinacy

For the talk, we fix $\Gamma = Z$, Zermelo Set Theory.

- A set $A \subset \mathscr{P}(\lambda)$ is Z-degree invariant if $a \in A \Rightarrow \underline{a} \subset A$.
- A cone is a set of the form $C_a = \{b \mid a \leq_{\mathsf{Z}} b\}.$
- ▶ Det_λ(Z-Deg): Every Z-degree invariant subset of 𝒫(λ) either contains a cone or is disjoint from a cone.

Theorem 3 (ZFC)

Assume $j \in \mathcal{E}(L(V_{\lambda+1}))$ and in V_{λ} , $\kappa_0 = \operatorname{crit}(j)$ is supercompact, and it supercompactness is indestructible by κ_0 -directed posets.

 $L(V_{\lambda+1}) \models \neg \text{Det}_{\lambda}(\mathsf{Z}\text{-Deg}).$

Denote the hypothesis as I_0^* .

Outline of the proof

We sketch the idea of the proof, modulo main technical lemma.

Strategy: Show that Det_λ(Z-Deg) implies the existence of ω₁-sequence of distinct reals.

Lemma (Kechris-Kleinberg-Moschovakis-W, Woodin)

Suppose there is a countably additive measure μ on $[\lambda^+]^{\omega_1}$ that satisfies the following coherence condition: $\forall A \subset [\lambda^+]^{\omega_1}$, $\forall P \subset \omega_1$ with $\operatorname{otp}(P) = \omega_1$,

$$\mu(A) = 1 \quad \Rightarrow \quad \mu(A|P) = 1,$$

where $A|P =_{def} \{a \upharpoonright P \mid a \in A\}$. Then every ω_1 -Suslin set is determined.

• The point is to produce such a partition measure on $[\lambda^+]^{\omega_1}$.

► The following lemma provides the means for transferring the cone measure on 𝒫(ω) to a partition measure on [ω₁]^ω.

Lemma (Jensen)

Suppose $A = \{\alpha_i : i < \omega\}$ is a set of *a*-admissible ordinals, $a \subset \omega$. And $\operatorname{otp}(A) = \omega$. Then $\exists b \geq_T a$ s.t.

A =first ω many *b*-admissible ordinals.

- Martin used this to show that $AD \Rightarrow \omega_1 \rightarrow (\omega_1)^{\omega}$.
- A coherent system of measures were used to prove AD from infinite exponent partition relations.
- The singularity of λ presents an obstacle for a direct generalization of Jensen's lemma. (for otp(A) > cf(λ))
- Moreover, cf(λ) = ω seems to prevent us from getting a ω₁-exponent partition measure for [λ⁺]^{ω₁}. (Indestructibility comes in)

- ▶ For $a \subset \lambda$, $Z_a =_{\mathsf{def}} \{ \alpha_i \mid \alpha_i > \lambda \text{ is the } i\text{-th Z-ordinal, } i < \omega_1 \}$
- Define μ on $[\lambda^+]^{\omega_1}$ as follows: for $A \subset [\lambda^+]^{\omega_1}$,

 $\mu(A) = 1 \quad \text{iff} \quad A \supseteq \mathfrak{C}_a =_{\mathsf{def}} \{Z_b \mid b \geq_{\Gamma} a\}, \text{ for some } a.$

Next lemma helps to get around the obstacle and to obtain the *Coherence* condition, but with a price of an additional assumption.

Main Lemma

Assume ZFC +
$$I_0^*$$
 + Det _{λ} (Z-Deg). Then $\forall u \subset \lambda$, $\forall P \subset \omega_1$,
 $\exists a, b \geq_{\mathsf{Z}} u \text{ s.t. } Z_b = Z_a \restriction P.$

• μ is a countably additive and *coherent* measure on $[\lambda^+]^{\omega_1}$.

Q.E.D.

A Conjecture

We just argued that under I_0^* , $Det_\lambda(Z-Deg)$ fails. In fact, we make the following conjecture.

Conjecture (ZFC)

 $L(\mathscr{P}(\lambda)) \models \neg \text{Det}_{\lambda}(\mathsf{Z}\text{-}\text{Deg}), \text{ for any uncountable cardinal } \lambda.$

Here are some evidence:

Case 1. λ is strong limit and $cf(\lambda) > \omega$.

Theorem (Shelah) (ZFC)

If λ is strongly limit and $cf(\lambda) > \omega$, then $L(\mathscr{P}(\lambda)) \models AC$.

AC can give us two disjoint sequences of cofinal degrees. Thus $Det_{\lambda}(Z-Deg)$ is false in $L(\mathscr{P}(\lambda))$. Case 2. λ regular.

• λ is regular and $2^{<\lambda} = \lambda$.

Suppose NOT. Jensen's lemma can be generalized to regular cardinals that satisfy $2^{<\lambda} = \lambda$, and so there is a coherent partition measure on $[\lambda^+]^{\omega_1}$. But in $L(\mathscr{P}(\lambda))$, \mathbb{R} is well-ordered. Contradiction!

• λ is regular.

If $L(\mathscr{P}(\lambda)) \models \text{Det}_{\lambda}(\text{Z-Deg})$, then $\exists a \subset \lambda$, in fact, a cone of a, s.t. $L[a] \models ``L(\mathscr{P}(\lambda)) \models \text{Det}_{\lambda}(\text{Z-Deg})"$. But $2^{<\lambda} = \lambda$ holds in L[a], if λ is regular. Contradiction!

So either case, $Det_{\lambda}(Z-Deg)$ is false in $L(\mathscr{P}(\lambda))$.

Case 3. λ is not a strong limit. Unknown.

Next we shall look into degree structures in inner models, which suggests that it is going to be subtle to resolve this conjecture.

Higher Degree Theory

- Higher Degree Theory
 - studies definability degree structures at uncountable cardinals,
 - focus on the connection between large cardinals and degree structures.
- α-recursion theory (for α > ω) is part of higher degree theory. But early studies mostly concern degrees within L, and involves no large cardinals.
- Recent developments reveal some deep connection between large cardinals and degree structures at uncountable cardinals, in particular, strong limit singular of countable cofinality.
- ▶ This is a new line of research. Consequences of *I*⁰ presented in this talk are evidences for this connection from one extreme.

A list of questions

- Shall study degree structures in some canonical inner models.
 - Unlike the situation of ω, not very much of degree structures at uncountable cardinals can be determined by ZFC alone.
 - Fine structure models provide more complete settings.
- One can explore various degree notions, in this talk we focus on Z-degrees. The point is that Zermelo set theory is enough for proving Covering.
- A list of degree theoretic questions.
 - 1. (Post Problem). Are there incomparable degrees, i.e.

 $\neg(\underline{a} \leq \underline{b}) \land \neg(\underline{b} \leq \underline{a})?$

- 2. (Minimal Degree). Given \underline{a} , is there a \underline{b} minimal above \underline{a} , i.e. $\underline{a} < \underline{b} \land \neg \exists \underline{c} (\underline{a} < \underline{c} < \underline{b})?$
- 3. (Posner-Robinson). Is it true for co- λ many $x \subset \lambda$ that $(\exists G)[(x,G) \equiv_{\mathsf{Z}} J_{\mathsf{Z}}(G)]$?
- 4. (Degree Determinacy). Is $Det_{\lambda}(Z-Deg)$ true?

 $\blacktriangleright \operatorname{cf}(\lambda) = \lambda.$

Not very interesting.

Most degree theoretic constructions at ω can be generalized to strongly inaccessible cardinals.

• $\operatorname{cf}(\lambda) > \omega$.

Nothing interesting left.

Theorem (Sy Friedman, 81) (V = L)

The analog of Turing degrees at singular cardinals of uncountable cofinality are well-ordered above a singularizing degree.

The key to this is the analysis of *stationary subsets* of $cf(\lambda)$.

Corollary (V = any fine structure model)

Z-degrees at singular cardinals of uncountable cofinality are well-ordered above a singularizing degree.

•
$$cf(\lambda) = \omega$$
. Where the fun is.

Pictures in L

Observation. (V = L)

If $cf(\lambda) = \omega$, then Z-degrees at λ are well-ordered above a singularizing degree. In particular, Z-degrees at \aleph_{ω} is well-ordered.

Proof.

- Suppose a ⊂ λ, a ≥_Z b, and b singularizes λ. Then a computes a "cutoff" function. Work in M[a]. Every x ⊂ λ is identified as a member of [λ]^ω.
- ▶ M[a] has no sharps, by Covering, $\exists b \in L[w]^{M[a]} \cap \mathscr{P}(\lambda)$ s.t. $a \subset b \land |b| \leq \omega_1$. Then

$$rac{a}{b}\sim rac{z}{\omega_1}, ext{ for some } z\subset \omega_1.$$

► M[a] and $L[w]^{M[a]}$ have the same $\mathscr{P}(\omega_1)$. Thus $a \in L[w]^{M[a]}$. In other word, $M[a] = L_{\alpha_a}[w]$.

• Γ -degrees at λ are well-ordered above \underline{a} .

-

ANSWERS TO THE LIST. (above the singularizing degree)

Post ProblemNo.Minimal DegreeYes. "No" for > 1 minimal covers.Posner-RobinsonNo. Fail to have solution at the limit.Degree DeterminacyNo.

Remark.

- A bit unusual: using Covering within L.
- ► As for inner models between L and L[µ], such as L(0^{\$\$}), the same argument applies, since their Covering Lemmas are of the same form.
- A little wrinkle in $L[\mu]$, but still the same picture.

Pictures in $L[\mu]$

Let κ be the measurable, λ strong limit and $cf(\lambda) = \omega$.

Reorganize $L[\mu]$ as L[E], by Steel's construction, using partial measures. The point is the acceptability condition, i.e. $\forall \gamma < \alpha$,

$$(L_{\alpha+1}[E] - L_{\alpha}[E]) \cap \mathscr{P}(\gamma) \neq \varnothing \quad \Rightarrow \quad L_{\alpha}[E] \models |\alpha| = \gamma.$$

Two cases:

- $\lambda > \kappa$. Argue as in L.
- $\lambda < \kappa$. Fix $a \subset \lambda$ above the least $L_{\alpha+1}[E]$ that singularizes λ . M[a] contains no 0^{\dagger} . The most $K^{M[a]}$, the core model for M[a], could be is either $L[\mu']$ or there is no measurable.
 - ▶ If no measurable, then $M[a] = K^{M[a]}$, by Covering as before. By Comparison, $M[a] \trianglelefteq K = L[\mathcal{E}]$.
 - If $K^{M[a]} = L[\mu']$, then there are two cases.

Covering Lemma for $L[\mu]$. (Dodd-Jensen, 82)

Assume $\neg \exists 0^{\dagger}$, but there is an inner model $L[\mu]$. Let $\kappa = \operatorname{crit}(\mu)$. Then for every set $x \subset \operatorname{Ord}$, one of the following holds:

- 1. Every set $x\subset {\rm Ord}$ is covered by a $y\in L[\mu],$ with $|y|=|x|+\omega_1.$
- 2. $\exists C$, Prikry generic over $L[\mu]$, s.t. every set $x \subset \text{Ord}$ is covered by a $y \in L[\mu][C]$, with $|y| = |x| + \omega_1$. Such C is unique up to finite difference.

Case 1.
$$M[a] \models V = L[\mu']$$
, as before.

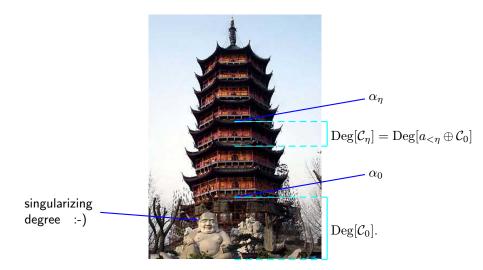
Case 2. Note that $\lambda < \kappa' = \operatorname{crit}(\mu')$, and $C \subset \kappa'$ adds no new bounded subsets of κ' . Some $y \in L[\mu'] \cap \mathscr{P}(\lambda)$ covers a. So $M[a] \models V = L[\mu']$ again.

By Comparison, $M[a] \trianglelefteq K = L[E]$.

Pictures in $L[\bar{\mu}]$

Consider $L[\bar{\mu}]$, $\bar{\mu} = \langle \mu_i : i < \omega \rangle$ is a sequence of measures, and $\kappa_n = \operatorname{crit}(\mu_n)$. The case $\lambda \neq \sup_n \kappa_n$ can be argued as in $L[\mu]$. The Γ -degrees at $\lambda = \sup_n \kappa_n$ present a new structure.

- ► C in Case 2 of the Covering for $L[\bar{\mu}]$ can be chosen to be an ω -sequence, essentially a diagonal Prikry sequence for $L[\bar{\mu}]$.
- ▶ Fix $a \subset \lambda$. $K^{M[a]}$, by Covering, is either of the form $L_{\eta}[\bar{\mu}]$ or $L_{\eta}[\bar{\mu}][C_a]$. C_a is Prikry, so $L_{\eta}[\bar{\mu}]$ in Case 2 is a Z-model. So Z-degrees at λ is pre-wellordered by the associated Z-ordinals.
- Let α₀ be the least Z-ordinal past λ. Note that a ≡_Z C_a, if α_a = α₀. Z-degrees associated to α₀ are exactly the ones induced by C₀ = {diagonal Prikry sequences for L_{α0}[μ]}.
- Let α_η, η > 0, be the η-th Z-ordinal above λ. Let a_{<η} ⊂ λ codes ⟨α_i : i < η⟩. Some of C₀ remain to be L_{α_η}[μ̄]-generic. Thus the Z-degrees associated to α_η are the ones induced by a_{<η} ⊕ C₀ =_{def} {(a_{<η}, C) | C ∈ C₀}.



ANSWERS TO THE LIST. (at $\lambda = \sup_n \kappa_n$)

Post ProblemYes. ∃a LPS³ of pairwise incomp. degrees.Minimal DegreeNo.Posner-RobinsonNo. Fail to have solution at the limit.Degree DeterminacyNo.

Moreover, there are infinite descending chains of degrees.

Meta-Conjecture

In any reasonable inner model, at every singular λ , $cf(\lambda) = \omega$, below the least measurable, the Z-degrees are well ordered above some degree.

³Reminder: LPS = Large Perfect Set

Picture in $L[\mathcal{U}]$ for $o(\kappa) = \kappa$

Theorem (Yang, 2011)

Assume $\bar{\kappa} = \langle \kappa_n : n < \omega \rangle$ is a sequence of measurable cardinals s.t. each κ_{n+1} carries κ_n many normal measures. Let $\lambda = \sup_n \kappa_n$. Then there is a minimal Γ -degree above \underline{D} , where $D \subset \lambda$ codes relevant information, in particular, the above system of measures.

- This can be relativized to degrees above \underline{D} .
- Yang's argument can produce a large perfect set of minimal degrees, which are automatically pairwise incomparable.
- ▶ This picture appears in Mitchell's model for $o(\kappa) = \kappa$.⁴
 - "YES" to Post and Minimal degree questions at $\sup_n \kappa_n$.
 - However, the system of indiscernibles for this inner model is very difficult to analyze.
 - ► We conjecture "NO" to the other two questions.

⁴Not minimal, but it is the "shortest" with *o*-expression.

Picture from I_0

Assume $j \in \mathcal{E}(L(V_{\lambda+1}))$. Then

- λ is an ω -limit of measurable cardinals
- \blacktriangleright λ also satisfies the condition in Yang's Theorem

So answers to the list are as follows:

Post Problem	Yes. $\exists a LPS of pairwise incomp. degrees.$
Minimal Degree	Yes. $\exists a LPS of minimal covers.$
Posner-Robinson	Yes.
Degree Determinacy	very likely No.

Remarks

- The complexity of degree structures at certain cardinal reflects the strength of large cardinals in the model.
- Among (fine structure) inner models, the "richness" of the degree structures seem to be correlated to where λ is in the inner model, rather than to the level of the inner model.
- The basic method of using the complexity of the degree structures to get a partition-like property from the degree determinacy can't work in general.
- ► This means that the proof of the conjecture, i.e. $L(\mathscr{P}(\lambda)) \models \neg \text{Det}_{\lambda}(\mathsf{Z}\text{-Deg}),$

from ZFC is going to be subtle.⁵

⁵In inner models, one can proof the conjecture by other means.

Failure of $Det_{\lambda}(\Gamma-deg)$

Preparation

Now we prove the technical lemma for the proof of $\neg \text{Det}_{\lambda}(\text{Z-Deg})$. The power we need from I_0 is the following result in SEM, II.

Theorem (Generic Absoluteness)

Suppose that $j \in \mathcal{E}(L(V_{\lambda+1}))$ is proper and $(M_{\omega}, j_{0,\omega})$ is the ω -iterate of $(V_{\lambda}, j \upharpoonright V_{\lambda})$. Suppose that $M_{\omega}[G]$ is a generic extension of M_{ω} s.t. $G \in V$ and $M_{\omega}[G] \models cf(\lambda) = \omega$. Then

$$M_{\omega}[G] \cap V_{\lambda+1} \prec V_{\lambda+1}.$$

- ▶ We omit the definition of properness. The point is that every $j \in \mathcal{E}(L(V_{\lambda+1}))$ can be factored as $j = j_0 \circ k$, where $j_0 \in \mathcal{E}(L(V_{\lambda+1}))$ and is proper.
- If $k \in \mathcal{E}(V_{\lambda+1})$, then $k \upharpoonright V_{\lambda} \in \mathcal{E}(V_{\lambda})$ and is iterable.

By Generic Absoluteness, to prove $V_{\lambda+1} \models \forall u \exists v \varphi$, just force over M_{ω} to get $G \in V$ and s.t. $M_{\omega}[G] \models \operatorname{cf}(\lambda) = \omega$

 $V_{\lambda+1} \models \exists v \varphi(a, v), \text{ for all } a \in M_{\omega}[g_0] \cap V_{\lambda+1}.$

Main Lemma

Assume $\mathsf{ZFC} + I_0^* + \mathrm{Det}_{\lambda}(\mathsf{Z}\text{-}\mathrm{Deg})$. Then $\forall u \subset \lambda, \forall P \subset \omega_1$,

 $\exists a, b \geq_{\Gamma} u \text{ s.t. } Z_b = Z_a \restriction P.$

▶
$$\operatorname{Con}(I_0) \Rightarrow \operatorname{Con}(I_0^*).$$

In fact, given a proper $j \in \mathcal{E}(L(V_{\lambda+1}))$, let \mathbb{P} be Laver's poset for indestrucibility, and $G \subset \mathbb{P}$ be a V-generic filter, there is a proper $\overline{j} \in \mathcal{E}(L(V_{\lambda+1})^{V[G]})$ s.t. $\overline{j} \upharpoonright L(V_{\lambda+1})^V = j$.

Proof of main lemma, sketch

Suppose NOT. Assume for some $P \subset \omega_1$, and some $u \subset \lambda$ s.t. $\neg \exists a, b \geq_{\Gamma} u$ s.t $Z_a = Z_b \upharpoonright P$. Work in M_{ω} .

- Let δ be the least measurable cardinal of M_{ω} above λ .
- Let γ be the supremum of first δ many strongly inaccessible cardinals of M_ω above δ.
- Fix a $z \subseteq \gamma$ which codes a bijection $M_{\omega} | \gamma \to \gamma$.

• For $x \subset \gamma$, let Z_x^* be the set of first ω_1 Z-ordinals $\alpha > \gamma$.

Let \mathbb{P} be the full product of the partial orders \mathbb{P}_i , $i < \delta$, where each \mathbb{P}_i adds a generic subset to the *i*-th strongly inaccessible, β_i , of M_{ω} above δ .

- \mathbb{P} preserves the $(<\gamma)$ -supercompactness of λ .
- This is witnessed by a tower of measures on 𝒫_λ(η), η ∈ (δ, γ). We are only interested in the ones in I = {η ∈ (δ, γ) | η is strongly inaccessible}.

Let $\tau \in (M_{\omega})^{\mathbb{P}}$ and $p_0 \in \mathbb{P}$ be such that

 $p_0 \Vdash \tau$ is a tower (indexed by I) of measures as above

In addition, p_0 decides the projected measure on $\mathscr{P}_{\lambda}(\delta)$. Let $a_0 \subset \gamma$ be a set in M_{ω} which codes p_0 and $M_{\omega}|\gamma$.

Lemma (ZFC)

There is a
$$q \in \mathbb{P}$$
 such that $q \leq p_0$ and $q \Vdash Z^*_{(a,G)} = Z^*_a \restriction P$.

So one can choose two conditions $p,q\in\mathbb{P}$ below p_0 such that

1.
$$p \Vdash Z_a^* = Z_{a_0}^*$$
, where $a = (a_0, G)$.

2.
$$q \Vdash Z_b^* = Z_{a_0}^* \upharpoonright P$$
, where $b = (a_0, G)$.

Using homogeneity of \mathbb{P} , choose M_{ω} -generics, $G_p, G_q \in V$, s.t.

1.
$$M_{\omega}[G_p] = M_{\omega}[G_q]$$
,

2.
$$p \in G_p$$
 and $q \in G_q$.

 au^{G_p} and au^{G_q} project to the same measure on $\mathscr{P}_\lambda(\delta).$

Next we use a mixed Prikry tower forcing, $\mathbb{Q} = \mathbb{Q}(\mu, \tau^G)$, where μ is the measure on δ . A \mathbb{Q} -generic gives a countable sequence $\langle (\eta_i, A_i) : i < \omega \rangle$, where

- $\langle \eta_i : i < \omega
 angle$ is a Prikry sequence for the normal measure μ ,
- $\langle A_i : i < \omega \rangle$ is a diagonal Prikry sequence for $\langle \nu_i : i < \omega \rangle$, where ν_i is the fine normal measure on $\mathscr{P}_{\lambda}(\beta_{\eta_i})$ given by τ^G . \mathbb{Q} collapses γ to λ and makes $\mathrm{cf}(\lambda) = \omega$.

Choose \mathbb{Q} -generics H_p over $M_{\omega}[G_p]$ and H_q over $M_{\omega}[G_q]$ in the same manner with respect to τ .

- \mathbb{Q} is λ -good. So H_p and H_q can be found in V.
- ► H_p , H_q project to the same δ -supercompact Prikry generic on $\mathscr{P}_{\lambda}(\delta)$. Call this generic H. In $M_{\omega}[H]$, $cf(\lambda) = \omega$.

Let

1. a^* be the subset of λ given by $(M_{\omega}[G_p][H_p]|\gamma,a_0),$

2. b^* be the subset of λ given by $(M_{\omega}[G_q][H_q]|\gamma, a_0)$.

Thus $Z_{a^*} = Z_{b^*} \upharpoonright P$. The key point is that a^* and b^* compute every set in $V_{\lambda+1} \cap M_{\omega}[H]$.

By Generic Absoluteness, there is a pair (P, u) s.t.

$$\varphi(P, u) =_{\mathsf{def}} \neg (\exists a, b \ge_{\Gamma} u) \, (Z_a = Z_b \, | \, P),$$

in $M_{\omega}[H]$. But we just produced a pair (a, b) s.t.

$$a, b \geq_{\Gamma} u \wedge Z_a = Z_b \restriction P.$$

Contradiction!

Q.E.D.

THANK YOU!