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General Situation

Given a C∗-algebra A and free ultrafilter U on N.

l∞(A) = {(an) ⊆ A : sup ||an|| <∞}
cU = {(an) ∈ l∞(A) : lim

n→U
||an|| = 0}

AU = l∞(A)/cU

Given a trace τ on A, i.e. τ ∈ A∗+ & ∀a, b ∈ A τ(ab) = τ(ba),

τU ((an)) = lim
n→U

τ(an)

defines a trace on AU . More generally, if (τn) ⊆ T (A),

(τn)
U ((an)) = lim

n→U
τn(an) ∈ T (AU ).
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With CH

Question [Winter (2012)]
Are all traces on AU (for separable A) of the form (τn)

U?

Yes if A has property (SI) [Matui-Sato (2012)], e.g. UHF case.
No if CH holds and dim(T (A)) =∞ [Farah-Matui-Winter].
Proof outline: recursively construct separable (Aα)α<ω1 ⊆ AU
and (τ f

n )(n∈N,f ∈2<ω1 ) s.t.

1 AU =
⋃

Aα.
2 For f ∈ 2α, β < α, (τ f

n )
U � Aβ = (τ f �α

n )U � Aβ .
3 For f ∈ 2α, (τ fˆ0

n )U � Aα+1 6= (τ fˆ1
n )U � Aα+1

For f ∈ 2ω1 define τ f =
⋃
α<ω1(τ

f �α
n )U � Aα. Then

|{τ f : f ∈ 2ω1}| = 2ℵ1 > 2ℵ0 = {(τn)
U : (τn) ⊆ T (A)}.
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Without CH

Consider A = c ≈ C(N ∪ {∞}) and any ultrafilter U on N.

For (an) = (λm
n ) ∈ l∞(A) define

τ((λm
n )) = lim

(m,n)→V
λm

n ,

where V is an ultrafilter on N× N containing

1 {(m, n) : m ∈ U}, for all U ∈ U ,
2 {(m, n) : n 6= f (m))}, for all f ∈ NN, and
3 {(m, n) : n < m}.

By (1), τ ∈ T (AU ). Now assume τ = (τn)
U , where

τn((λ
m)) =

∑
m∈N∪{∞}

λmfn(m).

By (2), limn→U supm∈N fn(m) = 0. By (3), limn→U fn(∞) = 0
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Without CH (cont.)

But then we have (pn) ⊆ {0, 1}N ⊆ l∞(A) with

1/3 ≤ (τn)
U ((pn)) ≤ 2/3 and τ((pn)) ∈ {0, 1}.

So τ 6= (τn)
U – contradiction.

Generalization to sep. C∗-algebra A with dim(T (A)) =∞
and T (A) a Bauer simplex, i.e. ext(T (A)) (weak*-)closed:
Find a copy of N ∪ {∞} in ext(T (A)).
Any continuous function on N ∪ {∞} can be extended to
ext(T (A)) [Tietze/Gillman-Jerison].
This can be extended to a continuous affine function on T (A).
This will be witnessed by a ∈ A, i.e. the function τ 7→ τ(a).
Apply the same argument as before.
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But then we have (pn) ⊆ {0, 1}N ⊆ l∞(A) with

1/3 ≤ (τn)
U ((pn)) ≤ 2/3 and τ((pn)) ∈ {0, 1}.

So τ 6= (τn)
U – contradiction.

Generalization to sep. C∗-algebra A with dim(T (A)) =∞
and T (A) a Bauer simplex, i.e. ext(T (A)) (weak*-)closed:

Find a copy of N ∪ {∞} in ext(T (A)).
Any continuous function on N ∪ {∞} can be extended to
ext(T (A)) [Tietze/Gillman-Jerison].
This can be extended to a continuous affine function on T (A).
This will be witnessed by a ∈ A, i.e. the function τ 7→ τ(a).
Apply the same argument as before.

Tristan Bice (joint work with Ilijas Farah) Traces and Ultrapowers



Without CH (cont.)

But then we have (pn) ⊆ {0, 1}N ⊆ l∞(A) with

1/3 ≤ (τn)
U ((pn)) ≤ 2/3 and τ((pn)) ∈ {0, 1}.

So τ 6= (τn)
U – contradiction.

Generalization to sep. C∗-algebra A with dim(T (A)) =∞
and T (A) a Bauer simplex, i.e. ext(T (A)) (weak*-)closed:
Find a copy of N ∪ {∞} in ext(T (A)).

Any continuous function on N ∪ {∞} can be extended to
ext(T (A)) [Tietze/Gillman-Jerison].
This can be extended to a continuous affine function on T (A).
This will be witnessed by a ∈ A, i.e. the function τ 7→ τ(a).
Apply the same argument as before.

Tristan Bice (joint work with Ilijas Farah) Traces and Ultrapowers



Without CH (cont.)
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Without CH (cont.)
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Without CH (cont.)
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Trace Out of Nowhere

Question
Can we have τU ∈ T (AU ) and (an) ∈ l∞(A) with τU ((an)) 6= 0
even though τ(an) = 0 for all τ ∈ T (A) and n ∈ N?

Definitions
Given a C∗-algebra A, a, b ∈ A+ are CP-equivalent if there exist
(cn) ⊆ A such that a =

∑
cnc∗n and b =

∑
c∗ncn. We define

A0 = {a − b : a, b ∈ A and a and b are CP-equivalent}

Theorem [Cuntz-Pedersen (1979)]

A0 = {a ∈ Asa : ∀τ ∈ T (A)(τ(a) = 0)}.
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Warnings

In general, a − b ∈ A0 6⇒ a and b are CP-equivalent.

Example: For all a, b ∈ K(H)+, where dim(H) =∞,
a − b ∈ A0 but a and b are CP-equivalent if and only if
τ(a) = τ(b), where τ is the usual (unbounded) trace.
Similarly, membership of A0 may take less self-adjoint
commutators (operators of the form cc∗ − c∗c).
Example: in A = M2, e11 and 1

2(e11 + e22) are CP-equivalent,
as witnessed by 1√

2e11 and 1√
2e12, while membership of

1
2(e11 − e22) in A0 is witnessed by just 1√

2e12.

Example 2: in A = C(S2,M2), the Bott projection P and
trivial projection Q(= e11 everywhere) are CP-equivalent,
requires 2 operators to witness, while P − Q ∈ A0 requires
just one.
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Vector Bundle Solution

Strategy: Find a C∗-algebra A and (an) ⊆ A0 such that each
an ∈ A0 requires ≥ n self-adjoint commutators to witness.

Consider the C∗-algebra A defined as continuous sections of
the following vector bundle [Pedersen and Petersen (1970)],

B = {(
[
a b
c d

]
, x) : x ∈ CPn(⊆ Cn+1); a, d ∈ C;b, c ∈ x}.

Multiplication is defined pointwise by[
a b
c d

] [
a′ b′
c′ d ′

]
=

[
aa′ + b · c′ ab′ + db
a′c + dc′ dd ′ + b′ · c

]
.
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Vector Bundle Solution (cont.)

In particular,[
a b
c d

] [
a c
b d

]
−

[
a c
b d

] [
a b
c d

]
=

[
|b|2 − |c|2 . . .

. . . |c|2 − |b|2

]
.

Take m1, . . . ,mk ∈ A, i.e. mi(x) =
[
ai(x) bi(x)
ci(x) di(x)

]

Assume ||
[

1 0
0 −1

]
−

∑
(mim∗i −m∗i mi)|| < ε, for small ε > 0.

For each i define fi : S2n+1 → C by fi(e)e = bi(Ce)− ci(Ce).
Then f = (f1, . . . , fk) defines a map from S2n+1 to a subset of
Ck with f (−e) = −f (e) avoiding 0.
Wlog f : S2n+1 → S2k−1. By Borsuk-Ulam, k > n.
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Vector Bundle Solution (cont.)

If A is the direct sum of these algebras then A is separable,
2-homogeneous and AU has a trace coming out of nowhere.

However, this example is far from being simple or having a
unique (normalized) trace.

Question
Does there exist A with a unique trace (and, say, separable,
nuclear, simple, etc.) s.t. AU does not have a unique trace?
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Projections and Tensor Products

Question [Wassermann (2012)]
Do there exist projectionless (unital) C∗-algebras A and B s.t.
A⊗ B is not projectionless?

No if A and B are commutative: A ≈ C(Y ), B ≈ C(Z ) and
A⊗ B ≈ C(Y × Z ).
C(X ) is projectionless ⇔ X is connected.
Y × Z is connected ⇔ both Y and Z are connected.
Yes for a non-minimal tensor product of C∗r (F2) with itself
[Ackemann and Ostrand (1976)].
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Vector Bundle Problem

Given a finite dimensional vector bundle V with compact
connected base space X , form another vector bundle B(V )
with base space X by replacing each fibre with the operators
on that fibre.

The continuous sections of B(V ) become a C∗-algebra under
pointwise operations.
Projections in B(V ) correspond to subbundles of V .
B(V )⊗ B(W ) ≈ B(V ⊗W ), where V ⊗W is the vector
bundle with base space X × Y and tensor product in each
fibre.

Problem
Find a vector bundle V with no non-trivial subbundles but such
that V ⊗ V contains non-trivial subbundles.
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Vector Bundle Solution

Let V be the tangent bundle to the complex 2-sphere.

V has no non-trivial subbundles (characteristic classes).
Let v1 be a continuous section where v1(±1, 0, 0) = 0 and
v1(x) is non-zero and points towards the poles everywhere
else, and likewise for v2 and v3.
The section v1 ⊗ v1 + v2 ⊗ v2 + v3 ⊗ v3 in V ⊗ V is never 0.
Note that v1 ⊗ v1 + v2 ⊗ v2 would not do: there exists
x , y ∈ CS2 such that v1(x) = v2(x) and v1(y) = −v2(y) and
hence v1(x)⊗ v1(y) + v2(x)⊗ v2(y) = 0.
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