Traces and Ultrapowers

Tristan Bice (joint work with Ilijas Farah)

September 13, 2012

Tristan Bice (joint work with Ilijas Farah) Traces and Ultrapowers

General Situation

• Given a C^* -algebra A and free ultrafilter \mathcal{U} on \mathbb{N} .

$$I^{\infty}(A) = \{(a_n) \subseteq A : \sup ||a_n|| < \infty\}$$
$$c_{\mathcal{U}} = \{(a_n) \in I^{\infty}(A) : \lim_{n \to \mathcal{U}} ||a_n|| = 0\}$$
$$A^{\mathcal{U}} = I^{\infty}(A)/c_{\mathcal{U}}$$

・ロト ・回ト ・ヨト ・ヨト

æ,

General Situation

• Given a C^* -algebra A and free ultrafilter \mathcal{U} on \mathbb{N} .

$$I^{\infty}(A) = \{(a_n) \subseteq A : \sup ||a_n|| < \infty\}$$
$$c_{\mathcal{U}} = \{(a_n) \in I^{\infty}(A) : \lim_{n \to \mathcal{U}} ||a_n|| = 0\}$$
$$A^{\mathcal{U}} = I^{\infty}(A)/c_{\mathcal{U}}$$

• Given a trace au on A, i.e. $au \in A^*_+$ & $\forall a, b \in A \ au(ab) = au(ba)$,

$$au^{\mathcal{U}}((a_n)) = \lim_{n o \mathcal{U}} au(a_n)$$

defines a trace on $A^{\mathcal{U}}$. More generally, if $(\tau_n) \subseteq \mathcal{T}(A)$,

$$(\tau_n)^{\mathcal{U}}((a_n)) = \lim_{n \to \mathcal{U}} \tau_n(a_n) \in \mathcal{T}(\mathcal{A}^{\mathcal{U}}).$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Question [Winter (2012)]

Are all traces on $A^{\mathcal{U}}$ (for separable A) of the form $(\tau_n)^{\mathcal{U}}$?

イロン イボン イモン イモン 三日

Question [Winter (2012)]

Are all traces on $A^{\mathcal{U}}$ (for separable A) of the form $(\tau_n)^{\mathcal{U}}$?

• Yes if A has property (SI) [Matui-Sato (2012)], e.g. UHF case.

・ 回 ト ・ ヨ ト ・ ヨ ト …

크

Question [Winter (2012)]

Are all traces on $A^{\mathcal{U}}$ (for separable A) of the form $(\tau_n)^{\mathcal{U}}$?

- Yes if A has property (SI) [Matui-Sato (2012)], e.g. UHF case.
- No if CH holds and dim $(\mathcal{T}(A)) = \infty$ [Farah-Matui-Winter].

・ 回 ト ・ ヨ ト ・ ヨ ト …

Question [Winter (2012)]

Are all traces on $A^{\mathcal{U}}$ (for separable A) of the form $(\tau_n)^{\mathcal{U}}$?

- Yes if A has property (SI) [Matui-Sato (2012)], e.g. UHF case.
- No if CH holds and dim $(\mathcal{T}(A)) = \infty$ [Farah-Matui-Winter].
- Proof outline: recursively construct separable (A_α)_{α<ω1} ⊆ A^U and (τ^f_n)_(n∈ℕ,f∈2^{<ω1}) s.t.

白をくぼとくほと

Question [Winter (2012)]

Are all traces on $A^{\mathcal{U}}$ (for separable A) of the form $(\tau_n)^{\mathcal{U}}$?

- Yes if A has property (SI) [Matui-Sato (2012)], e.g. UHF case.
- No if CH holds and dim $(\mathcal{T}(A)) = \infty$ [Farah-Matui-Winter].
- Proof outline: recursively construct separable (A_α)_{α<ω1} ⊆ A^U and (τ^f_n)_(n∈ℕ,f∈2^{<ω1}) s.t.

回 と く ヨ と く ヨ と …

$$A^{\mathcal{U}} = \bigcup A_{\alpha}.$$

Question [Winter (2012)]

Are all traces on $A^{\mathcal{U}}$ (for separable A) of the form $(\tau_n)^{\mathcal{U}}$?

- Yes if A has property (SI) [Matui-Sato (2012)], e.g. UHF case.
- No if CH holds and dim $(\mathcal{T}(A)) = \infty$ [Farah-Matui-Winter].
- Proof outline: recursively construct separable (A_α)_{α<ω1} ⊆ A^U and (τ^f_n)_(n∈ℕ,f∈2^{<ω1}) s.t.

回 ト イヨ ト イヨ ト 三日

 $\begin{array}{l} \bullet \quad A^{\mathcal{U}} = \bigcup A_{\alpha}.\\ \bullet \quad \text{ For } f \in 2^{\alpha}, \ \beta < \alpha, \ (\tau_n^f)^{\mathcal{U}} \upharpoonright A_{\beta} = (\tau_n^{f \upharpoonright \alpha})^{\mathcal{U}} \upharpoonright A_{\beta}. \end{array}$

Question [Winter (2012)]

Are all traces on $A^{\mathcal{U}}$ (for separable A) of the form $(\tau_n)^{\mathcal{U}}$?

- Yes if A has property (SI) [Matui-Sato (2012)], e.g. UHF case.
- No if CH holds and dim $(\mathcal{T}(A)) = \infty$ [Farah-Matui-Winter].
- Proof outline: recursively construct separable (A_α)_{α<ω1} ⊆ A^U and (τ^f_n)_(n∈ℕ,f∈2^{<ω1}) s.t.

同 と く ヨ と く ヨ と

 $\begin{array}{l} \bullet \quad A^{\mathcal{U}} = \bigcup A_{\alpha}.\\ \bullet \quad \text{For } f \in 2^{\alpha}, \ \beta < \alpha, \ (\tau_n^f)^{\mathcal{U}} \upharpoonright A_{\beta} = (\tau_n^{f \upharpoonright \alpha})^{\mathcal{U}} \upharpoonright A_{\beta}.\\ \bullet \quad \text{For } f \in 2^{\alpha}, \ (\tau_n^{f \upharpoonright 0})^{\mathcal{U}} \upharpoonright A_{\alpha+1} \neq (\tau_n^{f \upharpoonright 1})^{\mathcal{U}} \upharpoonright A_{\alpha+1} \end{array}$

Question [Winter (2012)]

Are all traces on $A^{\mathcal{U}}$ (for separable A) of the form $(\tau_n)^{\mathcal{U}}$?

- Yes if A has property (SI) [Matui-Sato (2012)], e.g. UHF case.
- No if CH holds and dim $(\mathcal{T}(A)) = \infty$ [Farah-Matui-Winter].
- Proof outline: recursively construct separable (A_α)_{α<ω1} ⊆ A^U and (τ^f_n)_(n∈ℕ,f∈2^{<ω1}) s.t.
 - 1 $A^{\mathcal{U}} = \bigcup A_{\alpha}.$ 2 For $f \in 2^{\alpha}$, $\beta < \alpha$, $(\tau_n^f)^{\mathcal{U}} \upharpoonright A_{\beta} = (\tau_n^{f \upharpoonright \alpha})^{\mathcal{U}} \upharpoonright A_{\beta}.$ 3 For $f \in 2^{\alpha}$, $(\tau_n^{f^{\circ}0})^{\mathcal{U}} \upharpoonright A_{\alpha+1} \neq (\tau_n^{f^{\circ}1})^{\mathcal{U}} \upharpoonright A_{\alpha+1}$
- For $f \in 2^{\omega_1}$ define $\tau^f = \bigcup_{\alpha < \omega_1} (\tau_n^{f \restriction \alpha})^{\mathcal{U}} \restriction A_{\alpha}$. Then

$$|\{\tau^f: f\in 2^{\omega_1}\}|=2^{\aleph_1}>2^{\aleph_0}=\{(\tau_n)^{\mathcal{U}}: (\tau_n)\subseteq \mathcal{T}(\mathcal{A})\}.$$

同 と く ヨ と く ヨ と

• Consider $A = c \approx C(\mathbb{N} \cup \{\infty\})$ and any ultrafilter \mathcal{U} on \mathbb{N} .

Tristan Bice (joint work with Ilijas Farah) Traces and Ultrapowers

◆□ > ◆□ > ◆臣 > ◆臣 >

æ.

• Consider $A = c \approx C(\mathbb{N} \cup \{\infty\})$ and any ultrafilter \mathcal{U} on \mathbb{N} .

• For
$$(a_n) = (\lambda_n^m) \in I^{\infty}(A)$$
 define

$$\tau((\lambda_n^m)) = \lim_{(m,n)\to\mathcal{V}} \lambda_n^m,$$

where $\mathcal V$ is an ultrafilter on $\mathbb N\times\mathbb N$ containing

▲御▶ ▲ 理▶ ▲ 理▶

• Consider $A = c \approx C(\mathbb{N} \cup \{\infty\})$ and any ultrafilter \mathcal{U} on \mathbb{N} .

• For
$$(a_n) = (\lambda_n^m) \in I^\infty(A)$$
 define

$$\tau((\lambda_n^m)) = \lim_{(m,n)\to\mathcal{V}} \lambda_n^m,$$

where $\mathcal V$ is an ultrafilter on $\mathbb N\times\mathbb N$ containing

▲御▶ ▲ 理▶ ▲ 理▶

• Consider $A = c \approx C(\mathbb{N} \cup \{\infty\})$ and any ultrafilter \mathcal{U} on \mathbb{N} .

• For
$$(a_n) = (\lambda_n^m) \in I^\infty(A)$$
 define

$$\tau((\lambda_n^m)) = \lim_{(m,n)\to\mathcal{V}} \lambda_n^m,$$

where $\mathcal V$ is an ultrafilter on $\mathbb N\times\mathbb N$ containing

$$\{ (m, n) : m \in U \}, \text{ for all } U \in \mathcal{U}, \\ (m, n) : n \neq f(m) \}, \text{ for all } f \in \mathbb{N}^{\mathbb{N}}, \text{ and }$$

(4回) (4回) (日)

• Consider $A = c \approx C(\mathbb{N} \cup \{\infty\})$ and any ultrafilter \mathcal{U} on \mathbb{N} .

• For
$$(a_n) = (\lambda_n^m) \in I^\infty(A)$$
 define

$$\tau((\lambda_n^m)) = \lim_{(m,n)\to\mathcal{V}} \lambda_n^m,$$

where $\mathcal V$ is an ultrafilter on $\mathbb N\times\mathbb N$ containing

(4回) (4回) (日)

• Consider $A = c \approx C(\mathbb{N} \cup \{\infty\})$ and any ultrafilter \mathcal{U} on \mathbb{N} .

• For
$$(a_n) = (\lambda_n^m) \in I^\infty(A)$$
 define

$$\tau((\lambda_n^m)) = \lim_{(m,n)\to\mathcal{V}} \lambda_n^m,$$

where $\mathcal V$ is an ultrafilter on $\mathbb N\times\mathbb N$ containing

• By (1), $au \in \mathcal{T}(\mathcal{A}^{\mathcal{U}})$. Now assume $au = (au_n)^{\mathcal{U}}$, where

$$\tau_n((\lambda^m)) = \sum_{m \in \mathbb{N} \cup \{\infty\}} \lambda^m f_n(m).$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

3

• Consider $A = c \approx C(\mathbb{N} \cup \{\infty\})$ and any ultrafilter \mathcal{U} on \mathbb{N} .

• For
$$(a_n) = (\lambda_n^m) \in I^\infty(A)$$
 define

$$\tau((\lambda_n^m)) = \lim_{(m,n)\to\mathcal{V}} \lambda_n^m,$$

where $\mathcal V$ is an ultrafilter on $\mathbb N\times\mathbb N$ containing

1 {(*m*, *n*) : *m* ∈ *U*}, for all *U* ∈ *U*,
2 {(*m*, *n*) : *n* ≠ *f*(*m*))}, for all *f* ∈
$$\mathbb{N}^{\mathbb{N}}$$
, and
3 {(*m*, *n*) : *n* < *m*}.

• By (1), $au \in \mathcal{T}(\mathcal{A}^{\mathcal{U}})$. Now assume $au = (au_n)^{\mathcal{U}}$, where

$$\tau_n((\lambda^m)) = \sum_{m \in \mathbb{N} \cup \{\infty\}} \lambda^m f_n(m).$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ � � �

• By (2), $\lim_{n \to \mathcal{U}} \sup_{m \in \mathbb{N}} f_n(m) = 0$. By (3), $\lim_{n \to \mathcal{U}} f_n(\infty) = 0$

• But then we have $(p_n) \subseteq \{0,1\}^{\mathbb{N}} \subseteq l^{\infty}(A)$ with

 $1/3 \leq (\tau_n)^{\mathcal{U}}((p_n)) \leq 2/3$ and $\tau((p_n)) \in \{0,1\}.$

・ 回 ト ・ ヨ ト ・ ヨ ト

• But then we have $(p_n) \subseteq \{0,1\}^{\mathbb{N}} \subseteq I^{\infty}(A)$ with

 $1/3 \leq (\tau_n)^{\mathcal{U}}((p_n)) \leq 2/3$ and $\tau((p_n)) \in \{0,1\}.$

• So $\tau \neq (\tau_n)^{\mathcal{U}}$ - contradiction.

<回と < 目と < 目と -

2

• But then we have $(p_n)\subseteq \{0,1\}^{\mathbb{N}}\subseteq I^\infty(A)$ with

 $1/3 \leq (\tau_n)^{\mathcal{U}}((p_n)) \leq 2/3 \quad \text{and} \quad \tau((p_n)) \in \{0,1\}.$

• So $\tau \neq (\tau_n)^{\mathcal{U}}$ – contradiction.

 Generalization to sep. C*-algebra A with dim(T(A)) = ∞ and T(A) a Bauer simplex, i.e. ext(T(A)) (weak*-)closed:

白 と く ヨ と く ヨ と …

• But then we have $(p_n)\subseteq \{0,1\}^{\mathbb{N}}\subseteq I^\infty(A)$ with

 $1/3 \leq (\tau_n)^{\mathcal{U}}((p_n)) \leq 2/3 \quad \text{and} \quad \tau((p_n)) \in \{0,1\}.$

- So $\tau \neq (\tau_n)^{\mathcal{U}}$ contradiction.
- Generalization to sep. C*-algebra A with dim(T(A)) = ∞ and T(A) a Bauer simplex, i.e. ext(T(A)) (weak*-)closed:
- Find a copy of $\mathbb{N} \cup \{\infty\}$ in $ext(\mathcal{T}(A))$.

回とくほとくほと

• But then we have $(p_n)\subseteq \{0,1\}^{\mathbb{N}}\subseteq I^\infty(A)$ with

 $1/3 \leq (\tau_n)^{\mathcal{U}}((p_n)) \leq 2/3 \quad \text{and} \quad \tau((p_n)) \in \{0,1\}.$

- So $\tau \neq (\tau_n)^{\mathcal{U}}$ contradiction.
- Generalization to sep. C*-algebra A with dim(T(A)) = ∞ and T(A) a Bauer simplex, i.e. ext(T(A)) (weak*-)closed:
- Find a copy of $\mathbb{N} \cup \{\infty\}$ in $ext(\mathcal{T}(A))$.
- Any continuous function on $\mathbb{N} \cup \{\infty\}$ can be extended to $ext(\mathcal{T}(A))$ [Tietze/Gillman-Jerison].

・ 回 ト ・ ヨ ト ・ ヨ ト …

• But then we have $(p_n)\subseteq \{0,1\}^{\mathbb{N}}\subseteq I^\infty(A)$ with

 $1/3 \leq (\tau_n)^{\mathcal{U}}((p_n)) \leq 2/3 \quad \text{and} \quad \tau((p_n)) \in \{0,1\}.$

- So $\tau \neq (\tau_n)^{\mathcal{U}}$ contradiction.
- Generalization to sep. C*-algebra A with dim(T(A)) = ∞ and T(A) a Bauer simplex, i.e. ext(T(A)) (weak*-)closed:
- Find a copy of $\mathbb{N} \cup \{\infty\}$ in $ext(\mathcal{T}(A))$.
- Any continuous function on $\mathbb{N} \cup \{\infty\}$ can be extended to $ext(\mathcal{T}(A))$ [Tietze/Gillman-Jerison].
- This can be extended to a continuous affine function on $\mathcal{T}(A)$.

・ 回 ト ・ ヨ ト ・ ヨ ト

• But then we have $(p_n)\subseteq \{0,1\}^{\mathbb{N}}\subseteq I^\infty(A)$ with

 $1/3 \leq (\tau_n)^{\mathcal{U}}((p_n)) \leq 2/3 \quad \text{and} \quad \tau((p_n)) \in \{0,1\}.$

- So $\tau \neq (\tau_n)^{\mathcal{U}}$ contradiction.
- Generalization to sep. C*-algebra A with dim(T(A)) = ∞ and T(A) a Bauer simplex, i.e. ext(T(A)) (weak*-)closed:
- Find a copy of $\mathbb{N} \cup \{\infty\}$ in $ext(\mathcal{T}(A))$.
- Any continuous function on $\mathbb{N} \cup \{\infty\}$ can be extended to $ext(\mathcal{T}(A))$ [Tietze/Gillman-Jerison].
- This can be extended to a continuous affine function on $\mathcal{T}(A)$.

イロン 不同 とうほう 不同 とう

• This will be witnessed by $a \in A$, i.e. the function $\tau \mapsto \tau(a)$.

• But then we have $(p_n) \subseteq \{0,1\}^{\mathbb{N}} \subseteq I^\infty(A)$ with

 $1/3 \leq (\tau_n)^{\mathcal{U}}((p_n)) \leq 2/3 \quad \text{and} \quad \tau((p_n)) \in \{0,1\}.$

- So $\tau \neq (\tau_n)^{\mathcal{U}}$ contradiction.
- Generalization to sep. C*-algebra A with dim(T(A)) = ∞ and T(A) a Bauer simplex, i.e. ext(T(A)) (weak*-)closed:
- Find a copy of $\mathbb{N} \cup \{\infty\}$ in $ext(\mathcal{T}(A))$.
- Any continuous function on $\mathbb{N} \cup \{\infty\}$ can be extended to $ext(\mathcal{T}(A))$ [Tietze/Gillman-Jerison].
- This can be extended to a continuous affine function on $\mathcal{T}(A)$.

・ロト ・回 ト ・ヨト ・ヨト

- This will be witnessed by $a \in A$, i.e. the function $\tau \mapsto \tau(a)$.
- Apply the same argument as before.

Trace Out of Nowhere

Question

Can we have $\tau^{\mathcal{U}} \in \mathcal{T}(A^{\mathcal{U}})$ and $(a_n) \in I^{\infty}(A)$ with $\tau^{\mathcal{U}}((a_n)) \neq 0$ even though $\tau(a_n) = 0$ for all $\tau \in \mathcal{T}(A)$ and $n \in \mathbb{N}$?

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Question

Can we have $\tau^{\mathcal{U}} \in \mathcal{T}(A^{\mathcal{U}})$ and $(a_n) \in I^{\infty}(A)$ with $\tau^{\mathcal{U}}((a_n)) \neq 0$ even though $\tau(a_n) = 0$ for all $\tau \in \mathcal{T}(A)$ and $n \in \mathbb{N}$?

Definitions

Given a C*-algebra A, $a, b \in A_+$ are CP-equivalent if there exist $(c_n) \subseteq A$ such that $a = \sum c_n c_n^*$ and $b = \sum c_n^* c_n$. We define

 $A_0 = \{a - b : a, b \in A \text{ and } a \text{ and } b \text{ are CP-equivalent}\}$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

Question

Can we have $\tau^{\mathcal{U}} \in \mathcal{T}(A^{\mathcal{U}})$ and $(a_n) \in I^{\infty}(A)$ with $\tau^{\mathcal{U}}((a_n)) \neq 0$ even though $\tau(a_n) = 0$ for all $\tau \in \mathcal{T}(A)$ and $n \in \mathbb{N}$?

Definitions

Given a C*-algebra A, $a, b \in A_+$ are CP-equivalent if there exist $(c_n) \subseteq A$ such that $a = \sum c_n c_n^*$ and $b = \sum c_n^* c_n$. We define

 $A_0 = \{a - b : a, b \in A \text{ and } a \text{ and } b \text{ are CP-equivalent}\}$

Theorem [Cuntz-Pedersen (1979)]

$$A_0 = \{ a \in A_{\mathrm{sa}} : \forall \tau \in \mathcal{T}(A)(\tau(a) = 0) \}.$$

・日・ ・ ヨ・ ・ ヨ・

• In general, $a - b \in A_0 \Rightarrow a$ and b are CP-equivalent.

・ロト ・回ト ・ヨト ・ヨト

æ,

- In general, $a b \in A_0 \not\Rightarrow a$ and b are CP-equivalent.
- Example: For all $a, b \in \mathcal{K}(H)_+$, where dim $(H) = \infty$, $a - b \in A_0$ but a and b are CP-equivalent if and only if $\tau(a) = \tau(b)$, where τ is the usual (unbounded) trace.

・回 と く ヨ と く ヨ と

- In general, $a b \in A_0 \Rightarrow a$ and b are CP-equivalent.
- Example: For all $a, b \in \mathcal{K}(H)_+$, where dim $(H) = \infty$, $a - b \in A_0$ but a and b are CP-equivalent if and only if $\tau(a) = \tau(b)$, where τ is the usual (unbounded) trace.
- Similarly, membership of A_0 may take less self-adjoint commutators (operators of the form $cc^* c^*c$).

回 とう モン・モン

- In general, $a b \in A_0 \Rightarrow a$ and b are CP-equivalent.
- Example: For all $a, b \in \mathcal{K}(H)_+$, where dim $(H) = \infty$, $a - b \in A_0$ but a and b are CP-equivalent if and only if $\tau(a) = \tau(b)$, where τ is the usual (unbounded) trace.
- Similarly, membership of A_0 may take less self-adjoint commutators (operators of the form $cc^* c^*c$).
- Example: in $A = M_2$, e_{11} and $\frac{1}{2}(e_{11} + e_{22})$ are CP-equivalent, as witnessed by $\frac{1}{\sqrt{2}}e_{11}$ and $\frac{1}{\sqrt{2}}e_{12}$, while membership of $\frac{1}{2}(e_{11} e_{22})$ in A_0 is witnessed by just $\frac{1}{\sqrt{2}}e_{12}$.

・ 回 ト ・ ヨ ト ・ ヨ ト

- In general, $a b \in A_0 \Rightarrow a$ and b are CP-equivalent.
- Example: For all $a, b \in \mathcal{K}(H)_+$, where dim $(H) = \infty$, $a - b \in A_0$ but a and b are CP-equivalent if and only if $\tau(a) = \tau(b)$, where τ is the usual (unbounded) trace.
- Similarly, membership of A_0 may take less self-adjoint commutators (operators of the form $cc^* c^*c$).
- Example: in $A = M_2$, e_{11} and $\frac{1}{2}(e_{11} + e_{22})$ are CP-equivalent, as witnessed by $\frac{1}{\sqrt{2}}e_{11}$ and $\frac{1}{\sqrt{2}}e_{12}$, while membership of $\frac{1}{2}(e_{11} e_{22})$ in A_0 is witnessed by just $\frac{1}{\sqrt{2}}e_{12}$.
- Example 2: in A = C(S², M²), the Bott projection P and trivial projection Q(= e₁₁ everywhere) are CP-equivalent, requires 2 operators to witness, while P − Q ∈ A₀ requires just one.

<ロ> (四) (四) (三) (三) (三)

Vector Bundle Solution

• Strategy: Find a C^* -algebra A and $(a_n) \subseteq A_0$ such that each $a_n \in A_0$ requires $\geq n$ self-adjoint commutators to witness.

白 ト イヨト イヨト

Vector Bundle Solution

- Strategy: Find a C*-algebra A and (a_n) ⊆ A₀ such that each a_n ∈ A₀ requires ≥ n self-adjoint commutators to witness.
- Consider the C*-algebra A defined as continuous sections of the following vector bundle [Pedersen and Petersen (1970)],

$$B = \{ \begin{pmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{pmatrix}, x \} : x \in \mathbb{C}P^n (\subseteq \mathbb{C}^{n+1}); a, d \in \mathbb{C}; \mathbf{b}, \overline{\mathbf{c}} \in x \}.$$

• • = • • = •

Vector Bundle Solution

- Strategy: Find a C^* -algebra A and $(a_n) \subseteq A_0$ such that each $a_n \in A_0$ requires $\geq n$ self-adjoint commutators to witness.
- Consider the C*-algebra A defined as continuous sections of the following vector bundle [Pedersen and Petersen (1970)],

$$B = \{ \begin{pmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{pmatrix}, x \} : x \in \mathbb{C}P^n (\subseteq \mathbb{C}^{n+1}); a, d \in \mathbb{C}; \mathbf{b}, \overline{\mathbf{c}} \in x \}.$$

• Multiplication is defined pointwise by

$$\begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} \begin{bmatrix} a' & \mathbf{b}' \\ \mathbf{c}' & d' \end{bmatrix} = \begin{bmatrix} aa' + \mathbf{b} \cdot \mathbf{c}' & a\mathbf{b}' + d\mathbf{b} \\ a'\mathbf{c} + d\mathbf{c}' & dd' + \mathbf{b}' \cdot \mathbf{c} \end{bmatrix}$$

• In particular,

$$\begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} \begin{bmatrix} \overline{a} & \overline{\mathbf{c}} \\ \overline{\mathbf{b}} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{\mathbf{c}} \\ \overline{\mathbf{b}} & \overline{d} \end{bmatrix} \begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} = \begin{bmatrix} |\mathbf{b}|^2 - |\mathbf{c}|^2 & \dots \\ \dots & |\mathbf{c}|^2 - |\mathbf{b}|^2 \end{bmatrix}.$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

• In particular,

$$\begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} \begin{bmatrix} \overline{a} & \overline{\mathbf{c}} \\ \overline{\mathbf{b}} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{\mathbf{c}} \\ \overline{\mathbf{b}} & \overline{d} \end{bmatrix} \begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} = \begin{bmatrix} |\mathbf{b}|^2 - |\mathbf{c}|^2 & \dots \\ \dots & |\mathbf{c}|^2 - |\mathbf{b}|^2 \end{bmatrix}.$$

• Take
$$m_1, \ldots, m_k \in A$$
, i.e. $m_i(x) = \begin{bmatrix} a_i(x) & \mathbf{b}_i(x) \\ \mathbf{c}_i(x) & d_i(x) \end{bmatrix}$

æ

• In particular,

$$\begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} \begin{bmatrix} \overline{a} & \overline{\mathbf{c}} \\ \overline{\mathbf{b}} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{\mathbf{c}} \\ \overline{\mathbf{b}} & \overline{d} \end{bmatrix} \begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} = \begin{bmatrix} |\mathbf{b}|^2 - |\mathbf{c}|^2 & \dots \\ \dots & |\mathbf{c}|^2 - |\mathbf{b}|^2 \end{bmatrix}.$$

• Take
$$m_1, \ldots, m_k \in A$$
, i.e. $m_i(x) = \begin{bmatrix} a_i(x) & \mathbf{b}_i(x) \\ \mathbf{c}_i(x) & d_i(x) \end{bmatrix}$

• Assume
$$|| \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} - \sum (m_i m_i^* - m_i^* m_i) || < \epsilon$$
, for small $\epsilon > 0$.

æ

In particular,

$$\begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} \begin{bmatrix} \overline{a} & \overline{\mathbf{c}} \\ \overline{\mathbf{b}} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{\mathbf{c}} \\ \overline{\mathbf{b}} & \overline{d} \end{bmatrix} \begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} = \begin{bmatrix} |\mathbf{b}|^2 - |\mathbf{c}|^2 & \dots \\ \dots & |\mathbf{c}|^2 - |\mathbf{b}|^2 \end{bmatrix}.$$

• Take
$$m_1, \ldots, m_k \in A$$
, i.e. $m_i(x) = \begin{bmatrix} a_i(x) & \mathbf{b}_i(x) \\ \mathbf{c}_i(x) & d_i(x) \end{bmatrix}$

• Assume
$$|| \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} - \sum (m_i m_i^* - m_i^* m_i) || < \epsilon$$
, for small $\epsilon > 0$.

• For each *i* define $f_i : S^{2n+1} \to \mathbb{C}$ by $f_i(\mathbf{e})\mathbf{e} = \mathbf{b}_i(\mathbb{C}\mathbf{e}) - \overline{\mathbf{c}}_i(\mathbb{C}\mathbf{e})$.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

크

In particular,

$$\begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} \begin{bmatrix} \overline{a} & \overline{\mathbf{c}} \\ \overline{\mathbf{b}} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{\mathbf{c}} \\ \overline{\mathbf{b}} & \overline{d} \end{bmatrix} \begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} = \begin{bmatrix} |\mathbf{b}|^2 - |\mathbf{c}|^2 & \dots \\ \dots & |\mathbf{c}|^2 - |\mathbf{b}|^2 \end{bmatrix}.$$

• Take
$$m_1, \ldots, m_k \in A$$
, i.e. $m_i(x) = \begin{bmatrix} a_i(x) & \mathbf{b}_i(x) \\ \mathbf{c}_i(x) & d_i(x) \end{bmatrix}$

• Assume $||\begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix} - \sum (m_i m_i^* - m_i^* m_i)|| < \epsilon$, for small $\epsilon > 0$.

• For each *i* define $f_i : S^{2n+1} \to \mathbb{C}$ by $f_i(\mathbf{e})\mathbf{e} = \mathbf{b}_i(\mathbb{C}\mathbf{e}) - \overline{\mathbf{c}}_i(\mathbb{C}\mathbf{e})$.

• Then $f = (f_1, \ldots, f_k)$ defines a map from S^{2n+1} to a subset of \mathbb{C}^k with $f(-\mathbf{e}) = -f(\mathbf{e})$ avoiding 0.

白 ト イヨ ト イヨ ト

In particular,

$$\begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} \begin{bmatrix} \overline{a} & \overline{\mathbf{c}} \\ \overline{\mathbf{b}} & \overline{d} \end{bmatrix} - \begin{bmatrix} \overline{a} & \overline{\mathbf{c}} \\ \overline{\mathbf{b}} & \overline{d} \end{bmatrix} \begin{bmatrix} a & \mathbf{b} \\ \mathbf{c} & d \end{bmatrix} = \begin{bmatrix} |\mathbf{b}|^2 - |\mathbf{c}|^2 & \dots \\ \dots & |\mathbf{c}|^2 - |\mathbf{b}|^2 \end{bmatrix}.$$

• Take
$$m_1, \ldots, m_k \in A$$
, i.e. $m_i(x) = \begin{bmatrix} a_i(x) & \mathbf{b}_i(x) \\ \mathbf{c}_i(x) & d_i(x) \end{bmatrix}$

• Assume $|| \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} - \sum (m_i m_i^* - m_i^* m_i) || < \epsilon$, for small $\epsilon > 0$.

• For each *i* define $f_i : S^{2n+1} \to \mathbb{C}$ by $f_i(\mathbf{e})\mathbf{e} = \mathbf{b}_i(\mathbb{C}\mathbf{e}) - \overline{\mathbf{c}}_i(\mathbb{C}\mathbf{e})$.

• Then $f = (f_1, ..., f_k)$ defines a map from S^{2n+1} to a subset of \mathbb{C}^k with $f(-\mathbf{e}) = -f(\mathbf{e})$ avoiding 0.

白 ト イヨト イヨト

• Wlog $f: S^{2n+1} \rightarrow S^{2k-1}$. By Borsuk-Ulam, k > n.

• If A is the direct sum of these algebras then A is separable, 2-homogeneous and A^{U} has a trace coming out of nowhere.

- If A is the direct sum of these algebras then A is separable,
 2-homogeneous and A^U has a trace coming out of nowhere.
- However, this example is far from being simple or having a unique (normalized) trace.

- If A is the direct sum of these algebras then A is separable,
 2-homogeneous and A^U has a trace coming out of nowhere.
- However, this example is far from being simple or having a unique (normalized) trace.

Question

Does there exist A with a unique trace (and, say, separable, nuclear, simple, etc.) s.t. A^{U} does not have a unique trace?

Do there exist projectionless (unital) C^* -algebras A and B s.t. $A \otimes B$ is not projectionless?

Do there exist projectionless (unital) C^* -algebras A and B s.t. $A \otimes B$ is not projectionless?

• No if A and B are commutative: $A \approx C(Y)$, $B \approx C(Z)$ and $A \otimes B \approx C(Y \times Z)$.

同 と く ヨ と く ヨ と …

Do there exist projectionless (unital) C^* -algebras A and B s.t. $A \otimes B$ is not projectionless?

- No if A and B are commutative: $A \approx C(Y)$, $B \approx C(Z)$ and $A \otimes B \approx C(Y \times Z)$.
- C(X) is projectionless $\Leftrightarrow X$ is connected.

周 と く ヨ と く ヨ と …

Do there exist projectionless (unital) C^* -algebras A and B s.t. $A \otimes B$ is not projectionless?

- No if A and B are commutative: $A \approx C(Y)$, $B \approx C(Z)$ and $A \otimes B \approx C(Y \times Z)$.
- C(X) is projectionless $\Leftrightarrow X$ is connected.
- $Y \times Z$ is connected \Leftrightarrow both Y and Z are connected.

通 と く ヨ と く ヨ と …

Do there exist projectionless (unital) C^* -algebras A and B s.t. $A \otimes B$ is not projectionless?

- No if A and B are commutative: $A \approx C(Y)$, $B \approx C(Z)$ and $A \otimes B \approx C(Y \times Z)$.
- C(X) is projectionless $\Leftrightarrow X$ is connected.
- $Y \times Z$ is connected \Leftrightarrow both Y and Z are connected.
- Yes for a non-minimal tensor product of $C_r^*(\mathbb{F}_2)$ with itself [Ackemann and Ostrand (1976)].

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

• Given a finite dimensional vector bundle V with compact connected base space X, form another vector bundle B(V) with base space X by replacing each fibre with the operators on that fibre.

- Given a finite dimensional vector bundle V with compact connected base space X, form another vector bundle B(V) with base space X by replacing each fibre with the operators on that fibre.
- The continuous sections of B(V) become a C^* -algebra under pointwise operations.

- Given a finite dimensional vector bundle V with compact connected base space X, form another vector bundle B(V) with base space X by replacing each fibre with the operators on that fibre.
- The continuous sections of B(V) become a C^* -algebra under pointwise operations.
- Projections in B(V) correspond to subbundles of V.

- Given a finite dimensional vector bundle V with compact connected base space X, form another vector bundle B(V) with base space X by replacing each fibre with the operators on that fibre.
- The continuous sections of B(V) become a C^* -algebra under pointwise operations.
- Projections in B(V) correspond to subbundles of V.
- B(V) ⊗ B(W) ≈ B(V ⊗ W), where V ⊗ W is the vector bundle with base space X × Y and tensor product in each fibre.

向下 イヨト イヨト

- Given a finite dimensional vector bundle V with compact connected base space X, form another vector bundle B(V) with base space X by replacing each fibre with the operators on that fibre.
- The continuous sections of B(V) become a C^* -algebra under pointwise operations.
- Projections in B(V) correspond to subbundles of V.
- B(V) ⊗ B(W) ≈ B(V ⊗ W), where V ⊗ W is the vector bundle with base space X × Y and tensor product in each fibre.

Problem

Find a vector bundle V with no non-trivial subbundles but such that $V \otimes V$ contains non-trivial subbundles.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Let V be the tangent bundle to the complex 2-sphere.

同 と く ヨ と く ヨ と

臣

- Let V be the tangent bundle to the complex 2-sphere.
- V has no non-trivial subbundles (characteristic classes).

Vector Bundle Solution

- Let V be the tangent bundle to the complex 2-sphere.
- V has no non-trivial subbundles (characteristic classes).
- Let v_1 be a continuous section where $v_1(\pm 1, 0, 0) = 0$ and $v_1(\mathbf{x})$ is non-zero and points towards the poles everywhere else, and likewise for v_2 and v_3 .

- Let V be the tangent bundle to the complex 2-sphere.
- V has no non-trivial subbundles (characteristic classes).
- Let v_1 be a continuous section where $v_1(\pm 1, 0, 0) = 0$ and $v_1(\mathbf{x})$ is non-zero and points towards the poles everywhere else, and likewise for v_2 and v_3 .
- The section $v_1 \otimes v_1 + v_2 \otimes v_2 + v_3 \otimes v_3$ in $V \otimes V$ is never 0.

- Let V be the tangent bundle to the complex 2-sphere.
- V has no non-trivial subbundles (characteristic classes).
- Let v_1 be a continuous section where $v_1(\pm 1, 0, 0) = 0$ and $v_1(\mathbf{x})$ is non-zero and points towards the poles everywhere else, and likewise for v_2 and v_3 .
- The section $v_1 \otimes v_1 + v_2 \otimes v_2 + v_3 \otimes v_3$ in $V \otimes V$ is never 0.
- Note that $v_1 \otimes v_1 + v_2 \otimes v_2$ would not do: there exists $x, y \in \mathbb{C}S^2$ such that $v_1(x) = v_2(x)$ and $v_1(y) = -v_2(y)$ and hence $v_1(x) \otimes v_1(y) + v_2(x) \otimes v_2(y) = 0$.

向下 イヨト イヨト