Simple C^* -algebras of generalized tracial rank one

Huaxin Lin Department of Mathematics University of Oregon

911– 2012, Fields Institute Joint work with Guihua Gong and Zhuang Niu –in progress

911– 2012. Fields Institute Joint work with (

Huaxin Lin Department of Mathematics UnivSimple C^* -algebras of generalized tracial ran

(Elliott-Gong (1996)) Let A and B be two unital simple AH-algebras

(Elliott-Gong (1996)) Let A and B be two unital simple AH-algebras with slow dimension growth

(Elliott-Gong (1996)) Let A and B be two unital simple AH-algebras with slow dimension growth and with real rank zero.

(Elliott-Gong (1996)) Let A and B be two unital simple AH-algebras with slow dimension growth and with real rank zero. Then $A \cong B$ if and only if

(Elliott-Gong (1996)) Let A and B be two unital simple AH-algebras with slow dimension growth and with real rank zero. Then $A \cong B$ if and only if

 $(K_0(A), K_0(A)_+, [1_A], K_1(A)) \cong (K_0(B), K_0(B)_+, [1_B], K_1(B)).$

(Elliott-Gong (1996)) Let A and B be two unital simple AH-algebras with slow dimension growth and with real rank zero. Then $A \cong B$ if and only if

 $(K_0(A), K_0(A)_+, [1_A], K_1(A)) \cong (K_0(B), K_0(B)_+, [1_B], K_1(B)).$

Theorem

(Elliott-Gong-Li 2007) Let A and B be two unital simple AH-algebras

(Elliott-Gong (1996)) Let A and B be two unital simple AH-algebras with slow dimension growth and with real rank zero. Then $A \cong B$ if and only if

 $(K_0(A), K_0(A)_+, [1_A], K_1(A)) \cong (K_0(B), K_0(B)_+, [1_B], K_1(B)).$

Theorem

(Elliott-Gong-Li 2007) Let A and B be two unital simple AH-algebras with no dimension growth. Then $A \cong B$ if and only if

(Elliott-Gong (1996)) Let A and B be two unital simple AH-algebras with slow dimension growth and with real rank zero. Then $A \cong B$ if and only if

 $(K_0(A), K_0(A)_+, [1_A], K_1(A)) \cong (K_0(B), K_0(B)_+, [1_B], K_1(B)).$

Theorem

(Elliott-Gong-Li 2007) Let A and B be two unital simple AH-algebras with no dimension growth. Then $A \cong B$ if and only if

$$(K_0(A), K_0(A)_+, [1_A], K_1(A), T(A), r_A) \cong (K_0(B), K_0(B)_+, [1_B], K_1(B), T(B), r_B).$$
(e0.1)

Here r_C is an affine map from T(C) into $S_1(K_0(C))$, the state space of $K_0(C)$, such that $r_C(\tau)([p]) = \tau(p)$ for all projections in $M_k(C)$, $k \ge 1$.

Here r_C is an affine map from T(C) into $S_1(K_0(C))$, the state space of $K_0(C)$, such that $r_C(\tau)([p]) = \tau(p)$ for all projections in $M_k(C)$, $k \ge 1$. The symbol " \cong " means: there is an isomorphism $\kappa_1 : K_1(A) \to K_1(B)$; Here r_C is an affine map from T(C) into $S_1(K_0(C))$, the state space of $K_0(C)$, such that $r_C(\tau)([p]) = \tau(p)$ for all projections in $M_k(C)$, $k \ge 1$. The symbol " \cong " means: there is an isomorphism $\kappa_1 : K_1(A) \to K_1(B)$; an order isomorphism $\kappa_0 : K_0(A) \to K_0(B)$ such that $\kappa_0([1_A]) = [1_B]$; Here r_C is an affine map from T(C) into $S_1(K_0(C))$, the state space of $K_0(C)$, such that $r_C(\tau)([p]) = \tau(p)$ for all projections in $M_k(C)$, $k \ge 1$. The symbol " \cong " means: there is an isomorphism $\kappa_1 : K_1(A) \to K_1(B)$; an order isomorphism $\kappa_0 : K_0(A) \to K_0(B)$ such that $\kappa_0([1_A]) = [1_B]$; an affine homeomorphism $\gamma : T(A) \to T(B)$ Here r_C is an affine map from T(C) into $S_1(K_0(C))$, the state space of $K_0(C)$, such that $r_C(\tau)([p]) = \tau(p)$ for all projections in $M_k(C)$, $k \ge 1$. The symbol " \cong " means: there is an isomorphism $\kappa_1 : K_1(A) \to K_1(B)$; an order isomorphism $\kappa_0 : K_0(A) \to K_0(B)$ such that $\kappa_0([1_A]) = [1_B]$; an affine homeomorphism $\gamma : T(A) \to T(B)$ such that

$$r_A \circ (\gamma^{-1}(\tau))(x) = r_B(\tau)(\kappa_0(x))$$

for all $x \in K_0(A)$ and $\tau \in T(A)$.

Here r_C is an affine map from T(C) into $S_1(K_0(C))$, the state space of $K_0(C)$, such that $r_C(\tau)([p]) = \tau(p)$ for all projections in $M_k(C)$, $k \ge 1$. The symbol " \cong " means: there is an isomorphism $\kappa_1 : K_1(A) \to K_1(B)$; an order isomorphism $\kappa_0 : K_0(A) \to K_0(B)$ such that $\kappa_0([1_A]) = [1_B]$; an affine homeomorphism $\gamma : T(A) \to T(B)$ such that

$$r_A \circ (\gamma^{-1}(\tau))(x) = r_B(\tau)(\kappa_0(x))$$

for all $x \in K_0(A)$ and $\tau \in T(A)$. We will write

 $Ell(A) = (K_0(A), K_0(A)_+, [1_A], K_1(A), T(A), r_A).$

Denote by \mathcal{I}_0 the class of all finite dimensional C^* -algebras,

Denote by \mathcal{I}_0 the class of all finite dimensional C^* -algebras, denote by \mathcal{I}_k the class of C^* -algebras with the form $PM_n(C(X))P$,

Definition

Let A be a unital simple C^* -algebra.

Definition

Let A be a unital simple $C^*\mbox{-algebra}.$ We say A has tracial rank at most k

Definition

Let A be a unital simple C^* -algebra. We say A has tracial rank at most k and write $TR(A) \leq k$, if the following holds:

Definition

Let A be a unital simple C^* -algebra. We say A has tracial rank at most k and write $TR(A) \leq k$, if the following holds: For any $a \in A_+ \setminus \{0\}$,

Definition

Let A be a unital simple C^* -algebra. We say A has tracial rank at most k and write $TR(A) \le k$, if the following holds: For any $a \in A_+ \setminus \{0\}$, any $\epsilon > 0$

Definition

Let A be a unital simple C^* -algebra. We say A has tracial rank at most k and write $TR(A) \leq k$, if the following holds: For any $a \in A_+ \setminus \{0\}$, any $\epsilon > 0$ and any compact subset $\mathcal{F} \subset A$, there exists a projection $p \in A$

Definition

Let A be a unital simple C^* -algebra. We say A has tracial rank at most k and write $TR(A) \leq k$, if the following holds: For any $a \in A_+ \setminus \{0\}$, any $\epsilon > 0$ and any compact subset $\mathcal{F} \subset A$, there exists a projection $p \in A$ and a C^* -subalgebra $C \in \mathcal{I}_k$

Definition

Let A be a unital simple C^* -algebra. We say A has tracial rank at most k and write $TR(A) \leq k$, if the following holds: For any $a \in A_+ \setminus \{0\}$, any $\epsilon > 0$ and any compact subset $\mathcal{F} \subset A$, there exists a projection $p \in A$ and a C^* -subalgebra $C \in \mathcal{I}_k$ with $1_C = p$ such that

Definition

Let A be a unital simple C^* -algebra. We say A has tracial rank at most k and write $TR(A) \leq k$, if the following holds: For any $a \in A_+ \setminus \{0\}$, any $\epsilon > 0$ and any compact subset $\mathcal{F} \subset A$, there exists a projection $p \in A$ and a C^* -subalgebra $C \in \mathcal{I}_k$ with $\mathbf{1}_C = p$ such that (1) $\|px - xp\| < \epsilon$ for all $x \in \mathcal{F}$;

Definition

Let A be a unital simple C^* -algebra. We say A has tracial rank at most k and write $TR(A) \leq k$, if the following holds: For any $a \in A_+ \setminus \{0\}$, any $\epsilon > 0$ and any compact subset $\mathcal{F} \subset A$, there exists a projection $p \in A$ and a C^* -subalgebra $C \in \mathcal{I}_k$ with $1_C = p$ such that (1) $\|px - xp\| < \epsilon$ for all $x \in \mathcal{F}$; (2) dist $(pxp, C) < \epsilon$ for all $x \in \mathcal{F}$ and

Definition

Let A be a unital simple C^* -algebra. We say A has tracial rank at most k and write $TR(A) \leq k$, if the following holds: For any $a \in A_+ \setminus \{0\}$, any $\epsilon > 0$ and any compact subset $\mathcal{F} \subset A$, there exists a projection $p \in A$ and a C^* -subalgebra $C \in \mathcal{I}_k$ with $\mathbf{1}_C = p$ such that (1) $\|px - xp\| < \epsilon$ for all $x \in \mathcal{F}$; (2) dist $(pxp, C) < \epsilon$ for all $x \in \mathcal{F}$ and (3) $\mathbf{1} - p \leq a$.

Definition

Let A be a unital simple C^* -algebra. We say A has tracial rank at most k and write $TR(A) \leq k$, if the following holds: For any $a \in A_+ \setminus \{0\}$, any $\epsilon > 0$ and any compact subset $\mathcal{F} \subset A$, there exists a projection $p \in A$ and a C^* -subalgebra $C \in \mathcal{I}_k$ with $\mathbf{1}_C = p$ such that (1) $\|px - xp\| < \epsilon$ for all $x \in \mathcal{F}$; (2) dist $(pxp, C) < \epsilon$ for all $x \in \mathcal{F}$ and (3) $\mathbf{1} - p \leq a$.

If $TR(A) \le k$ but $TR(A) \le k - 1$, we say A has tracial rank k and write TR(A) = k.

(L-2003-2007) Let A and B be two unital separable simple amenable C^* -algebras which satisfy the UCT.

(L-2003—2007) Let A and B be two unital separable simple amenable C^* -algebras which satisfy the UCT. Suppose $TR(A) \le 1$ and $TR(B) \le 1$.

(L-2003—2007) Let A and B be two unital separable simple amenable C*-algebras which satisfy the UCT. Suppose $TR(A) \le 1$ and $TR(B) \le 1$. Then $A \cong B$

(L-2003—2007) Let A and B be two unital separable simple amenable C^* -algebras which satisfy the UCT. Suppose $TR(A) \le 1$ and $TR(B) \le 1$. Then $A \cong B$ if and only if

 $\operatorname{Ell}(A) \cong \operatorname{Ell}(B).$

(L-2003—2007) Let A and B be two unital separable simple amenable C^* -algebras which satisfy the UCT. Suppose $TR(A) \le 1$ and $TR(B) \le 1$. Then $A \cong B$ if and only if

 $\operatorname{Ell}(A) \cong \operatorname{Ell}(B).$

According to a result of Guiuha Gong, a unital simple AH-algebra with very slow dimension growth has tracial rank at most one.

(L-2003—2007) Let A and B be two unital separable simple amenable C^* -algebras which satisfy the UCT. Suppose $TR(A) \le 1$ and $TR(B) \le 1$. Then $A \cong B$ if and only if

 $\operatorname{Ell}(A) \cong \operatorname{Ell}(B).$

According to a result of Guiuha Gong, a unital simple AH-algebra with very slow dimension growth has tracial rank at most one.

(L-Phillips) Let X be a finite dimensional infinite metric space

(L-Phillips) Let X be a finite dimensional infinite metric space and let α be a minimal homeomorphism.

(L-Phillips) Let X be a finite dimensional infinite metric space and let α be a minimal homeomorphism. Suppose that $\rho(K_0(C(X) \rtimes_{\alpha} \mathbb{Z}))$ is dense in Aff $(T(C(X) \rtimes_{\alpha} \mathbb{Z}))$.

(L-Phillips) Let X be a finite dimensional infinite metric space and let α be a minimal homeomorphism. Suppose that $\rho(K_0(C(X) \rtimes_{\alpha} \mathbb{Z}))$ is dense in Aff $(T(C(X) \rtimes_{\alpha} \mathbb{Z}))$. Then $C(X) \rtimes_{\alpha} \mathbb{Z}$ is isomorphic to a unital simple AH-algebra

(L-Phillips) Let X be a finite dimensional infinite metric space and let α be a minimal homeomorphism. Suppose that $\rho(K_0(C(X) \rtimes_\alpha \mathbb{Z}))$ is dense in Aff $(T(C(X) \rtimes_\alpha \mathbb{Z}))$. Then $C(X) \rtimes_\alpha \mathbb{Z}$ is isomorphic to a unital simple AH-algebra with no dimension growth and with real rank zero (tracial rank zero).

(Villadsen) For any countable weakly unperforated simple ordered group $G_0 \not\cong \mathbb{Z}$ with the Riesz interpolation property and with order unit u,

(Villadsen) For any countable weakly unperforated simple ordered group $G_0 \not\cong \mathbb{Z}$ with the Riesz interpolation property and with order unit u, any countable abelian group G_1 ,

(Villadsen) For any countable weakly unperforated simple ordered group $G_0 \not\cong \mathbb{Z}$ with the Riesz interpolation property and with order unit u, any countable abelian group G_1 , any metrizable Choquet simplex Δ ,

(Villadsen) For any countable weakly unperforated simple ordered group $G_0 \not\cong \mathbb{Z}$ with the Riesz interpolation property and with order unit u, any countable abelian group G_1 , any metrizable Choquet simplex Δ , and any surjective affine continuous map $r : \Delta \to S_u(G_0)$ (the state space of G_0) so that

(Villadsen) For any countable weakly unperforated simple ordered group $G_0 \not\cong \mathbb{Z}$ with the Riesz interpolation property and with order unit u, any countable abelian group G_1 , any metrizable Choquet simplex Δ , and any surjective affine continuous map $r : \Delta \to S_u(G_0)$ (the state space of G_0) so that $r(\partial_e(\Delta)) = \partial_e(G_0)$,

(Villadsen) For any countable weakly unperforated simple ordered group $G_0 \not\cong \mathbb{Z}$ with the Riesz interpolation property and with order unit u, any countable abelian group G_1 , any metrizable Choquet simplex Δ , and any surjective affine continuous map $r : \Delta \to S_u(G_0)$ (the state space of G_0) so that $r(\partial_e(\Delta)) = \partial_e(G_0)$, there is a unital simple AH-algebra A with $TR(A) \leq 1$ such that

$$Ell(A) = (G_0, (G_0)_+, u, G_1, \Delta, r).$$

Let A be a unital separable simple C^* -algebra with tracial rank at most one.

Let A be a unital separable simple C*-algebra with tracial rank at most one. Then $K_0(A)$ is weakly unperforated Riesz group and $r_A(\partial_e(T(A))) = \partial_e(S_{[1_A]}(K_0(A))).$

Let A be a unital separable simple C*-algebra with tracial rank at most one. Then $K_0(A)$ is weakly unperforated Riesz group and $r_A(\partial_e(T(A))) = \partial_e(S_{[1_A]}(K_0(A)).$

Every unital separable simple amenable C^* -algebra A with $TR(A) \le 1$ which satisfies the UCT

Let A be a unital separable simple C*-algebra with tracial rank at most one. Then $K_0(A)$ is weakly unperforated Riesz group and $r_A(\partial_e(T(A))) = \partial_e(S_{[1_A]}(K_0(A)).$

Every unital separable simple amenable C^* -algebra A with $TR(A) \le 1$ which satisfies the UCT is isomorphic to a unital simple AH-algebra with no dimension growth

Let A be a unital separable simple C*-algebra with tracial rank at most one. Then $K_0(A)$ is weakly unperforated Riesz group and $r_A(\partial_e(T(A))) = \partial_e(S_{[1_A]}(K_0(A)).$

Every unital separable simple amenable C^* -algebra A with $TR(A) \le 1$ which satisfies the UCT is isomorphic to a unital simple AH-algebra with no dimension growth (in fact the dimension of the base spaces can be chosen to be no more than 3).

Let A be a unital separable simple C*-algebra with tracial rank at most one. Then $K_0(A)$ is weakly unperforated Riesz group and $r_A(\partial_e(T(A))) = \partial_e(S_{[1_A]}(K_0(A)).$

Every unital separable simple amenable C^* -algebra A with $TR(A) \le 1$ which satisfies the UCT is isomorphic to a unital simple AH-algebra with no dimension growth (in fact the dimension of the base spaces can be chosen to be no more than 3).

Jiang-Su algebra \mathcal{Z} is not an AH-algebra.

A remarkable result of Winter provides a new method to push a classification theorem which will apply to classes of C^* -algebras include simple C^* -algebras which have tracial rank other than 0, 1.

A remarkable result of Winter provides a new method to push a classification theorem which will apply to classes of C^* -algebras include simple C^* -algebras which have tracial rank other than 0, 1. More precisely, Winter's result provides a method which can be used to classify those simple C^* -algebras A which have the property that $TR(A \otimes M_p) \leq 1$, where M_p is a UHF-algebra of infinite type.

Let \mathcal{A}_0 be the class of all unital amenable separable simple C^* -algebras A which satisfy the UCT

Let \mathcal{A}_0 be the class of all unital amenable separable simple C^* -algebras A which satisfy the UCT and $TR(A \otimes M_p) = 0$ for all UHF-algebras M_p of infinite type.

Let \mathcal{A}_0 be the class of all unital amenable separable simple C^* -algebras A which satisfy the UCT and $TR(A \otimes M_p) = 0$ for all UHF-algebras M_p of infinite type.

Theorem

(L–2011) Let A, $B \in A$ which are \mathcal{Z} -stable.

Let \mathcal{A}_0 be the class of all unital amenable separable simple C^* -algebras A which satisfy the UCT and $TR(A \otimes M_p) = 0$ for all UHF-algebras M_p of infinite type.

Theorem

(L–2011) Let $A, B \in A$ which are \mathcal{Z} -stable. Then $A \cong B$ if and only if

Let \mathcal{A}_0 be the class of all unital amenable separable simple C^* -algebras A which satisfy the UCT and $TR(A \otimes M_p) = 0$ for all UHF-algebras M_p of infinite type.

Theorem

(L–2011) Let A, $B \in A$ which are \mathcal{Z} -stable. Then $A \cong B$ if and only if

 $\operatorname{Ell}(A) \cong \operatorname{Ell}(B).$

Theorem

(L-Zhuang Niu 2008) Let A and B be two unital amenable separable simple \mathcal{Z} -stable C^{*}-algebras which satisfies the UCT.

Theorem

(L-Zhuang Niu 2008) Let A and B be two unital amenable separable simple \mathcal{Z} -stable C*-algebras which satisfies the UCT. Suppose that $TR(A \otimes M_p) = 0$ and $TR(B \otimes M_p) = 0$

Theorem

(L-Zhuang Niu 2008) Let A and B be two unital amenable separable simple \mathcal{Z} -stable C*-algebras which satisfies the UCT. Suppose that $TR(A \otimes M_p) = 0$ and $TR(B \otimes M_p) = 0$ for all UHF-algebras M_p of infinite type.

Theorem

(L-Zhuang Niu 2008) Let A and B be two unital amenable separable simple \mathcal{Z} -stable C*-algebras which satisfies the UCT. Suppose that $TR(A \otimes M_p) = 0$ and $TR(B \otimes M_p) = 0$ for all UHF-algebras M_p of infinite type. Then $A \cong B$ if and only if

Theorem

(L-Zhuang Niu 2008) Let A and B be two unital amenable separable simple \mathcal{Z} -stable C*-algebras which satisfies the UCT. Suppose that $TR(A \otimes M_p) = 0$ and $TR(B \otimes M_p) = 0$ for all UHF-algebras M_p of infinite type. Then $A \cong B$ if and only if

 $(K_0(A), K_0(A)_+, [1_A], K_1(A)) \cong (K_0(B), K_0(B)_+, [1_B], K_1(B)).$

(Toms and Winter 2009) Let X be an infinite compact metric space with finite covering dimension

(Toms and Winter 2009) Let X be an infinite compact metric space with finite covering dimension and let $\alpha : X \to X$ be a minimal homeomorphism.

(Toms and Winter 2009) Let X be an infinite compact metric space with finite covering dimension and let $\alpha : X \to X$ be a minimal homeomorphism. Suppose that projections of $C(X) \rtimes_{\alpha} \mathbb{Z}$ separate the tracial states.

(Toms and Winter 2009) Let X be an infinite compact metric space with finite covering dimension and let $\alpha : X \to X$ be a minimal homeomorphism. Suppose that projections of $C(X) \rtimes_{\alpha} \mathbb{Z}$ separate the tracial states. Then $C(X) \rtimes_{\alpha} \mathbb{Z}$ is a unital simple \mathcal{Z} -stable C^* -algebra in \mathcal{A}_0 .

(L–Niu 2011) Let $(G_0, (G_0)+, u)$ be a countable partially ordered simple weakly unperforated

Huaxin Lin Department of Mathematics UnivSimple C^* -algebras of generalized tracial ranl

911– 2012, Fields Institute Joint work with 0 / 34

(L-Niu 2011) Let $(G_0, (G_0)+, u)$ be a countable partially ordered simple weakly unperforated and rationally Riesz group,

(L-Niu 2011) Let $(G_0, (G_0)+, u)$ be a countable partially ordered simple weakly unperforated and rationally Riesz group, let G_1 be a countable abelian group,

(L-Niu 2011) Let $(G_0, (G_0)+, u)$ be a countable partially ordered simple weakly unperforated and rationally Riesz group, let G_1 be a countable abelian group, let T be a metrizable Choquet simplex

(L-Niu 2011) Let $(G_0, (G_0)+, u)$ be a countable partially ordered simple weakly unperforated and rationally Riesz group, let G_1 be a countable abelian group, let T be a metrizable Choquet simplex and let $\lambda_T : T \to S_u(G_0)$ be a surjective affine continuous map

(L-Niu 2011) Let $(G_0, (G_0)+, u)$ be a countable partially ordered simple weakly unperforated and rationally Riesz group, let G_1 be a countable abelian group, let T be a metrizable Choquet simplex and let $\lambda_T : T \to S_u(G_0)$ be a surjective affine continuous map sending extremal points to extremal points.

(L-Niu 2011) Let $(G_0, (G_0)+, u)$ be a countable partially ordered simple weakly unperforated and rationally Riesz group, let G_1 be a countable abelian group, let T be a metrizable Choquet simplex and let $\lambda_T : T \to S_u(G_0)$ be a surjective affine continuous map sending extremal points to extremal points. Then there exists one (and exactly one, up to isomorphic) unital Z-stable C*-algebra $A \in A$ such that

(L-Niu 2011) Let $(G_0, (G_0)+, u)$ be a countable partially ordered simple weakly unperforated and rationally Riesz group, let G_1 be a countable abelian group, let T be a metrizable Choquet simplex and let $\lambda_T : T \to S_u(G_0)$ be a surjective affine continuous map sending extremal points to extremal points. Then there exists one (and exactly one, up to isomorphic) unital Z-stable C*-algebra $A \in A$ such that

 $Ell(A) = ((G_0, (G_0)+, u), G_1, T, \lambda_T).$

Moreover, A can be constructed to be locally approximated by subhomogeneous C^* -algebras.

(L-Niu 2011) Let $(G_0, (G_0)+, u)$ be a countable partially ordered simple weakly unperforated and rationally Riesz group, let G_1 be a countable abelian group, let T be a metrizable Choquet simplex and let $\lambda_T : T \to S_u(G_0)$ be a surjective affine continuous map sending extremal points to extremal points. Then there exists one (and exactly one, up to isomorphic) unital Z-stable C*-algebra $A \in A$ such that

 $Ell(A) = ((G_0, (G_0)+, u), G_1, T, \lambda_T).$

Moreover, A can be constructed to be locally approximated by subhomogeneous C^* -algebras.

Proposition

Let G be a countable weakly unperforated simple partially ordered group with an order unit u.

911-2012 Fields Institute Joint work with

(L-Niu 2011) Let $(G_0, (G_0)+, u)$ be a countable partially ordered simple weakly unperforated and rationally Riesz group, let G_1 be a countable abelian group, let T be a metrizable Choquet simplex and let $\lambda_T : T \to S_u(G_0)$ be a surjective affine continuous map sending extremal points to extremal points. Then there exists one (and exactly one, up to isomorphic) unital Z-stable C*-algebra $A \in A$ such that

 $Ell(A) = ((G_0, (G_0)+, u), G_1, T, \lambda_T).$

Moreover, A can be constructed to be locally approximated by subhomogeneous C^* -algebras.

Proposition

Let G be a countable weakly unperforated simple partially ordered group with an order unit u. Then G has the rationally Riesz property if and only if $S_u(G)$ is a metrizable Choquet simplex.

(L–W. Sun (2012)) Let A be a unital separable simple amenable C^* -algebra.

Huaxin Lin Department of Mathematics UnivSimple C^* -algebras of generalized tracial ranl

911–2012, Fields Institute Joint work with 0

(L–W. Sun (2012)) Let A be a unital separable simple amenable C^* -algebra. Then the following are equivalent:

(L–W. Sun (2012)) Let A be a unital separable simple amenable C^* -algebra. Then the following are equivalent: (1) $TR(A \otimes U) \leq 1$ for all UHF-algebras U of infinite type;

(L–W. Sun (2012)) Let A be a unital separable simple amenable C^* -algebra. Then the following are equivalent: (1) $TR(A \otimes U) \leq 1$ for all UHF-algebras U of infinite type; (2) $TR(A \otimes U) \leq 1$ for one UHF-algebra U of infinite type;

(L–W. Sun (2012)) Let A be a unital separable simple amenable C^* -algebra. Then the following are equivalent: (1) $TR(A \otimes U) \leq 1$ for all UHF-algebras U of infinite type; (2) $TR(A \otimes U) \leq 1$ for one UHF-algebra U of infinite type; (3) $TR(A \otimes B) \leq 1$ for all unital simple AF-algebras B;

(L–W. Sun (2012)) Let A be a unital separable simple amenable C^* -algebra. Then the following are equivalent: (1) $TR(A \otimes U) \leq 1$ for all UHF-algebras U of infinite type; (2) $TR(A \otimes U) \leq 1$ for one UHF-algebra U of infinite type; (3) $TR(A \otimes B) \leq 1$ for all unital simple AF-algebras B; (4) $TR(A \otimes B) \leq 1$ for some unital infinite dimensional simple AF-algebra B;

(L–W. Sun (2012)) Let A be a unital separable simple amenable C^* -algebra. Then the following are equivalent: (1) $TR(A \otimes U) \leq 1$ for all UHF-algebras U of infinite type; (2) $TR(A \otimes U) \leq 1$ for one UHF-algebra U of infinite type; (3) $TR(A \otimes B) \leq 1$ for all unital simple AF-algebras B; (4) $TR(A \otimes B) \leq 1$ for some unital infinite dimensional simple AF-algebra B; (5) $TR(A \otimes B) \leq 1$ for all unital simple AH-algebras B of slow dimension growth;

(L–W. Sun (2012)) Let A be a unital separable simple amenable C^* -algebra. Then the following are equivalent: (1) $TR(A \otimes U) \leq 1$ for all UHF-algebras U of infinite type; (2) $TR(A \otimes U) \leq 1$ for one UHF-algebra U of infinite type; (3) $TR(A \otimes B) \leq 1$ for all unital simple AF-algebras B; (4) $TR(A \otimes B) \leq 1$ for some unital infinite dimensional simple AF-algebra B; (5) $TR(A \otimes B) \leq 1$ for all unital simple AH algebras B of algebra

(5) $TR(A \otimes B) \leq 1$ for all unital simple AH-algebras B of slow dimension growth;

(6) $TR(A \otimes B) \leq 1$ for some unital infinite dimensional simple AH-algebra with slow dimension growth.

Let X be a compact metric space.

Huaxin Lin Department of Mathematics Univ ${
m Simple}\ C^*$ -algebras of generalized tracial ran

Let X be a compact metric space. Let $k \ge 1$ be an integer.

Huaxin Lin Department of Mathematics Univ ${
m Simple}\ C^*$ -algebras of generalized tracial ran

Let X be a compact metric space. Let $k \ge 1$ be an integer. Let $m_1, m_2, ..., m_n \ge 1$ be integers such that $m_j | k, j = 1, 2, ..., n$

Let X be a compact metric space. Let $k \ge 1$ be an integer. Let $m_1, m_2, ..., m_n \ge 1$ be integers such that $m_j | k, j = 1, 2, ..., n$ We write $M_k = M_j \otimes M_{k/m_j}$.

Let X be a compact metric space. Let $k \ge 1$ be an integer. Let $m_1, m_2, ..., m_n \ge 1$ be integers such that $m_j | k, j = 1, 2, ..., n$ We write $M_k = M_j \otimes M_{k/m_j}$. Let $B_j = M_{m_j} \otimes 1_{m_j/k}$.

$$D_{X,k,\{X_j\},\{m_j\}} = \{f \in C(X.M_k) : f(x) \in B_j \text{ for all } x \in X_j, 1 \le j \le n\}.$$

$$D_{X,k,\{X_j\},\{m_j\}} = \{f \in C(X.M_k) : f(x) \in B_j \text{ for all } x \in X_j, 1 \le j \le n\}.$$

We say C is a generalized dimension drop algebra

$$D_{X,k,\{X_j\},\{m_j\}} = \{f \in C(X.M_k) : f(x) \in B_j \text{ for all } x \in X_j, 1 \le j \le n\}.$$

We say C is a generalized dimension drop algebra if C has the form

$$C = \bigoplus_{i=1}^{N} P_i D_{X_i, k(i), \{X_{i,j}\}, \{m_{i,j}\}} P_i,$$

Huaxin Lin Department of Mathematics UnivSimple C^* -algebras of generalized tracial ran

911– 2012, Fields Institute Joint work with (

$$\begin{array}{l} D_{X,k,\{X_j\},\{m_j\}} = \\ \{f \in C(X.M_k) : f(x) \in B_j \quad \text{for all } x \in X_j, 1 \leq j \leq n\}. \end{array}$$

We say C is a generalized dimension drop algebra if C has the form

$$C = \bigoplus_{i=1}^{N} P_i D_{X_i, k(i), \{X_{i,j}\}, \{m_{i,j}\}} P_i,$$

where $P_i \in D_{X_i,k(i),\{X_{i,j}\},\{m_{i,j}\}}$ is a projection,

$$\begin{array}{l} D_{X,k,\{X_j\},\{m_j\}} = \\ \{f \in C(X.M_k) : f(x) \in B_j \quad \text{for all } x \in X_j, 1 \leq j \leq n\}. \end{array}$$

We say C is a generalized dimension drop algebra if C has the form

$$C = \bigoplus_{i=1}^{N} P_i D_{X_i, k(i), \{X_{i,j}\}, \{m_{i,j}\}} P_i,$$

where $P_i \in D_{X_i,k(i),\{X_{i,j}\},\{m_{i,j}\}}$ is a projection, and where X_i is locally Euclidean (actually we allow much more general spaces).

(L-2010) Let A be a unital inductive limit of generalized dimension drop algebras.

(L-2010) Let A be a unital inductive limit of generalized dimension drop algebras. Then $TR(A \otimes Q) \leq 1$.

(L-2010) Let A be a unital inductive limit of generalized dimension drop algebras. Then $TR(A \otimes Q) \leq 1$.

Theorem

Let A and B be two unital inductive limits of generalized dimension drop algebras with no dimension growth. Then $A \cong B$ if and only if

 $\operatorname{Ell}(A) = \operatorname{Ell}(B).$

911– 2012. Fields Institute Joint work with (

But there are amenable simple C^* -algebras with weakly unperforated $K_0(A)$ which are not rationally Riesz.

But there are amenable simple C^* -algebras with weakly unperforated $K_0(A)$ which are not rationally Riesz. There are amenable simple C^* -algebras that the map $r_A : T(A) \to S_{[1_A]}(K_0(A))$ do not preserve the extremal points.

Definition

Let F_1 and F_2 be two finite dimensional C^* -algebras.

Definition

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$.

Definition

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$. Put

$$A = A(F_1, F_2, \phi_0, \phi_1) = \\ \{(f,g) \in C([0,1], F_2) \oplus F_1 : f(0) = \phi_0(g) \text{ and } f(1) = \phi_1(g)\}.$$

Definition

Let F_1 and F_2 be two finite dimensional C^* -algebras. Suppose that there are two unital homomorphisms $\phi_0, \phi_1 : F_1 \to F_2$. Put

$$A = A(F_1, F_2, \phi_0, \phi_1) =$$

$$f(f, g) \in C([0, 1], F_2) \oplus F_1 : f(0) = \phi_0(g) \text{ and } f(1) = \phi_1(g) \}.$$

Denote by \mathcal{J}_1 the class of all unital *C**-algebras of the form $A = A(F_1, F_2, \phi_0, \phi_1)$.

Let A be a unital simple C^* -algebra.

Huaxin Lin Department of Mathematics Univ ${
m Simple}\ C^*$ -algebras of generalized tracial ran

Let A be a unital simple C*-algebra. We write $GTR(A) \le 1$ if the following hold:

```
Let A be a unital simple C*-algebra. We write GTR(A) \le 1 if the following hold:
Let \epsilon > 0, let a \in A_+ \setminus \{0\}
```

Let A be a unital simple C*-algebra. We write $GTR(A) \leq 1$ if the following hold: Let $\epsilon > 0$, let $a \in A_+ \setminus \{0\}$ and let $\mathcal{F} \subset A$ be a finite subset.

Let A be a unital simple C*-algebra. We write $GTR(A) \leq 1$ if the following hold: Let $\epsilon > 0$, let $a \in A_+ \setminus \{0\}$ and let $\mathcal{F} \subset A$ be a finite subset. There exists

a projection $p \in A$ and a C^* -subalgebra $C \in \mathcal{J}_1$ with $K_1(C) = \{0\}$

Let A be a unital simple C*-algebra. We write $GTR(A) \leq 1$ if the following hold: Let $\epsilon > 0$, let $a \in A_+ \setminus \{0\}$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a projection $p \in A$ and a C*-subalgebra $C \in \mathcal{J}_1$ with $K_1(C) = \{0\}$ and with $1_C = p$ such that

Let A be a unital simple C*-algebra. We write $GTR(A) \leq 1$ if the following hold: Let $\epsilon > 0$, let $a \in A_+ \setminus \{0\}$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a projection $p \in A$ and a C*-subalgebra $C \in \mathcal{J}_1$ with $K_1(C) = \{0\}$ and with $1_C = p$ such that

$$\|xp - px\| < \epsilon \text{ for all } x \in \mathcal{F},$$
 (e0.2)

Let A be a unital simple C*-algebra. We write $GTR(A) \leq 1$ if the following hold: Let $\epsilon > 0$, let $a \in A_+ \setminus \{0\}$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a projection $p \in A$ and a C*-subalgebra $C \in \mathcal{J}_1$ with $K_1(C) = \{0\}$ and with $1_C = p$ such that

$$||xp - px|| < \epsilon \text{ for all } x \in \mathcal{F},$$
 (e0.2)

 $\operatorname{dist}(pxp, C) < \epsilon \text{ for all } x \in \mathcal{F} \text{ and}$ (e0.3)

Let A be a unital simple C*-algebra. We write $GTR(A) \leq 1$ if the following hold: Let $\epsilon > 0$, let $a \in A_+ \setminus \{0\}$ and let $\mathcal{F} \subset A$ be a finite subset. There exists a projection $p \in A$ and a C*-subalgebra $C \in \mathcal{J}_1$ with $K_1(C) = \{0\}$ and with $1_C = p$ such that

$$\|xp - px\| < \epsilon \text{ for all } x \in \mathcal{F}, \qquad (e 0.2)$$

$$\operatorname{dist}(pxp, C) < \epsilon \text{ for all } x \in \mathcal{F} \text{ and}$$
 (e0.3)

$$1-p \lesssim a.$$
 (e0.4)

911– 2012. Fields Institute Joint work with (

Let A be a unital simple C^* -algebra with $GTR(A) \leq 1$.

Let A be a unital simple C^{*}-algebra with $GTR(A) \leq 1$. Then either A is an inductive limit of unital C^{*}-algebras in \mathcal{J}_1 or it has the property (SP).

Let A be a unital simple C^{*}-algebra with $GTR(A) \leq 1$. Then either A is an inductive limit of unital C^{*}-algebras in \mathcal{J}_1 or it has the property (SP).

Theorem

Let A be a unital simple C^* -algebra with $GTR(A) \leq 1$.

Let A be a unital simple C^{*}-algebra with $GTR(A) \leq 1$. Then either A is an inductive limit of unital C^{*}-algebras in \mathcal{J}_1 or it has the property (SP).

Theorem

Let A be a unital simple C^{*}-algebra with $GTR(A) \leq 1$. Then A has stable rank one.

Let A be a unital simple C^{*}-algebra with $GTR(A) \leq 1$. Then either A is an inductive limit of unital C^{*}-algebras in \mathcal{J}_1 or it has the property (SP).

Theorem

Let A be a unital simple C^{*}-algebra with $GTR(A) \leq 1$. Then A has stable rank one.

Theorem

Let A be a unital simple C^* -algebra with $GTR(A) \leq 1$.

Let A be a unital simple C^{*}-algebra with $GTR(A) \leq 1$. Then either A is an inductive limit of unital C^{*}-algebras in \mathcal{J}_1 or it has the property (SP).

Theorem

Let A be a unital simple C^{*}-algebra with $GTR(A) \leq 1$. Then A has stable rank one.

911-2012 Fields Institute Joint work

Theorem

Let A be a unital simple C^{*}-algebra with $GTR(A) \leq 1$. Then, for any projection $p \in A$, $GTR(pAp) \leq 1$.

Let A be a unital simple C^* -algebra with $GTR(A) \leq 1$.

Let A be a unital simple C*-algebra with $GTR(A) \leq 1$. Then A has strictly comparison for positive elements

Let A be a unital simple C*-algebra with $GTR(A) \le 1$. Then A has strictly comparison for positive elements and $K_0(A)$ is weakly unperforated.

Let A be a unital simple C*-algebra with $GTR(A) \le 1$. Then A has strictly comparison for positive elements and $K_0(A)$ is weakly unperforated.

Theorem

Let A be a unital separable amenable simple C*-algebra with $GTR(A) \leq 1$.

Let A be a unital simple C*-algebra with $GTR(A) \le 1$. Then A has strictly comparison for positive elements and $K_0(A)$ is weakly unperforated.

Theorem

Let A be a unital separable amenable simple C*-algebra with $GTR(A) \leq 1$. Then A is \mathcal{Z} -stable.

Let A be a unital simple C*-algebra with $GTR(A) \le 1$. Then A has strictly comparison for positive elements and $K_0(A)$ is weakly unperforated.

Theorem

Let A be a unital separable amenable simple C*-algebra with $GTR(A) \leq 1$. Then A is \mathcal{Z} -stable.

Lemma

Let A be a unital simple C^* -algebra with $GTR(A) \leq 1$

Let A be a unital simple C*-algebra with $GTR(A) \le 1$. Then A has strictly comparison for positive elements and $K_0(A)$ is weakly unperforated.

Theorem

Let A be a unital separable amenable simple C*-algebra with $GTR(A) \leq 1$. Then A is \mathcal{Z} -stable.

Lemma

Let A be a unital simple C^{*}-algebra with $GTR(A) \le 1$ and let $B = A \otimes U$,

Let A be a unital simple C^{*}-algebra with $GTR(A) \leq 1$. Then A has strictly comparison for positive elements and $K_0(A)$ is weakly unperforated.

Theorem

Let A be a unital separable amenable simple C*-algebra with $GTR(A) \leq 1$. Then A is \mathcal{Z} -stable.

Lemma

Let A be a unital simple C^* -algebra with $GTR(A) \leq 1$ and let $B = A \otimes U$, where U is a UHF-algebra with infinite type and let $u \in U_0(B).$

34

Let A be a unital simple C*-algebra with $GTR(A) \le 1$. Then A has strictly comparison for positive elements and $K_0(A)$ is weakly unperforated.

Theorem

Let A be a unital separable amenable simple C*-algebra with $GTR(A) \leq 1$. Then A is \mathcal{Z} -stable.

Lemma

Let A be a unital simple C*-algebra with $GTR(A) \le 1$ and let $B = A \otimes U$, where U is a UHF-algebra with infinite type and let $u \in U_0(B)$. Then (i) U(B)/CU(B) is torsion free and divisible;

Let A be a unital simple C*-algebra with $GTR(A) \le 1$. Then A has strictly comparison for positive elements and $K_0(A)$ is weakly unperforated.

Theorem

Let A be a unital separable amenable simple C*-algebra with $GTR(A) \leq 1$. Then A is \mathcal{Z} -stable.

Lemma

Let A be a unital simple C*-algebra with $GTR(A) \le 1$ and let $B = A \otimes U$, where U is a UHF-algebra with infinite type and let $u \in U_0(B)$. Then (i) U(B)/CU(B) is torsion free and divisible; (ii) If $u, v \in U(B)$ with $cel((u^*)^k v^k) \le L$ for some integer k > 0,

Let A be a unital simple C*-algebra with $GTR(A) \le 1$. Then A has strictly comparison for positive elements and $K_0(A)$ is weakly unperforated.

Theorem

Let A be a unital separable amenable simple C*-algebra with $GTR(A) \leq 1$. Then A is \mathcal{Z} -stable.

Lemma

Let A be a unital simple C*-algebra with $GTR(A) \leq 1$ and let $B = A \otimes U$, where U is a UHF-algebra with infinite type and let $u \in U_0(B)$. Then (i) U(B)/CU(B) is torsion free and divisible; (ii) If $u, v \in U(B)$ with $cel((u^*)^k v^k) \leq L$ for some integer k > 0, then

 $\operatorname{cel}(u^*v) \leq 6\pi + L/k.$

(Gong-L-Niu) Let A_1 and B_1 be two unital separable amenable simple C^* -algebras.

(Gong-L-Niu) Let A_1 and B_1 be two unital separable amenable simple C^* -algebras. Let $A = A_1 \otimes U_1$ and $B = B_1 \otimes U_2$, where U_1 and U_2 are infinite dimensional UHF-algebras

(Gong-L-Niu) Let A_1 and B_1 be two unital separable amenable simple C^* -algebras. Let $A = A_1 \otimes U_1$ and $B = B_1 \otimes U_2$, where U_1 and U_2 are infinite dimensional UHF-algebras Suppose that $GTR(A) \leq 1$ and $GTR(B) \leq 1$ and both satisfy the UCT.

(Gong-L-Niu) Let A_1 and B_1 be two unital separable amenable simple C^* -algebras. Let $A = A_1 \otimes U_1$ and $B = B_1 \otimes U_2$, where U_1 and U_2 are infinite dimensional UHF-algebras Suppose that $GTR(A) \le 1$ and $GTR(B) \le 1$ and both satisfy the UCT. Then $A \cong B$ if and only if

(Gong-L-Niu) Let A_1 and B_1 be two unital separable amenable simple C^* -algebras. Let $A = A_1 \otimes U_1$ and $B = B_1 \otimes U_2$, where U_1 and U_2 are infinite dimensional UHF-algebras Suppose that $GTR(A) \le 1$ and $GTR(B) \le 1$ and both satisfy the UCT. Then $A \cong B$ if and only if

 $\operatorname{Ell}(A) \cong \operatorname{Ell}(B).$

We will use Winter's method again.

We will use Winter's method again. In order to have Winter's method work,

In order to have Winter's method work, one still need so-called "uniqueness" and "existence" theorems.

In order to have Winter's method work, one still need so-called "uniqueness" and "existence" theorems.

It requires much finer "uniqueness" and "existence" theorems.

In order to have Winter's method work, one still need so-called "uniqueness" and "existence" theorems.

It requires much finer "uniqueness" and "existence" theorems. . Approximate Unitary equivalence

In order to have Winter's method work, one still need so-called "uniqueness" and "existence" theorems.

It requires much finer "uniqueness" and "existence" theorems. .

Approximate Unitary equivalence

Let A and B be two unital C*-algebras and let $\phi_1, \phi_2 : A \to B$ be two unital monomorphisms.

In order to have Winter's method work, one still need so-called "uniqueness" and "existence" theorems.

It requires much finer "uniqueness" and "existence" theorems. .

Approximate Unitary equivalence

Let A and B be two unital C^{*}-algebras and let $\phi_1, \phi_2 : A \to B$ be two unital monomorphisms. We say ϕ_1 and ϕ_2 are approximately unitarily equivalent

In order to have Winter's method work, one still need so-called "uniqueness" and "existence" theorems.

It requires much finer "uniqueness" and "existence" theorems. .

Approximate Unitary equivalence

Let A and B be two unital C^{*}-algebras and let $\phi_1, \phi_2 : A \to B$ be two unital monomorphisms. We say ϕ_1 and ϕ_2 are approximately unitarily equivalent if there exists a sequence of unitaries $\{u_n\} \subset B$ such that

In order to have Winter's method work, one still need so-called "uniqueness" and "existence" theorems.

It requires much finer "uniqueness" and "existence" theorems. .

Approximate Unitary equivalence

Let A and B be two unital C^{*}-algebras and let $\phi_1, \phi_2 : A \to B$ be two unital monomorphisms. We say ϕ_1 and ϕ_2 are approximately unitarily equivalent if there exists a sequence of unitaries $\{u_n\} \subset B$ such that

$$\lim_{n\to\infty} u_n^*\phi_1(a)u_n = \phi_2(a) \text{ for all } a \in A.$$

Huaxin Lin Department of Mathematics Univ ${
m Simple}\ C^*$ -algebras of generalized tracial ran

Let A and B be two unital C*-algebras and let $\phi_1, \phi_2 : A \to B$ be two unital monomorphisms.

Let A and B be two unital C*-algebras and let $\phi_1, \phi_2 : A \to B$ be two unital monomorphisms. We say ϕ_1 and ϕ_2 are approximately unitarily equivalent

Let A and B be two unital C*-algebras and let $\phi_1, \phi_2 : A \to B$ be two unital monomorphisms. We say ϕ_1 and ϕ_2 are approximately unitarily equivalent if there exists a path of unitaries $\{u(t) : t \in [0, \infty)\} \subset B$ such that

Let A and B be two unital C*-algebras and let $\phi_1, \phi_2 : A \to B$ be two unital monomorphisms. We say ϕ_1 and ϕ_2 are approximately unitarily equivalent if there exists a path of unitaries $\{u(t) : t \in [0, \infty)\} \subset B$ such that

$$\lim_{t\to\infty} u(t)^*\phi_1(a)u(t) = \phi_2(a) \text{ for all } a \in A.$$

If ϕ_1, ϕ_2 are approximately unitarily equivalent,

If ϕ_1, ϕ_2 are approximately unitarily equivalent, then $[\phi_1] = [\phi_2]$ in $\mathit{KL}(A, B),$

If ϕ_1, ϕ_2 are approximately unitarily equivalent, then $[\phi_1] = [\phi_2]$ in $KL(A, B), (\phi_1)_T = (\phi_2)_T$ and

If ϕ_1 and ϕ_2 are asymptotically unitarily equivalent,

If ϕ_1 and ϕ_2 are asymptotically unitarily equivalent, then $[\phi_1] = [\phi_2]$ in KK(A, B),

If ϕ_1 and ϕ_2 are asymptotically unitarily equivalent, then $[\phi_1] = [\phi_2]$ in KK(A, B), $(\phi_1)_T = (\phi_2)_T$ and $\phi_1^{\ddagger} = \phi_2^{\ddagger}$ are the same.

If ϕ_1 and ϕ_2 are asymptotically unitarily equivalent, then $[\phi_1] = [\phi_2]$ in KK(A, B), $(\phi_1)_T = (\phi_2)_T$ and $\phi_1^{\ddagger} = \phi_2^{\ddagger}$ are the same. But there are more.

Let A and B be two unital C^* -algebras.

911-2012, Fields Institute Joint work with 0 / 34

Huaxin Lin Department of Mathematics UnivSimple C^* -algebras of generalized tracial ran

$$egin{aligned} &\mathcal{M}_{\phi,\psi}=\ &\{x\in C([0,1],B): x(0)=\phi(a) \ ext{ and } x(1)=\psi(a) \ ext{ for some } a\in A\}. \end{aligned}$$

911-2012, Fields Institute Joint work with 0 / 34

Huaxin Lin Department of Mathematics UnivSimple C^* -algebras of generalized tracial ran

$$egin{aligned} &\mathcal{M}_{\phi,\psi}=\ \{x\in\mathcal{C}([0,1],B):x(0)=\phi(a) \ ext{ and } x(1)=\psi(a) \ ext{ for some } a\in A\}. \end{aligned}$$

Thus one obtains an exact sequence:

$$0 o SB \stackrel{\imath}{ o} M_{\phi,\psi} \stackrel{\pi_0}{ o} A o 0,$$
 (e 0.5)

911- 2012, Fields Institute Joint work with 0 / 34

Huaxin Lin Department of Mathematics Univ ${
m Simple}\ C^*$ -algebras of generalized tracial ran

$$egin{aligned} &\mathcal{M}_{\phi,\psi}=\ \{x\in C([0,1],B): x(0)=\phi(a) \ ext{ and } x(1)=\psi(a) \ ext{ for some } a\in A\}. \end{aligned}$$

Thus one obtains an exact sequence:

$$0 o SB \stackrel{\imath}{ o} M_{\phi,\psi} \stackrel{\pi_0}{ o} A o 0,$$
 (e 0.5)

 $\pi_0: M_{\phi,\psi} \to A$ is identified with the point-evaluation at the point 0.

34

$$egin{aligned} &\mathcal{M}_{\phi,\psi}=\ \{x\in\mathcal{C}([0,1],B):x(0)=\phi(a) \ ext{ and } x(1)=\psi(a) \ ext{ for some } a\in\mathcal{A}\}. \end{aligned}$$

Thus one obtains an exact sequence:

$$0 o SB \stackrel{\imath}{ o} M_{\phi,\psi} \stackrel{\pi_0}{ o} A o 0,$$
 (e 0.5)

 $\pi_0: M_{\phi,\psi} \to A$ is identified with the point-evaluation at the point 0. Suppose that A is a separable amenable C*-algebra.

$$egin{aligned} &\mathcal{M}_{\phi,\psi}=\ \{x\in\mathcal{C}([0,1],B):x(0)=\phi(a) \ ext{ and } x(1)=\psi(a) \ ext{ for some } a\in\mathcal{A}\}. \end{aligned}$$

Thus one obtains an exact sequence:

$$0 o SB \stackrel{\imath}{ o} M_{\phi,\psi} \stackrel{\pi_0}{ o} A o 0,$$
 (e 0.5)

 $\pi_0: M_{\phi,\psi} \to A$ is identified with the point-evaluation at the point 0. Suppose that A is a separable amenable C*-algebra. Suppose that $[\phi] = [\psi]$ in KK(A, B).

$$egin{aligned} &\mathcal{M}_{\phi,\psi}=\ \{x\in\mathcal{C}([0,1],B):x(0)=\phi(a) \ ext{ and } x(1)=\psi(a) \ ext{ for some } a\in\mathcal{A}\}. \end{aligned}$$

Thus one obtains an exact sequence:

$$0 o SB \stackrel{\imath}{ o} M_{\phi,\psi} \stackrel{\pi_0}{ o} A o 0,$$
 (e 0.5)

 $\pi_0: M_{\phi,\psi} \to A$ is identified with the point-evaluation at the point 0. Suppose that A is a separable amenable C*-algebra. Suppose that $[\phi] = [\psi]$ in KK(A, B). The mapping torus $M_{\phi,\psi}$ corresponds a trivial element in KK(A, B).

$$egin{aligned} &\mathcal{M}_{\phi,\psi}=\ \{x\in C([0,1],B): x(0)=\phi(a) \ ext{ and } x(1)=\psi(a) \ ext{ for some } a\in A\}. \end{aligned}$$

Thus one obtains an exact sequence:

$$0 o SB \stackrel{\imath}{ o} M_{\phi,\psi} \stackrel{\pi_0}{ o} A o 0,$$
 (e 0.5)

 $\pi_0: M_{\phi,\psi} \to A$ is identified with the point-evaluation at the point 0. Suppose that A is a separable amenable C*-algebra. Suppose that $[\phi] = [\psi]$ in KK(A, B). The mapping torus $M_{\phi,\psi}$ corresponds a trivial element in KK(A, B). It follows that there are two splitting short exact sequences:

$$0 \to K_1(B) \xrightarrow{\imath_*} K_0(M_{\phi,\psi}) \xrightarrow{(\pi_0)_*} K_0(A) \to 0 \text{ and} \qquad (e\,0.6)$$

$$0 \to K_0(B) \xrightarrow{\imath_*} K_1(M_{\phi,\psi}) \xrightarrow{(\pi_0)_*} K_1(A) \to 0.$$
 (e 0.7)

Suppose that $T(B) \neq \emptyset$.

Huaxin Lin Department of Mathematics Univ ${
m Simple}\,\,C^*$ -algebras of generalized tracial ranl

Suppose that $T(B) \neq \emptyset$. Let $u \in M_l(M_{\phi,\psi})$ be a unitary which is a piecewise smooth function on [0, 1].

Suppose that $T(B) \neq \emptyset$. Let $u \in M_l(M_{\phi,\psi})$ be a unitary which is a piecewise smooth function on [0, 1]. For each $\tau \in T(B)$, we denote by τ the trace $\tau \otimes Tr$ on $M_l(B)$,

Suppose that $T(B) \neq \emptyset$. Let $u \in M_l(M_{\phi,\psi})$ be a unitary which is a piecewise smooth function on [0, 1]. For each $\tau \in T(B)$, we denote by τ the trace $\tau \otimes Tr$ on $M_l(B)$, where Tr is the standard trace on M_l .

Suppose that $T(B) \neq \emptyset$. Let $u \in M_l(M_{\phi,\psi})$ be a unitary which is a piecewise smooth function on [0,1]. For each $\tau \in T(B)$, we denote by τ the trace $\tau \otimes Tr$ on $M_l(B)$, where Tr is the standard trace on M_l . Define

$$R_{\phi,\psi}(u)(\tau) = \frac{1}{2\pi i} \int_0^1 \tau(\frac{du(t)}{dt}u(t)^*) dt.$$
 (e0.8)

34

Suppose that $T(B) \neq \emptyset$. Let $u \in M_l(M_{\phi,\psi})$ be a unitary which is a piecewise smooth function on [0,1]. For each $\tau \in T(B)$, we denote by τ the trace $\tau \otimes Tr$ on $M_l(B)$, where Tr is the standard trace on M_l . Define

$$R_{\phi,\psi}(u)(\tau) = \frac{1}{2\pi i} \int_0^1 \tau(\frac{du(t)}{dt}u(t)^*) dt.$$
 (e0.8)

It is easy to see that $R_{\phi,\psi}(u)$ has real value. If

 $\tau(\phi(a)) = \tau(\psi(a))$ for all $a \in A$ and $\tau \in T(B)$,

Definition

Suppose that $T(B) \neq \emptyset$. Let $u \in M_l(M_{\phi,\psi})$ be a unitary which is a piecewise smooth function on [0,1]. For each $\tau \in T(B)$, we denote by τ the trace $\tau \otimes Tr$ on $M_l(B)$, where Tr is the standard trace on M_l . Define

$$R_{\phi,\psi}(u)(\tau) = \frac{1}{2\pi i} \int_0^1 \tau(\frac{du(t)}{dt}u(t)^*) dt.$$
 (e0.8)

It is easy to see that $R_{\phi,\psi}(u)$ has real value. If

$$\tau(\phi(a)) = \tau(\psi(a))$$
 for all $a \in A$ and $\tau \in T(B)$, (e0.9)

then there exists a homomorphism

Definition

Suppose that $T(B) \neq \emptyset$. Let $u \in M_l(M_{\phi,\psi})$ be a unitary which is a piecewise smooth function on [0,1]. For each $\tau \in T(B)$, we denote by τ the trace $\tau \otimes Tr$ on $M_l(B)$, where Tr is the standard trace on M_l . Define

$$R_{\phi,\psi}(u)(\tau) = \frac{1}{2\pi i} \int_0^1 \tau(\frac{du(t)}{dt}u(t)^*) dt.$$
 (e0.8)

It is easy to see that $R_{\phi,\psi}(u)$ has real value. If

$$\tau(\phi(a)) = \tau(\psi(a))$$
 for all $a \in A$ and $\tau \in T(B)$, (e0.9)

then there exists a homomorphism

$$R_{\phi,\psi}: K_1(M_{\phi,\psi}) \to Aff(T(B))$$

defined by

911-2012, Fields Institute Joint work with (

Definition

Suppose that $T(B) \neq \emptyset$. Let $u \in M_l(M_{\phi,\psi})$ be a unitary which is a piecewise smooth function on [0,1]. For each $\tau \in T(B)$, we denote by τ the trace $\tau \otimes Tr$ on $M_l(B)$, where Tr is the standard trace on M_l . Define

$$R_{\phi,\psi}(u)(\tau) = \frac{1}{2\pi i} \int_0^1 \tau(\frac{du(t)}{dt}u(t)^*) dt.$$
 (e0.8)

It is easy to see that $R_{\phi,\psi}(u)$ has real value. If

$$au(\phi(a)) = au(\psi(a)) ext{ for all } a \in A ext{ and } au \in T(B), ext{ (e0.9)}$$

then there exists a homomorphism

$$R_{\phi,\psi}: K_1(M_{\phi,\psi}) \to Aff(T(B))$$

defined by

$$\mathcal{R}_{\phi,\psi}([u])(au)=rac{1}{2\pi i}\int_0^1 au(rac{du(t)}{dt}u(t)^*)dt.$$

Huaxin Lin Department of Mathematics UnivSimple \mathcal{C}^* -algebras of generalized tracial rar

If p is a projection in $M_l(B)$ for some integer $l \ge 1$,

Huaxin Lin Department of Mathematics Univ ${
m Simple}\ C^*$ -algebras of generalized tracial ran

If p is a projection in $M_l(B)$ for some integer $l \ge 1$, one has $\iota_*([p]) = [u]$,

$$u(t) = e^{2\pi i t} p + (1-p)$$
 for $t \in [0,1]$.

$$u(t) = e^{2\pi i t} p + (1 - p)$$
 for $t \in [0, 1]$.

It follows that

$$R_{\phi,\psi}(\imath_*([p]))(\tau) = \tau(p)$$
 for all $\tau \in T(B)$.

$$u(t) = e^{2\pi i t} p + (1-p)$$
 for $t \in [0,1]$.

It follows that

$$R_{\phi,\psi}(\imath_*([p]))(au) = au(p)$$
 for all $au \in T(B)$.

In other words,

$$R_{\phi,\psi}(\iota_*([p])) = \rho_B([p]).$$

$$u(t) = e^{2\pi i t} p + (1-p)$$
 for $t \in [0,1]$.

It follows that

$$R_{\phi,\psi}(\imath_*([p]))(au) = au(p)$$
 for all $au \in T(B)$.

In other words,

$$R_{\phi,\psi}(\imath_*([p])) =
ho_B([p]).$$

Thus one has the following: diagram commutes:

$$u(t) = e^{2\pi i t} p + (1-p)$$
 for $t \in [0,1]$.

It follows that

$$R_{\phi,\psi}(\imath_*([p]))(au) = au(p)$$
 for all $au \in T(B)$.

In other words,

$$R_{\phi,\psi}(\imath_*([p])) =
ho_B([p]).$$

Thus one has the following: diagram commutes:

$$egin{array}{ccc} {\cal K}_0(B) & \stackrel{\imath_*}{\longrightarrow} & {\cal K}_1(M_{\phi,\psi}) \ & & & \swarrow & R_{\phi,\psi} \end{array} \ & & Aff(T(B)) \end{array}$$

If $[\phi] = [\psi]$ in KK(A, B) and A satisfies the Universal Coefficient Theorem,

$$0 \to \underline{K}(SB) \xrightarrow{[i]} \underline{K}(M_{\phi,\psi}) \stackrel{[\pi_0]}{\rightleftharpoons} \underline{K}(A) \to 0.$$
 (e 0.10)

$$0 \to \underline{K}(SB) \xrightarrow{[i]} \underline{K}(M_{\phi,\psi}) \stackrel{[\pi_0]}{\rightleftharpoons} \underline{K}(A) \to 0.$$
 (e 0.10)

In other words, there is $\theta \in \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(M_{\phi,\psi}))$ such that $[\pi_0] \circ \theta = [\operatorname{id}_A]$.

$$0 \to \underline{K}(SB) \xrightarrow{[i]} \underline{K}(M_{\phi,\psi}) \stackrel{[\pi_0]}{\rightleftharpoons} \underline{K}(A) \to 0.$$
 (e 0.10)

In other words, there is $\theta \in \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(M_{\phi,\psi}))$ such that $[\pi_0] \circ \theta = [\operatorname{id}_A]$. In particular, one has a monomorphism $\theta|_{K_1(A)} : K_1(A) \to K_1(M_{\phi,\psi})$ such that $[\pi_0] \circ \theta|_{K_1(A)} = (\operatorname{id}_A)_{*1}$.

$$0 \to \underline{K}(SB) \xrightarrow{[i]} \underline{K}(M_{\phi,\psi}) \stackrel{[\pi_0]}{\rightleftharpoons} \underline{K}(A) \to 0.$$
 (e 0.10)

In other words, there is $\theta \in \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(M_{\phi,\psi}))$ such that $[\pi_0] \circ \theta = [\operatorname{id}_A]$. In particular, one has a monomorphism $\theta|_{K_1(A)} : K_1(A) \to K_1(M_{\phi,\psi})$ such that $[\pi_0] \circ \theta|_{K_1(A)} = (\operatorname{id}_A)_{*1}$. Thus, one may write

$$K_1(M_{\phi,\psi}) = K_0(B) \oplus K_1(A).$$
 (e0.11)

, Suppose also that $\tau \circ \phi = \tau \circ \psi$ for all $\tau \in T(A)$.

$$0 \to \underline{K}(SB) \stackrel{[i]}{\to} \underline{K}(M_{\phi,\psi}) \stackrel{[\pi_0]}{\rightleftharpoons} \underline{K}(A) \to 0.$$
 (e0.10)

In other words, there is $\theta \in \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(M_{\phi,\psi}))$ such that $[\pi_0] \circ \theta = [\operatorname{id}_A]$. In particular, one has a monomorphism $\theta|_{K_1(A)} : K_1(A) \to K_1(M_{\phi,\psi})$ such that $[\pi_0] \circ \theta|_{K_1(A)} = (\operatorname{id}_A)_{*1}$. Thus, one may write

$$\mathcal{K}_1(M_{\phi,\psi}) = \mathcal{K}_0(B) \oplus \mathcal{K}_1(A). \tag{e0.11}$$

, Suppose also that $\tau \circ \phi = \tau \circ \psi$ for all $\tau \in T(A)$. Then one obtains the homomorphism

$$R_{\phi,\psi} \circ \theta|_{K_1(A)} : K_1(A) \to Aff(T(B)).$$
 (e0.12)

We say a rotation related map vanishes,

We say a rotation related map vanishes, if there exists a such splitting map θ such that

$$R_{\phi,\psi}\circ heta|_{K_1(A)}=0.$$

We say a rotation related map vanishes, if there exists a such splitting map θ such that

$$R_{\phi,\psi}\circ\theta|_{\mathcal{K}_1(A)}=0.$$

Denote by \mathcal{R}_0 the set of those homomorphisms $\lambda \in \operatorname{Hom}(K_1(A), \operatorname{Aff}(\mathcal{T}(B)))$ for which there is a homomorphism $h: K_1(A) \to K_0(B)$ such that $\lambda = \rho_A \circ h$. It is a subgroup of $\operatorname{Hom}(K_1(A), \operatorname{Aff}(\mathcal{T}(B))).$ We say a rotation related map vanishes, if there exists a such splitting map θ such that

$$R_{\phi,\psi}\circ\theta|_{\mathcal{K}_1(\mathcal{A})}=0.$$

Denote by \mathcal{R}_0 the set of those homomorphisms $\lambda \in \operatorname{Hom}(\mathcal{K}_1(A), \operatorname{Aff}(\mathcal{T}(B)))$ for which there is a homomorphism $h: \mathcal{K}_1(A) \to \mathcal{K}_0(B)$ such that $\lambda = \rho_A \circ h$. It is a subgroup of $\operatorname{Hom}(\mathcal{K}_1(A), \operatorname{Aff}(\mathcal{T}(B)))$. There is a well-defined element $\overline{R}_{\phi,\psi} \in \operatorname{Hom}(\mathcal{K}_1(A), \operatorname{Aff}(\mathcal{T}(B)))/\mathcal{R}_0$ (which does not depend on the choices of θ). In particular, if $\overline{R}_{\phi,\psi} = 0$, there exists $\Theta \in \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(M_{\phi,\psi}))$ such that $[\pi_0] \circ \Theta = [\operatorname{id}_A]$ and

$$R_{\phi,\psi}\circ\Theta=0.$$

When $\overline{R}_{\phi,\psi} = 0$, $\theta(K_1(A)) \in \ker R_{\phi,\psi}$ for some θ above.

In particular, if $\overline{R}_{\phi,\psi} = 0$, there exists $\Theta \in \operatorname{Hom}_{\Lambda}(\underline{K}(A), \underline{K}(M_{\phi,\psi}))$ such that $[\pi_0] \circ \Theta = [\operatorname{id}_A]$ and

$$R_{\phi,\psi}\circ\Theta=0.$$

When $\overline{R}_{\phi,\psi} = 0$, $\theta(K_1(A)) \in \ker R_{\phi,\psi}$ for some θ above. In this case θ also gives the following:

$$\ker R_{\phi,\psi} = \ker \rho_B \oplus K_1(A).$$

(Gong–L–Niu–2012) Let A_1 and B be two unital separable simple amenable C^{*}-algebras which satisfy the UCT.

(Gong–L–Niu—2012) Let A_1 and B be two unital separable simple amenable C*-algebras which satisfy the UCT. Let $A = A_1 \otimes U$ for some infinite dimensional UHF-algebra U such that $GTR(A) \leq 1$.

(Gong-L-Niu—2012) Let A_1 and B be two unital separable simple amenable C*-algebras which satisfy the UCT. Let $A = A_1 \otimes U$ for some infinite dimensional UHF-algebra U such that $GTR(A) \leq 1$. Suppose that $\phi, \psi : A \rightarrow B$ are two unital monomorphisms.

$$[\phi] = [\psi] \text{ in } KK(A, B), \qquad (e0.13)$$

$$[\phi] = [\psi] \text{ in } KK(A, B), \qquad (e0.13)$$

$$\phi_{\mathcal{T}} = \psi_{\mathcal{T}}, \qquad (e\,0.14)$$

$$[\phi] = [\psi] \text{ in } KK(A, B), \qquad (e0.13)$$

$$\phi_{\mathcal{T}} = \psi_{\mathcal{T}}, \qquad (e\,0.14)$$

$$\phi^{\ddagger} = \psi^{\ddagger}$$
 and (e0.15)

$$[\phi] = [\psi] \text{ in } KK(A, B), \qquad (e0.13)$$

$$\phi_{\mathcal{T}} = \psi_{\mathcal{T}}, \qquad (e\,0.14)$$

$$\phi^{\ddagger} = \psi^{\ddagger}$$
 and (e0.15)

$$\overline{R_{\phi,\psi}} = 0. \tag{e0.16}$$

Let A and B be two unital amenable separable C^* -algebras with stable rank one.

Let A and B be two unital amenable separable C^* -algebras with stable rank one. Let $\kappa \in KK(A, B)$ such that $\kappa([1_A]) = [1_B]$

Let A and B be two unital amenable separable C^* -algebras with stable rank one. Let $\kappa \in KK(A, B)$ such that $\kappa([1_A]) = [1_B]$ and $\kappa(K_0(A)_+ \setminus \{0\}) \subset K_0(B)_+ \setminus \{0\}.$

Let *A* and *B* be two unital amenable separable *C**-algebras with stable rank one. Let $\kappa \in KK(A, B)$ such that $\kappa([1_A]) = [1_B]$ and $\kappa(K_0(A)_+ \setminus \{0\}) \subset K_0(B)_+ \setminus \{0\}$. $\gamma : T(B) \to T(A)$ be an affine continuous map Let A and B be two unital amenable separable C^* -algebras with stable rank one. Let $\kappa \in KK(A, B)$ such that $\kappa([1_A]) = [1_B]$ and $\kappa(K_0(A)_+ \setminus \{0\}) \subset K_0(B)_+ \setminus \{0\}$. $\gamma : T(B) \to T(A)$ be an affine continuous map and $\lambda : U(A)/CU(A) \to U(B)/CU(B)$ be a continuous homomorphism. Let A and B be two unital amenable separable C^* -algebras with stable rank one. Let $\kappa \in KK(A, B)$ such that $\kappa([1_A]) = [1_B]$ and $\kappa(K_0(A)_+ \setminus \{0\}) \subset K_0(B)_+ \setminus \{0\}$. $\gamma : T(B) \to T(A)$ be an affine continuous map and $\lambda : U(A)/CU(A) \to U(B)/CU(B)$ be a continuous homomorphism. We say κ, γ and λ are compatible, Let A and B be two unital amenable separable C^* -algebras with stable rank one. Let $\kappa \in KK(A, B)$ such that $\kappa([1_A]) = [1_B]$ and $\kappa(K_0(A)_+ \setminus \{0\}) \subset K_0(B)_+ \setminus \{0\}$. $\gamma : T(B) \to T(A)$ be an affine continuous map and $\lambda : U(A)/CU(A) \to U(B)/CU(B)$ be a continuous homomorphism. We say κ, γ and λ are compatible, if, for any $x \in K_0(A)$, $r_B(\tau)(\kappa(x)) = r_A(\gamma(\tau))(x)$ for all $\tau \in T(B)$

Theorem

Let A_1 and B_1 be unital separable amenable simple C^* -algebras which satisfies the UCT,

Theorem

Let A_1 and B_1 be unital separable amenable simple C^* -algebras which satisfies the UCT, let $A = A_1 \otimes U_1$ and $B = B_1 \otimes U_2$,

Theorem

Let A_1 and B_1 be unital separable amenable simple C^* -algebras which satisfies the UCT, let $A = A_1 \otimes U_1$ and $B = B_1 \otimes U_2$, where U_1 and U_2 are two infinite dimensional UHF-algebras.

Theorem

Let A_1 and B_1 be unital separable amenable simple C^* -algebras which satisfies the UCT, let $A = A_1 \otimes U_1$ and $B = B_1 \otimes U_2$, where U_1 and U_2 are two infinite dimensional UHF-algebras. Suppose that $GTR(A) \le 1$ and $GTR(B) \le 1$.

Theorem

Let A_1 and B_1 be unital separable amenable simple C^* -algebras which satisfies the UCT, let $A = A_1 \otimes U_1$ and $B = B_1 \otimes U_2$, where U_1 and U_2 are two infinite dimensional UHF-algebras. Suppose that $GTR(A) \leq 1$ and $GTR(B) \leq 1$. Suppose also that $(\kappa, \lambda, \gamma)$ is a compatible triple as above.

Theorem

Let A_1 and B_1 be unital separable amenable simple C^* -algebras which satisfies the UCT, let $A = A_1 \otimes U_1$ and $B = B_1 \otimes U_2$, where U_1 and U_2 are two infinite dimensional UHF-algebras. Suppose that $GTR(A) \leq 1$ and $GTR(B) \leq 1$. Suppose also that $(\kappa, \lambda, \gamma)$ is a compatible triple as above. Then there exists a unital monomorphism $\phi : A \to B$ such that $([\phi], \phi_T, \phi^{\ddagger}) = (\kappa, \lambda, \gamma)$.

Given a unital monomorphism $\phi : A \rightarrow B$

Given a unital monomorphism $\phi : A \to B$ and given an element $R \in \operatorname{Hom}(K_1(A), \overline{\rho_B(K_0(B))})/\mathcal{R}_0.$

Given a unital monomorphism $\phi : A \to B$ and given an element $R \in \operatorname{Hom}(K_1(A), \overline{\rho_B(K_0(B))})/\mathcal{R}_0$. There exists a unital monomorphism $\psi : A \to B$ such that

Given a unital monomorphism $\phi : A \to B$ and given an element $R \in \operatorname{Hom}(K_1(A), \overline{\rho_B(K_0(B))})/\mathcal{R}_0$. There exists a unital monomorphism $\psi : A \to B$ such that

$$\overline{R_{\phi,\psi}}=R.$$

(Gong–L—Niu) Let A and B be two unital separable simple amenable \mathcal{Z} -stable C*-algebras which satisfy the UCT.

(Gong-L—Niu) Let A and B be two unital separable simple amenable \mathcal{Z} -stable C*-algebras which satisfy the UCT. Suppose that $GTR(A \otimes M_p) \leq 1$

(Gong–L—Niu) Let A and B be two unital separable simple amenable \mathcal{Z} -stable C^{*}-algebras which satisfy the UCT. Suppose that $GTR(A \otimes M_p) \leq 1$ and $GTR(B \otimes M_p) \leq 1$ for any UHF-algebra M_p of infinite type.

(Gong-L—Niu) Let A and B be two unital separable simple amenable \mathcal{Z} -stable C*-algebras which satisfy the UCT. Suppose that $GTR(A \otimes M_p) \leq 1$ and $GTR(B \otimes M_p) \leq 1$ for any UHF-algebra M_p of infinite type. Then $A \cong B$ are isomorphic if and only if

(Gong-L—Niu) Let A and B be two unital separable simple amenable \mathcal{Z} -stable C*-algebras which satisfy the UCT. Suppose that $GTR(A \otimes M_p) \leq 1$ and $GTR(B \otimes M_p) \leq 1$ for any UHF-algebra M_p of infinite type. Then $A \cong B$ are isomorphic if and only if

 $\operatorname{Ell}(A) \cong \operatorname{Ell}(B).$

For each countable partially ordered weakly unperforated group G_0 with order unit u,

For each countable partially ordered weakly unperforated group G_0 with order unit u, any countable abelian group G_1 ,

For each countable partially ordered weakly unperforated group G_0 with order unit u, any countable abelian group G_1 , any metrizable Choquet simplex Δ

For each countable partially ordered weakly unperforated group G_0 with order unit u, any countable abelian group G_1 , any metrizable Choquet simplex Δ and any surjective affine continuous map $r : \Delta \to S_u(G_0)$ (the state space of G_0),

For each countable partially ordered weakly unperforated group G_0 with order unit u, any countable abelian group G_1 , any metrizable Choquet simplex Δ and any surjective affine continuous map $r : \Delta \rightarrow S_u(G_0)$ (the state space of G_0), there exists a unital separable simple amenable C^* -algebra A which satisfies the UCT and $GTR(A \otimes M_p) \leq 1$ for all UHF-algebra M_p of infinite type such that

$${\rm Ell}(A) = (G_0, (G_0)_+, u, G_1, \Delta, r).$$

For each countable partially ordered weakly unperforated group G_0 with order unit u, any countable abelian group G_1 , any metrizable Choquet simplex Δ and any surjective affine continuous map $r : \Delta \rightarrow S_u(G_0)$ (the state space of G_0), there exists a unital separable simple amenable C^* -algebra A which satisfies the UCT and $GTR(A \otimes M_p) \leq 1$ for all UHF-algebra M_p of infinite type such that

$${\rm Ell}(A) = (G_0, (G_0)_+, u, G_1, \Delta, r).$$

Moreover, A can be constructed as an inductive limit of inductive limits of subhomogenuous C^* -algebras with dimension of base spaces no more than three

For each countable partially ordered weakly unperforated group G_0 with order unit u, any countable abelian group G_1 , any metrizable Choquet simplex Δ and any surjective affine continuous map $r : \Delta \rightarrow S_u(G_0)$ (the state space of G_0), there exists a unital separable simple amenable C^* -algebra A which satisfies the UCT and $GTR(A \otimes M_p) \leq 1$ for all UHF-algebra M_p of infinite type such that

$${\rm Ell}(A) = (G_0, (G_0)_+, u, G_1, \Delta, r).$$

Moreover, A can be constructed as an inductive limit of inductive limits of subhomogenuous C^* -algebras with dimension of base spaces no more than three and A is \mathcal{Z} -stable.

011-2012 Fields Institute Joint work