Generic properties of measure preserving actions

Julien Melleray

Institut Camille Jordan (Université de Lyon)

Workshop on applications to Operator Algebras Toronto, September 12, 2012

A *Polish space* is a topological space whose topology is induced by a complete separable metric.

A Polish group is a topological group whose topology is Polish.

(*) = (*) = (*)

-

A *Polish space* is a topological space whose topology is induced by a complete separable metric.

A Polish group is a topological group whose topology is Polish.

Examples

 The group Aut(X, μ) of measure-preserving bijections of a standard atomless probability space (X, μ) is a Polish group with the topology induced by the maps T → μ(T(A)ΔA) (where A ranges over all measurable subsets of X).

同 ト イヨ ト イヨ ト 二 ヨ

A *Polish space* is a topological space whose topology is induced by a complete separable metric.

A Polish group is a topological group whose topology is Polish.

Examples

- The group Aut(X, μ) of measure-preserving bijections of a standard atomless probability space (X, μ) is a Polish group with the topology induced by the maps T → μ(T(A)ΔA) (where A ranges over all measurable subsets of X).
- Another example that will come up is the group $L^0(\mathbb{T})$, which is the unitary group of the abelian von Neumann algebra $L^{\infty}(X, \mu)$.

Notation

 Γ will always denote a countable discrete group, and G will stand for $\operatorname{Aut}(X,\mu).$

≡ nar

Notation

 Γ will always denote a countable discrete group, and G will stand for $\operatorname{Aut}(X,\mu).$

Definition

The space of homomorphisms $\text{Hom}(\Gamma, G)$ is a closed subset of G^{Γ} , hence a Polish space.

We may think of Hom(Γ , G) as the space of actions of Γ on (X, μ).

-

Notation

 Γ will always denote a countable discrete group, and G will stand for $\operatorname{Aut}(X,\mu).$

Definition

The space of homomorphisms $\text{Hom}(\Gamma, G)$ is a closed subset of G^{Γ} , hence a Polish space.

We may think of Hom(Γ , G) as the space of actions of Γ on (X, μ).

Question

What does a typical element of Hom(Γ , G) look like? Which properties are *generic* in Hom(Γ , G)?

4月 5 4 日 5 4 日 5 一 日

The conjugacy action

Definition

G naturally acts on Hom(Γ , G) by conjugacy:

$$g \cdot \pi(\gamma) = g \pi(\gamma) g^{-1}$$

э.

The conjugacy action

Definition

G naturally acts on Hom (Γ, G) by conjugacy:

$$g \cdot \pi(\gamma) = g \pi(\gamma) g^{-1}$$
 .

 There exist dense conjugacy classes in Hom(Γ, G) for any countable Γ (Glasner–Thouvenot–Weiss 2004).

G naturally acts on $Hom(\Gamma, G)$ by conjugacy:

$$g \cdot \pi(\gamma) = g \pi(\gamma) g^{-1}$$
.

- There exist dense conjugacy classes in Hom(Γ, G) for any countable Γ (Glasner–Thouvenot–Weiss 2004).
- Hence any Baire-measurable, conjugacy-invariant subset of Hom(Γ, G) must be either meager or comeager.

向下 イヨト イヨト 三日

G naturally acts on Hom (Γ, G) by conjugacy:

 $g \cdot \pi(\gamma) = g \pi(\gamma) g^{-1}$.

- There exist dense conjugacy classes in Hom(Γ, G) for any countable Γ (Glasner–Thouvenot–Weiss 2004).
- Hence any Baire-measurable, conjugacy-invariant subset of Hom(Γ, G) must be either meager or comeager.
- There exists a comeager conjugacy class in Hom(Γ, G) whenever Γ is finite, and conjugacy classes are meager whenever Γ is amenable and infinite (Glasner–Weiss 2005).

G naturally acts on Hom (Γ, G) by conjugacy:

 $g \cdot \pi(\gamma) = g \pi(\gamma) g^{-1}$.

- There exist dense conjugacy classes in Hom(Γ, G) for any countable Γ (Glasner–Thouvenot–Weiss 2004).
- Hence any Baire-measurable, conjugacy-invariant subset of Hom(Γ, G) must be either meager or comeager.
- There exists a comeager conjugacy class in Hom(Γ, G) whenever Γ is finite, and conjugacy classes are meager whenever Γ is amenable and infinite (Glasner–Weiss 2005).
- It is an open problem whether conjugacy classes are meager for all infinite $\Gamma.$

Assume that $\Delta \leq \Gamma$ are countable groups. How do the generic properties in Hom (Δ, G) relate to the generic properties in Hom (Γ, G) ?

Assume that $\Delta \leq \Gamma$ are countable groups. How do the generic properties in Hom (Δ, G) relate to the generic properties in Hom (Γ, G) ?

Definition

Let $f: X \to Y$ be a continuous map. Say that f is *category-preserving* if $f^{-1}(O)$ is comeager in X whenever O is comeager in Y (e.g. any open map is category-preserving).

Assume that $\Delta \leq \Gamma$ are countable groups. How do the generic properties in Hom (Δ, G) relate to the generic properties in Hom (Γ, G) ?

Definition

Let $f: X \to Y$ be a continuous map. Say that f is *category-preserving* if $f^{-1}(O)$ is comeager in X whenever O is comeager in Y (e.g. any open map is category-preserving).

Question (revisited)

Assume that $\Delta \leq \Gamma$ are countable groups. When is the restriction map Res: Hom $(\Gamma, G) \rightarrow$ Hom (Δ, G) category-preserving?

Assume that $\Delta \leq \Gamma$ are countable groups. How do the generic properties in Hom (Δ, G) relate to the generic properties in Hom (Γ, G) ?

Definition

Let $f: X \to Y$ be a continuous map. Say that f is *category-preserving* if $f^{-1}(O)$ is comeager in X whenever O is comeager in Y (e.g. any open map is category-preserving).

Question (revisited)

Assume that $\Delta \leq \Gamma$ are countable groups. When is the restriction map Res: Hom $(\Gamma, G) \rightarrow$ Hom (Δ, G) category-preserving?

Note that the restriction map is obviously category-preserving when $\Delta = \mathbb{F}_n \leq \mathbb{F}_m = \Gamma$ (it is open).

Let X, Y be Polish spaces, and $f: X \to Y$ be a continuous, category-preserving map. Then the following are equivalent, for $A \subseteq X$ Baire-measurable:

• A is comeager in X.

-

Let X, Y be Polish spaces, and $f: X \to Y$ be a continuous, category-preserving map. Then the following are equivalent, for $A \subseteq X$ Baire-measurable:

- A is comeager in X.
- $\{y \in Y : A \text{ is comeager in } f^{-1}(\{y\})\}$ is comeager in Y.

-

Let X, Y be Polish spaces, and $f: X \to Y$ be a continuous, category-preserving map. Then the following are equivalent, for $A \subseteq X$ Baire-measurable:

- A is comeager in X.
- $\{y \in Y : A \text{ is comeager in } f^{-1}(\{y\})\}$ is comeager in Y.

In symbols:

$$(\forall^* x \in X \ A(x)) \Leftrightarrow (\forall^* y \in Y \ \forall^* z \in f^{-1}(\{y\}) \ A(z))$$
.

Let X, Y be Polish spaces, and $f: X \to Y$ be a continuous, category-preserving map. Then the following are equivalent, for $A \subseteq X$ Baire-measurable:

- A is comeager in X.
- $\{y \in Y : A \text{ is comeager in } f^{-1}(\{y\})\}$ is comeager in Y.

In symbols:

$$(\forall^* x \in X \ A(x)) \Leftrightarrow (\forall^* y \in Y \ \forall^* z \in f^{-1}(\{y\}) \ A(z))$$
.

The classical Kuratowski–Ulam theorem corresponds to the case where f is a projection map.

Theorem (Ageev 2003)

Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then a generic measure-preserving Δ -action extends to a *free* Γ -action.

向下 イヨト イヨト

-

Theorem (Ageev 2003)

Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then a generic measure-preserving Δ -action extends to a *free* Γ -action.

Corollary (equivalent reformulation of Ageev's theorem)

Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then the restriction map Res: Hom $(\Gamma, Aut(\mu)) \rightarrow Hom(\Delta, Aut(\mu))$ is category-preserving.

(国) (日) (日) (日)

Theorem (Ageev 2003)

Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then a generic measure-preserving Δ -action extends to a *free* Γ -action.

Corollary (equivalent reformulation of Ageev's theorem)

Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then the restriction map Res: Hom $(\Gamma, Aut(\mu)) \rightarrow Hom(\Delta, Aut(\mu))$ is category-preserving.

Thus, under the above assumptions on $\Delta \leq \Gamma$, whenever a generic Δ action satisfies some property (P), the restriction to Δ of a generic Γ -action also satisfies property (P).

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

Theorem (King 2000) The map ϕ_n : $\begin{cases} G \to G \\ g \mapsto g^n \end{cases}$ is category-preserving for all $n \ge 1$ (In particular, a generic element of G admits roots of all orders).

Theorem (King 2000) The map ϕ_n : $\begin{cases} G \to G \\ g \mapsto g^n \end{cases}$ is category-preserving for all $n \ge 1$ (In particular, a generic element of G admits roots of all orders).

At roughly the same time as Ageev, Tikhonov also obtained similar results (for instance the fact that the restriction map from $\text{Hom}(\mathbb{Z}^d, G)$ to $\text{Hom}(\mathbb{Z}, G)$ preserves category).

Theorem (King 2000) The map ϕ_n : $\begin{cases} G \to G \\ g \mapsto g^n \end{cases}$ is category-preserving for all $n \ge 1$ (In particular, a generic element of G admits roots of all orders).

At roughly the same time as Ageev, Tikhonov also obtained similar results (for instance the fact that the restriction map from $\text{Hom}(\mathbb{Z}^d, G)$ to $\text{Hom}(\mathbb{Z}, G)$ preserves category).

How far can these results be pushed?

-

Theorem (M.)

Let Γ be a countable abelian group and Δ be a *finitely generated* subgroup. Then the restriction map Res: Hom $(\Gamma, G) \rightarrow$ Hom (Δ, G) is category-preserving.

Theorem (M.)

Let Γ be a countable abelian group and Δ be a *finitely generated* subgroup. Then the restriction map Res: Hom $(\Gamma, G) \rightarrow$ Hom (Δ, G) is category-preserving.

Question

Can one remove the assumption that Δ is finitely generated in the previous theorem?

Theorem (M.)

Let Γ be a countable abelian group and Δ be a *finitely generated* subgroup. Then the restriction map Res: Hom $(\Gamma, G) \rightarrow$ Hom (Δ, G) is category-preserving.

Question

Can one remove the assumption that $\boldsymbol{\Delta}$ is finitely generated in the previous theorem?

O. Ageev has recently announced a negative answer.

Restrictions of measure-preserving actions IV

What about non-abelian groups?

э

What about non-abelian groups?

Observation (M.)

There exist a polycyclic group Γ and an infinite cyclic subgroup $\Delta \leq \Gamma$ such that a generic measure-preserving Δ -action does not extend to a measure-preserving Γ -action.

向下 イヨト イヨト 三日

What about non-abelian groups?

Observation (M.)

There exist a polycyclic group Γ and an infinite cyclic subgroup $\Delta \leq \Gamma$ such that a generic measure-preserving Δ -action does not extend to a measure-preserving Γ -action.

Previous examples of this phenomenon (where Γ was more complicated) were already known.

What about non-abelian groups?

Observation (M.)

There exist a polycyclic group Γ and an infinite cyclic subgroup $\Delta \leq \Gamma$ such that a generic measure-preserving Δ -action does not extend to a measure-preserving Γ -action.

Previous examples of this phenomenon (where Γ was more complicated) were already known.

The proof of the above observation depends on another result of King (1986): the closed subgroup generated by a generic element of G is maximal abelian; equivalently, the centralizer of a generic element g of G is equal to the closure of $\{g^n : n \in \mathbb{Z}\}$.

A new proof of King's result on centralizers of generic elements I.

Now we describe a simple proof of King's result on centralizers of generic elements (note: King's original result is actually stronger, as it applies to all elements of rank 1). The proof is extracted from the proof of a more general result in a joint work with T. Tsankov.

Now we describe a simple proof of King's result on centralizers of generic elements (note: King's original result is actually stronger, as it applies to all elements of rank 1). The proof is extracted from the proof of a more general result in a joint work with T. Tsankov.

Notation

For *H* a Polish group, we identify $Hom(\mathbb{Z}^2, H)$ with

$$\mathcal{C}(H) = \{(a, b) \in H \colon ab = ba\} \ .$$

For $h \in H C(h)$ denotes the centralizer of h.

Now we describe a simple proof of King's result on centralizers of generic elements (note: King's original result is actually stronger, as it applies to all elements of rank 1). The proof is extracted from the proof of a more general result in a joint work with T. Tsankov.

Notation

For *H* a Polish group, we identify $Hom(\mathbb{Z}^2, H)$ with

$$\mathcal{C}(H) = \{(a, b) \in H \colon ab = ba\} \ .$$

For $h \in H C(h)$ denotes the centralizer of h.

Lemma

Let *H* be a Polish group such that $\{(a, b) \in C(H) : b \in \overline{\langle a \rangle}\}$ is dense in C(H). Then the map $\pi : \begin{cases} C(H) \to H \\ (a, b) \mapsto a \end{cases}$ is category-preserving.

Lemma

Let *H* be a Polish group such that $\{(a, b) \in C(H) : b \in \overline{\langle a \rangle}\}$ is dense in C(H). Then the map $\pi : \begin{cases} C(H) \to H \\ (a, b) \mapsto a \end{cases}$ is category-preserving.

Lemma

Let *H* be a Polish group such that $\{(a, b) \in C(H) : b \in \overline{\langle a \rangle}\}$ is dense in C(H). Then the map $\pi : \begin{cases} C(H) \to H \\ (a, b) \mapsto a \end{cases}$ is category-preserving.

Proof.

Let A be a dense subset of H; enough to prove that $\pi^{-1}(A)$ is dense in $\mathcal{C}(H)$. So let O be nonempty open in $\mathcal{C}(H)$ and assume w.l.o.g that

$$O = \{(a, b) \in \mathcal{C}(\mathcal{H}) \colon a \in O_1 \land b \in O_2\}$$
.

御 オ オ ヨ オ ヨ オ ヨ う り つ つ

Lemma

Let *H* be a Polish group such that $\{(a, b) \in C(H) : b \in \overline{\langle a \rangle}\}$ is dense in C(H). Then the map $\pi : \begin{cases} C(H) \to H \\ (a, b) \mapsto a \end{cases}$ is category-preserving.

Proof.

Let A be a dense subset of H; enough to prove that $\pi^{-1}(A)$ is dense in $\mathcal{C}(H)$. So let O be nonempty open in $\mathcal{C}(H)$ and assume w.l.o.g that

$$O = \{(a, b) \in \mathcal{C}(H) \colon a \in O_1 \land b \in O_2\}$$
.

There exists $(a, b) \in O$ such that $b \in \overline{\langle a \rangle}$; hence there exists $a \in O_1$ and n such that $a^n \in O_2$. Fix such an n; restricting O_1 if necessary, we may assume $c \in O_1 \Rightarrow c^n \in O_2$.

Lemma

Let *H* be a Polish group such that $\{(a, b) \in C(H) : b \in \overline{\langle a \rangle}\}$ is dense in C(H). Then the map $\pi : \begin{cases} C(H) \to H \\ (a, b) \mapsto a \end{cases}$ is category-preserving.

Proof.

Let A be a dense subset of H; enough to prove that $\pi^{-1}(A)$ is dense in $\mathcal{C}(H)$. So let O be nonempty open in $\mathcal{C}(H)$ and assume w.l.o.g that

$$O = \{(a, b) \in \mathcal{C}(H) \colon a \in O_1 \land b \in O_2\}$$
.

There exists $(a, b) \in O$ such that $b \in \overline{\langle a \rangle}$; hence there exists $a \in O_1$ and n such that $a^n \in O_2$. Fix such an n; restricting O_1 if necessary, we may assume $c \in O_1 \Rightarrow c^n \in O_2$. Then pick $c \in O_1 \cap A$: we have $(c, c^n) \in O$ and $\pi(c, c^n) = c \in A$.

Theorem

Assume again that H is a Polish group such that $\{(a, b) \in \mathcal{C}(H) : b \in \overline{\langle a \rangle}\}$ is dense in $\mathcal{C}(H)$. Then the centralizer of a generic element h of H is equal to $\overline{\langle h \rangle}$.

Theorem

Assume again that H is a Polish group such that $\{(a, b) \in C(H) : b \in \overline{\langle a \rangle}\}$ is dense in C(H). Then the centralizer of a generic element h of H is equal to $\overline{\langle h \rangle}$.

Note that the assumption of this theorem is easily seen to be satisfied when $H = Aut(X, \mu)$.

Theorem

Assume again that H is a Polish group such that $\{(a, b) \in \mathcal{C}(H) : b \in \overline{\langle a \rangle}\}$ is dense in $\mathcal{C}(H)$. Then the centralizer of a generic element h of H is equal to $\overline{\langle h \rangle}$.

Note that the assumption of this theorem is easily seen to be satisfied when $H = Aut(X, \mu)$.

Proof.

We have $\forall^*(a, b) \in \mathcal{C}(H)$ $b \in \overline{\langle a \rangle}$. Applying the fact that $(a, b) \mapsto a$ is category-preserving from $\mathcal{C}(H)$ to H, we obtain

Theorem

Assume again that H is a Polish group such that $\{(a, b) \in \mathcal{C}(H) : b \in \overline{\langle a \rangle}\}$ is dense in $\mathcal{C}(H)$. Then the centralizer of a generic element h of H is equal to $\overline{\langle h \rangle}$.

Note that the assumption of this theorem is easily seen to be satisfied when $H = Aut(X, \mu)$.

Proof.

We have $\forall^*(a, b) \in \mathcal{C}(H)$ $b \in \overline{\langle a \rangle}$. Applying the fact that $(a, b) \mapsto a$ is category-preserving from $\mathcal{C}(H)$ to H, we obtain

$$\forall^* a \in H\left(\forall^* b \in \mathcal{C}(a) \ b \in \overline{\langle a \rangle}\right)$$
.

Theorem

Assume again that H is a Polish group such that $\{(a, b) \in C(H) : b \in \overline{\langle a \rangle}\}$ is dense in C(H). Then the centralizer of a generic element h of H is equal to $\overline{\langle h \rangle}$.

Note that the assumption of this theorem is easily seen to be satisfied when $H = Aut(X, \mu)$.

Proof.

We have $\forall^*(a, b) \in \mathcal{C}(H)$ $b \in \overline{\langle a \rangle}$. Applying the fact that $(a, b) \mapsto a$ is category-preserving from $\mathcal{C}(H)$ to H, we obtain

$$\forall^* a \in H\left(\forall^* b \in \mathcal{C}(a) \ b \in \overline{\langle a \rangle}\right)$$
.

Since $\overline{\langle a \rangle}$ is obviously closed in C(a), we get $C(a) = \overline{\langle a \rangle}$ for a generic $a \in H$.

A detour: separable von Neumann algebras.

The strategy of proof above is fairly flexible. As pointed out by my student F. Le Maître, it is easy to see the following.

-

Lemma

Let *M* be a separable von Neumann algebra. Then $\{(a, b) \in C(U(M)): b \in \langle a \rangle\}$ is dense in C(U(M)).

Lemma

Let *M* be a separable von Neumann algebra. Then $\{(a, b) \in C(U(M)): b \in \langle a \rangle\}$ is dense in C(U(M)).

Thus, a generic element in the unitary group of a separable von Neumann algebra always generates a maximal abelian subgroup.

伺 と く き と く き と

Lemma

Let *M* be a separable von Neumann algebra. Then $\{(a, b) \in C(U(M)): b \in \langle a \rangle\}$ is dense in C(U(M)).

Thus, a generic element in the unitary group of a separable von Neumann algebra always generates a maximal abelian subgroup.

Lemma

Let *M* be a separable, diffuse von Neumann algebra. Then any maximal abelian subalgebra of *M* is diffuse, so its unitary group is isomorphic to $L^0(X, \mu)$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ● ●

Lemma

Let *M* be a separable von Neumann algebra. Then $\{(a, b) \in C(U(M)): b \in \langle a \rangle\}$ is dense in C(U(M)).

Thus, a generic element in the unitary group of a separable von Neumann algebra always generates a maximal abelian subgroup.

Lemma

Let *M* be a separable, diffuse von Neumann algebra. Then any maximal abelian subalgebra of *M* is diffuse, so its unitary group is isomorphic to $L^0(X, \mu)$.

Of course, a maximal abelian subgroup of $\mathcal{U}(M)$ must be the unitary group of a masa.

To sum up:

Theorem (Le Maître)

Let *M* be a diffuse separable von Neumann algebra; a generic element of $\mathcal{U}(M)$ generates a closed subgroup which is maximal abelian and isomorphic to $L^0(X, \mu)$.

-

To sum up:

Theorem (Le Maître)

Let *M* be a diffuse separable von Neumann algebra; a generic element of $\mathcal{U}(M)$ generates a closed subgroup which is maximal abelian and isomorphic to $L^0(X, \mu)$.

The same result holds for $U(\ell_2)$; this was originally proved by Todor Tsankov and myself, but one can give a simpler proof based on the technique discussed above and the notion of extreme amenability.

同 ト イヨ ト イヨ ト 二 ヨ

Recall that a topological group H is *extremely amenable* if any continuous action of H on a compact space has a fixed point.

向 ト イヨ ト イヨ ト

-

Recall that a topological group H is *extremely amenable* if any continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)

Let Γ be a countable group, and H be a Polish group. Then

 $\{\pi \in \operatorname{Hom}(\Gamma, H) \colon \overline{\pi(\Gamma)} \text{ is extremely amenable}\}\$

is G_{δ} in Hom (Γ, H) .

Recall that a topological group H is *extremely amenable* if any continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)

Let Γ be a countable group, and H be a Polish group. Then

 $\{\pi \in \operatorname{Hom}(\Gamma, H) \colon \overline{\pi(\Gamma)} \text{ is extremely amenable}\}\$

is G_{δ} in Hom (Γ, H) .

Theorem (M.–Tsankov)

In both $Aut(X, \mu)$ and $U(\ell_2)$, a generic element generates an extremely amenable subgroup.

Recall that a topological group H is *extremely amenable* if any continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)

Let Γ be a countable group, and H be a Polish group. Then

 $\{\pi \in \mathsf{Hom}(\Gamma, H) \colon \overline{\pi(\Gamma)} \text{ is extremely amenable}\}\$

is G_{δ} in Hom (Γ, H) .

Theorem (M.–Tsankov)

In both $Aut(X, \mu)$ and $U(\ell_2)$, a generic element generates an extremely amenable subgroup.

Corollary (M.-Tsankov)

A generic element of $\mathcal{U}(\ell_2)$ generates a closed subgroup isomorphic to $L^0(X,\mu)$.

We saw that a generic element of $Aut(X, \mu)$ generates a closed subgroup which is maximal abelian and extremely amenable; similar ideas can also be used to proved that this subgroup is always generically monothetic.

向 ト イヨ ト イヨ ト

We saw that a generic element of $Aut(X, \mu)$ generates a closed subgroup which is maximal abelian and extremely amenable; similar ideas can also be used to proved that this subgroup is always generically monothetic.

More is kown:

Theorem (Solecki)

For a generic $g \in Aut(X, \mu)$, the closed subgroup generated by g is a continuous homomorphic image of $L^0(X, \mu)$, and contains an increasing chain of finite-dimensional tori whose union is dense.

同 ト イヨ ト イヨ ト 二 ヨ

We saw that a generic element of $Aut(X, \mu)$ generates a closed subgroup which is maximal abelian and extremely amenable; similar ideas can also be used to proved that this subgroup is always generically monothetic.

More is kown:

Theorem (Solecki)

For a generic $g \in Aut(X, \mu)$, the closed subgroup generated by g is a continuous homomorphic image of $L^0(X, \mu)$, and contains an increasing chain of finite-dimensional tori whose union is dense.

Question

Is it true that a generic element of $Aut(X, \mu)$ generates a closed subgroup isomorphic to $L^0(X, \mu)$?

「「「 (山) (山) (山)

We saw that a generic element of $Aut(X, \mu)$ generates a closed subgroup which is maximal abelian and extremely amenable; similar ideas can also be used to proved that this subgroup is always generically monothetic.

More is kown:

Theorem (Solecki)

For a generic $g \in Aut(X, \mu)$, the closed subgroup generated by g is a continuous homomorphic image of $L^0(X, \mu)$, and contains an increasing chain of finite-dimensional tori whose union is dense.

Question

Is it true that a generic element of $Aut(X, \mu)$ generates a closed subgroup isomorphic to $L^0(X, \mu)$?

Thank you for your attention!

(日本) (日本) (日本)