Generic properties of measure preserving actions

Julien Melleray

Institut Camille Jordan (Université de Lyon)

Workshop on applications to Operator Algebras Toronto, September 12, 2012

ADAMENTAL EL VIGO

A Polish space is a topological space whose topology is induced by a complete separable metric.

A Polish group is a topological group whose topology is Polish.

医毛囊 医牙骨下的

 η are **B**

A Polish space is a topological space whose topology is induced by a complete separable metric.

A Polish group is a topological group whose topology is Polish.

Examples

• The group $Aut(X, \mu)$ of measure-preserving bijections of a standard atomless probability space (X, μ) is a Polish group with the topology induced by the maps $T \mapsto \mu(T(A)\Delta A)$ (where A ranges over all measurable subsets of X).

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{AB}

A Polish space is a topological space whose topology is induced by a complete separable metric.

A Polish group is a topological group whose topology is Polish.

Examples

- The group $Aut(X, \mu)$ of measure-preserving bijections of a standard atomless probability space (X, μ) is a Polish group with the topology induced by the maps $T \mapsto \mu(T(A)\Delta A)$ (where A ranges over all measurable subsets of X).
- Another example that will come up is the group $L^0(\mathbb{T})$, which is the unitary group of the abelian von Neumann algebra $L^{\infty}(X,\mu)$.

Notation

Γ will always denote a countable discrete group, and G will stand for Aut (X, μ) .

 $4.171 +$

 $\left\{ \bigoplus_{k=1}^{\infty} \left| k \right| \in \mathbb{R} \right\}$, $\left\{ \bigoplus_{k=1}^{\infty} \left| k \right| \in \mathbb{R} \right\}$

 $E = \Omega Q$

Notation

Γ will always denote a countable discrete group, and G will stand for Aut (X, μ) .

Definition

The space of homomorphisms $\mathsf{Hom}(\Gamma,G)$ is a closed subset of G^Γ , hence a Polish space.

We may think of Hom(Γ , G) as the space of actions of Γ on (X,μ) .

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{AB}

Notation

Γ will always denote a countable discrete group, and G will stand for Aut (X, μ) .

Definition

The space of homomorphisms $\mathsf{Hom}(\Gamma,G)$ is a closed subset of G^Γ , hence a Polish space.

We may think of Hom(Γ , G) as the space of actions of Γ on (X,μ) .

Question

What does a typical element of Hom(Γ, G) look like? Which properties are generic in Hom(Γ, G)?

The conjugacy action

Definition

G naturally acts on Hom(Γ, G) by conjugacy:

$$
g\cdot \pi(\gamma)=g\pi(\gamma)g^{-1}\;.
$$

 \leftarrow \Box

Al H

ALEXALLY LE DAG

G naturally acts on Hom(Γ, G) by conjugacy:

$$
g\cdot \pi(\gamma)=g\pi(\gamma)g^{-1}.
$$

• There exist dense conjugacy classes in $Hom(\Gamma, G)$ for any countable Γ (Glasner–Thouvenot–Weiss 2004).

G naturally acts on Hom(Γ, G) by conjugacy:

 $g \cdot \pi(\gamma) = g \pi(\gamma) g^{-1} \;.$

- There exist dense conjugacy classes in $Hom(\Gamma, G)$ for any countable Γ (Glasner–Thouvenot–Weiss 2004).
- Hence any Baire-measurable, conjugacy-invariant subset of Hom(Γ, G) must be either meager or comeager.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}

G naturally acts on Hom(Γ, G) by conjugacy:

 $g \cdot \pi(\gamma) = g \pi(\gamma) g^{-1} \;.$

- There exist dense conjugacy classes in Hom(Γ, G) for any countable Γ (Glasner–Thouvenot–Weiss 2004).
- Hence any Baire-measurable, conjugacy-invariant subset of $Hom(\Gamma, G)$ must be either meager or comeager.
- There exists a comeager conjugacy class in $Hom(\Gamma, G)$ whenever Γ is finite, and conjugacy classes are meager whenever Γ is amenable and infinite (Glasner–Weiss 2005).

G naturally acts on Hom(Γ, G) by conjugacy:

 $g \cdot \pi(\gamma) = g \pi(\gamma) g^{-1} \;.$

- There exist dense conjugacy classes in Hom(Γ, G) for any countable Γ (Glasner–Thouvenot–Weiss 2004).
- Hence any Baire-measurable, conjugacy-invariant subset of $Hom(\Gamma, G)$ must be either meager or comeager.
- There exists a comeager conjugacy class in $Hom(\Gamma, G)$ whenever Γ is finite, and conjugacy classes are meager whenever Γ is amenable and infinite (Glasner–Weiss 2005).
- It is an open problem whether conjugacy classes are meager for all infinite Γ.

KORK EXTERNS OR A BY A GRA

Assume that $\Delta \leq \Gamma$ are countable groups. How do the generic properties in Hom(Δ , G) relate to the generic properties in Hom(Γ , G)?

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}

Assume that $\Delta \leq \Gamma$ are countable groups. How do the generic properties in Hom(Δ , G) relate to the generic properties in Hom(Γ , G)?

Definition

Let $f: X \to Y$ be a continuous map. Say that f is category-preserving if $f^{-1}(O)$ is comeager in X whenever O is comeager in $\,$ (e.g. any open map is category-preserving).

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{AB}

Assume that $\Delta \leq \Gamma$ are countable groups. How do the generic properties in Hom(Δ , G) relate to the generic properties in Hom(Γ , G)?

Definition

Let $f: X \to Y$ be a continuous map. Say that f is category-preserving if $f^{-1}(O)$ is comeager in X whenever O is comeager in $\,$ (e.g. any open map is category-preserving).

Question (revisited)

Assume that $\Delta \leq \Gamma$ are countable groups. When is the restriction map Res: Hom(Γ , G) \rightarrow Hom(Δ , G) category-preserving?

Assume that $\Delta \leq \Gamma$ are countable groups. How do the generic properties in Hom(Δ , G) relate to the generic properties in Hom(Γ , G)?

Definition

Let $f: X \to Y$ be a continuous map. Say that f is category-preserving if $f^{-1}(O)$ is comeager in X whenever O is comeager in $\,$ (e.g. any open map is category-preserving).

Question (revisited)

Assume that $\Delta \leq \Gamma$ are countable groups. When is the restriction map Res: Hom(Γ , G) \rightarrow Hom(Δ , G) category-preserving?

Note that the restriction map is obviously category-preserving when $\Delta = \mathbb{F}_n \leq \mathbb{F}_m = \Gamma$ (it is open).

KORK EXTERNS OR A BY A GRA

Let X, Y be Polish spaces, and $f: X \rightarrow Y$ be a continuous, category-preserving map. Then the following are equivalent, for $A \subseteq X$ Baire–measurable:

• A is comeager in X .

4 F + E + + E + + E + + O Q (+

Let X, Y be Polish spaces, and $f: X \rightarrow Y$ be a continuous, category-preserving map. Then the following are equivalent, for $A \subseteq X$ Baire–measurable:

- A is comeager in X .
- $\bullet \,\, \{y \in Y \colon A \text{ is comeager in } f^{-1}(\{y\})\}$ is comeager in $Y.$

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}

Let X, Y be Polish spaces, and $f: X \rightarrow Y$ be a continuous, category-preserving map. Then the following are equivalent, for $A \subseteq X$ Baire–measurable:

- A is comeager in X .
- $\bullet \,\, \{y \in Y \colon A \text{ is comeager in } f^{-1}(\{y\})\}$ is comeager in $Y.$

In symbols:

$$
(\forall^* x \in X \ A(x)) \Leftrightarrow (\forall^* y \in Y \ \forall^* z \in f^{-1}(\{y\}) \ A(z)) \ .
$$

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{AB}

Let X, Y be Polish spaces, and $f: X \rightarrow Y$ be a continuous, category-preserving map. Then the following are equivalent, for $A \subseteq X$ Baire–measurable:

- A is comeager in X .
- $\bullet \,\, \{y \in Y \colon A \text{ is comeager in } f^{-1}(\{y\})\}$ is comeager in $Y.$

In symbols:

$$
(\forall^* x \in X \ A(x)) \Leftrightarrow (\forall^* y \in Y \ \forall^* z \in f^{-1}(\{y\}) \ A(z)) \ .
$$

The classical Kuratowski–Ulam theorem corresponds to the case where f is a projection map.

Theorem (Ageev 2003)

Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then a generic measure-preserving ∆-action extends to a free Γ-action.

伺→ ィミ→ ィミ→ ニヨー のなべ

Theorem (Ageev 2003)

Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then a generic measure-preserving Δ -action extends to a free Γ -action.

Corollary (equivalent reformulation of Ageev's theorem)

Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then the restriction map Res: $Hom(\Gamma, Aut(\mu)) \to Hom(\Delta, Aut(\mu))$ is category-preserving.

 $\left\{ \bigcap_{i=1}^{n} x_i \in \mathbb{R} \mid x_i \in \mathbb{R} \right\}$, $\left\{ \bigcap_{i=1}^{n} x_i \in \mathbb{R} \right\}$

Theorem (Ageev 2003)

Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then a generic measure-preserving Δ -action extends to a free Γ -action.

Corollary (equivalent reformulation of Ageev's theorem)

Let Γ be a countable abelian group and Δ be an infinite cyclic subgroup. Then the restriction map Res: $Hom(\Gamma, Aut(\mu)) \to Hom(\Delta, Aut(\mu))$ is category-preserving.

Thus, under the above assumptions on $\Delta \leq \Gamma$, whenever a generic Δ action satisfies some property (P), the restriction to Δ of a generic Γ-action also satisfies property (P).

 \leftarrow \Box

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Theorem (King 2000) The map ϕ_n : $\int G \rightarrow G$ $g \mapsto g^n$ is category-preserving for all $n \ge 1$ (In $g \mapsto g^n$ particular, a generic element of G admits roots of all orders).

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}

Theorem (King 2000) The map ϕ_n : $\int G \rightarrow G$ $g \mapsto g^n$ is category-preserving for all $n \ge 1$ (In $g \mapsto g^n$ particular, a generic element of G admits roots of all orders).

At roughly the same time as Ageev, Tikhonov also obtained similar results (for instance the fact that the restriction map from $\mathsf{Hom}(\mathbb{Z}^d,G)$ to $Hom(\mathbb{Z}, G)$ preserves category).

Theorem (King 2000) The map ϕ_n : $\int G \rightarrow G$ $g \mapsto g^n$ is category-preserving for all $n \ge 1$ (In $g \mapsto g^n$ particular, a generic element of G admits roots of all orders).

At roughly the same time as Ageev, Tikhonov also obtained similar results (for instance the fact that the restriction map from $\mathsf{Hom}(\mathbb{Z}^d,G)$ to $Hom(\mathbb{Z}, G)$ preserves category).

How far can these results be pushed?

Theorem (M.)

Let Γ be a countable abelian group and Δ be a finitely generated subgroup. Then the restriction map Res: $Hom(\Gamma, G) \to Hom(\Delta, G)$ is category-preserving.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{AB}

Theorem (M.)

Let Γ be a countable abelian group and Δ be a finitely generated subgroup. Then the restriction map Res: $Hom(\Gamma, G) \to Hom(\Delta, G)$ is category-preserving.

Question

Can one remove the assumption that Δ is finitely generated in the previous theorem?

Theorem (M.)

Let Γ be a countable abelian group and Δ be a finitely generated subgroup. Then the restriction map Res: $Hom(\Gamma, G) \to Hom(\Delta, G)$ is category-preserving.

Question

Can one remove the assumption that Δ is finitely generated in the previous theorem?

O. Ageev has recently announced a negative answer.

Restrictions of measure-preserving actions IV

What about non-abelian groups?

 \leftarrow

個→ K ミ > K ミ → ミ → の Q Q →

What about non-abelian groups?

Observation (M.)

There exist a polycyclic group Γ and an infinite cyclic subgroup $\Delta \leq \Gamma$ such that a generic measure-preserving ∆-action does not extend to a measure-preserving Γ-action.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}

What about non-abelian groups?

Observation (M.)

There exist a polycyclic group Γ and an infinite cyclic subgroup $\Delta \leq \Gamma$ such that a generic measure-preserving ∆-action does not extend to a measure-preserving Γ-action.

Previous examples of this phenomenon (where Γ was more complicated) were already known.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{AB}

What about non-abelian groups?

Observation (M.)

There exist a polycyclic group Γ and an infinite cyclic subgroup $\Delta \leq \Gamma$ such that a generic measure-preserving ∆-action does not extend to a measure-preserving Γ-action.

Previous examples of this phenomenon (where Γ was more complicated) were already known.

The proof of the above observation depends on another result of King (1986): the closed subgroup generated by a generic element of G is maximal abelian; equivalently, the centralizer of a generic element g of G is equal to the closure of $\{g^n : n \in \mathbb{Z}\}.$

KORK EXTERNS OR A BY A GRA

Now we describe a simple proof of King's result on centralizers of generic elements (note: King's original result is actually stronger, as it applies to all elements of rank 1). The proof is extracted from the proof of a more general result in a joint work with T. Tsankov.

 \overline{m} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

 Ω

Now we describe a simple proof of King's result on centralizers of generic elements (note: King's original result is actually stronger, as it applies to all elements of rank 1). The proof is extracted from the proof of a more general result in a joint work with T. Tsankov.

Notation

For H a Polish group, we identify $\text{Hom}(\mathbb{Z}^2,H)$ with

$$
\mathcal{C}(H)=\{(a,b)\in H: ab=ba\}.
$$

For $h \in H C(h)$ denotes the centralizer of h.

 \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a} , \overline{a}

 Ω

Now we describe a simple proof of King's result on centralizers of generic elements (note: King's original result is actually stronger, as it applies to all elements of rank 1). The proof is extracted from the proof of a more general result in a joint work with T. Tsankov.

Notation

For H a Polish group, we identify $\text{Hom}(\mathbb{Z}^2,H)$ with

$$
\mathcal{C}(H)=\{(a,b)\in H: ab=ba\}.
$$

For $h \in H C(h)$ denotes the centralizer of h.

Lemma

Let H be a Polish group such that $\{(a, b) \in C(H): b \in \overline{\langle a \rangle}\}$ is dense in $\mathcal C(H).$ Then the map π : \int C(H) \rightarrow H $(a, b) \mapsto a$ is category-preserving.

KORK ERKER STRACK

Lemma

Let H be a Polish group such that $\{(a, b) \in C(H): b \in \overline{\langle a \rangle}\}\)$ is dense in ${\cal C} (H).$ Then the map π : \int C(H) \rightarrow H $(a, b) \mapsto a$ is category-preserving.

XABYABY B MAG

Lemma

Let H be a Polish group such that $\{(a, b) \in C(H): b \in \overline{\langle a \rangle}\}\)$ is dense in ${\cal C} (H).$ Then the map π : \int C(H) \rightarrow H $(a, b) \mapsto a$ is category-preserving.

Proof.

Let A be a dense subset of H ; enough to prove that $\pi^{-1}(A)$ is dense in $C(H)$. So let O be nonempty open in $C(H)$ and assume w.l.o.g that

$$
O = \{(a,b) \in C(H) : a \in O_1 \wedge b \in O_2\}.
$$

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA}

Lemma

Let H be a Polish group such that $\{(a, b) \in C(H): b \in \overline{\langle a \rangle}\}\)$ is dense in ${\cal C} (H).$ Then the map π : \int C(H) \rightarrow H $(a, b) \mapsto a$ is category-preserving.

Proof.

Let A be a dense subset of H ; enough to prove that $\pi^{-1}(A)$ is dense in $C(H)$. So let O be nonempty open in $C(H)$ and assume w.l.o.g that

$$
O = \{(a,b) \in C(H) : a \in O_1 \wedge b \in O_2\}.
$$

There exists $(a, b) \in O$ such that $b \in \overline{\langle a \rangle}$; hence there exists $a \in O_1$ and *n* such that $a^n \in O_2$. Fix such an *n*; restricting O_1 if necessary, we may assume $c \in O_1 \Rightarrow c^n \in O_2$.

KORK EXTERNS OR A BY A GRA

Lemma

Let H be a Polish group such that $\{(a, b) \in C(H): b \in \overline{\langle a \rangle}\}\)$ is dense in ${\cal C} (H).$ Then the map π : \int C(H) \rightarrow H $(a, b) \mapsto a$ is category-preserving.

Proof.

Let A be a dense subset of H ; enough to prove that $\pi^{-1}(A)$ is dense in $C(H)$. So let O be nonempty open in $C(H)$ and assume w.l.o.g that

$$
O = \{(a,b) \in C(H) : a \in O_1 \wedge b \in O_2\}.
$$

There exists $(a, b) \in O$ such that $b \in \overline{\langle a \rangle}$; hence there exists $a \in O_1$ and *n* such that $a^n \in O_2$. Fix such an *n*; restricting O_1 if necessary, we may assume $c \in O_1 \Rightarrow c^n \in O_2$. Then pick $c \in O_1 \cap A$: we have $(c, c^n) \in O$ and $\pi(c, c^n) = c \in A$. П

KORK ERKER STRACK

Theorem

Assume again that H is a Polish group such that $\{(a, b) \in C(H): b \in \overline{\langle a \rangle}\}\$ is dense in $C(H)$. Then the centralizer of a generic element h of H is equal to $\overline{\langle h \rangle}$.

Theorem

Assume again that H is a Polish group such that $\{(a, b) \in C(H): b \in \overline{\langle a \rangle}\}\$ is dense in $C(H)$. Then the centralizer of a generic element h of H is equal to $\langle h \rangle$.

Note that the assumption of this theorem is easily seen to be satisfied when $H = Aut(X, \mu)$.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}

Theorem

Assume again that H is a Polish group such that $\{(a, b) \in C(H): b \in \overline{\langle a \rangle}\}\$ is dense in $C(H)$. Then the centralizer of a generic element h of H is equal to $\langle h \rangle$.

Note that the assumption of this theorem is easily seen to be satisfied when $H = Aut(X, \mu)$.

Proof.

We have $\forall^*(a,b)\in \mathcal{C}(H)$ $b\in \overline{\langle a\rangle}.$ Applying the fact that $(a, b) \mapsto a$ is category-preserving from $C(H)$ to H, we obtain

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{AB}

Theorem

Assume again that H is a Polish group such that $\{(a, b) \in C(H): b \in \overline{\langle a \rangle}\}\$ is dense in $C(H)$. Then the centralizer of a generic element h of H is equal to $\langle h \rangle$.

Note that the assumption of this theorem is easily seen to be satisfied when $H = Aut(X, \mu)$.

Proof.

We have $\forall^*(a,b)\in \mathcal{C}(H)$ $b\in \overline{\langle a\rangle}.$ Applying the fact that $(a, b) \mapsto a$ is category-preserving from $C(H)$ to H, we obtain

$$
\forall^* a \in H\left(\forall^* b \in C(a) \, b \in \overline{\langle a \rangle}\right) \; .
$$

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{AB}

Theorem

Assume again that H is a Polish group such that $\{(a, b) \in C(H): b \in \overline{\langle a \rangle}\}\$ is dense in $C(H)$. Then the centralizer of a generic element h of H is equal to $\langle h \rangle$.

Note that the assumption of this theorem is easily seen to be satisfied when $H = Aut(X, \mu)$.

Proof.

We have $\forall^*(a,b)\in \mathcal{C}(H)$ $b\in \overline{\langle a\rangle}.$ Applying the fact that $(a, b) \mapsto a$ is category-preserving from $C(H)$ to H, we obtain

$$
\forall^* a \in H\left(\forall^* b \in C(a) \, b \in \overline{\langle a \rangle}\right) \; .
$$

Since $\overline{\langle a \rangle}$ is obviously closed in $C(a)$, we get $C(a) = \overline{\langle a \rangle}$ for a generic $a \in H$.

П

 209

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

A detour: separable von Neumann algebras.

The strategy of proof above is fairly flexible. As pointed out by my student F. Le Maître, it is easy to see the following.

Lemma

Let *M* be a separable von Neumann algebra. Then $\{(a, b) \in C(\mathcal{U}(M)) : b \in \langle a \rangle\}$ is dense in $C(\mathcal{U}(M))$.

4 F + E + + E + + E + + O Q (+

Lemma

Let *M* be a separable von Neumann algebra. Then $\{(a, b) \in C(\mathcal{U}(M)) : b \in \langle a \rangle\}$ is dense in $C(\mathcal{U}(M)).$

Thus, a generic element in the unitary group of a separable von Neumann algebra always generates a maximal abelian subgroup.

 $\left\{ \bigcap_{i=1}^{n} x_i \in \mathbb{R} \mid x_i \in \mathbb{R} \right\}$, $\left\{ \bigcap_{i=1}^{n} x_i \in \mathbb{R} \right\}$

Lemma

Let *M* be a separable von Neumann algebra. Then $\{(a, b) \in C(\mathcal{U}(M)) : b \in \langle a \rangle\}$ is dense in $C(\mathcal{U}(M))$.

Thus, a generic element in the unitary group of a separable von Neumann algebra always generates a maximal abelian subgroup.

Lemma

Let M be a separable, diffuse von Neumann algebra. Then any maximal abelian subalgebra of M is diffuse, so its unitary group is isomorphic to $L^0(X,\mu)$.

Lemma

Let *M* be a separable von Neumann algebra. Then $\{(a, b) \in C(\mathcal{U}(M)) : b \in \langle a \rangle\}$ is dense in $C(\mathcal{U}(M))$.

Thus, a generic element in the unitary group of a separable von Neumann algebra always generates a maximal abelian subgroup.

Lemma

Let M be a separable, diffuse von Neumann algebra. Then any maximal abelian subalgebra of M is diffuse, so its unitary group is isomorphic to $L^0(X,\mu)$.

Of course, a maximal abelian subgroup of $U(M)$ must be the unitary group of a masa.

KORK EXTERNS OR A BY A GRA

To sum up:

Theorem (Le Maître)

Let *M* be a diffuse separable von Neumann algebra; a generic element of $U(M)$ generates a closed subgroup which is maximal abelian and isomorphic to $L^0(X,\mu)$.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}

To sum up:

Theorem (Le Maître)

Let *M* be a diffuse separable von Neumann algebra; a generic element of $U(M)$ generates a closed subgroup which is maximal abelian and isomorphic to $L^0(X,\mu)$.

The same result holds for $U(\ell_2)$; this was originally proved by Todor Tsankov and myself, but one can give a simpler proof based on the technique discussed above and the notion of extreme amenability.

 $\mathbf{A} = \mathbf{A} + \mathbf$

 Ω

Recall that a topological group H is extremely amenable if any continuous action of H on a compact space has a fixed point.

御 ト イヨ ト イヨ トー

后 Ω

Recall that a topological group H is extremely amenable if any continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)

Let Γ be a countable group, and H be a Polish group. Then

 $\{\pi \in \text{Hom}(\Gamma, H) : \overline{\pi(\Gamma)} \text{ is extremely amenable}\}\$

is G_δ in Hom(Γ, H).

Recall that a topological group H is extremely amenable if any continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)

Let Γ be a countable group, and H be a Polish group. Then

 $\{\pi \in \text{Hom}(\Gamma, H) : \overline{\pi(\Gamma)} \text{ is extremely amenable}\}\$

```
is G_\delta in Hom(Γ, H).
```
Theorem (M.–Tsankov)

In both Aut (X, μ) and $\mathcal{U}(\ell_2)$, a generic element generates an extremely amenable subgroup.

Recall that a topological group H is extremely amenable if any continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)

Let Γ be a countable group, and H be a Polish group. Then

 $\{\pi \in \text{Hom}(\Gamma, H) : \overline{\pi(\Gamma)} \text{ is extremely amenable}\}\$

```
is G_\delta in Hom(Γ, H).
```
Theorem (M.–Tsankov)

In both Aut (X, μ) and $\mathcal{U}(\ell_2)$, a generic element generates an extremely amenable subgroup.

Corollary (M.–Tsankov)

A generic element of $U(\ell_2)$ generates a closed subgroup isomorphic to $L^0(X,\mu)$.

KORK EXTERNS OR A BY A GRA

We saw that a generic element of $Aut(X, \mu)$ generates a closed subgroup which is maximal abelian and extremely amenable; similar ideas can also be used to proved that this subgroup is always generically monothetic.

 $\left(\sqrt{2}+1\right)$ and $\left(\sqrt{2}+1\right)$

 \equiv

 Ω

We saw that a generic element of $Aut(X, \mu)$ generates a closed subgroup which is maximal abelian and extremely amenable; similar ideas can also be used to proved that this subgroup is always generically monothetic.

More is kown:

Theorem (Solecki)

For a generic $g \in Aut(X, \mu)$, the closed subgroup generated by g is a continuous homomorphic image of $L^0(X,\mu),$ and contains an increasing chain of finite-dimensional tori whose union is dense.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}

We saw that a generic element of $Aut(X, \mu)$ generates a closed subgroup which is maximal abelian and extremely amenable; similar ideas can also be used to proved that this subgroup is always generically monothetic.

More is kown:

Theorem (Solecki)

For a generic $g \in Aut(X, \mu)$, the closed subgroup generated by g is a continuous homomorphic image of $L^0(X,\mu),$ and contains an increasing chain of finite-dimensional tori whose union is dense.

Question

Is it true that a generic element of $Aut(X, \mu)$ generates a closed subgroup isomorphic to $L^0(X,\mu)$?

We saw that a generic element of $Aut(X, \mu)$ generates a closed subgroup which is maximal abelian and extremely amenable; similar ideas can also be used to proved that this subgroup is always generically monothetic.

More is kown:

Theorem (Solecki)

For a generic $g \in Aut(X, \mu)$, the closed subgroup generated by g is a continuous homomorphic image of $L^0(X,\mu),$ and contains an increasing chain of finite-dimensional tori whose union is dense.

Question

Is it true that a generic element of $Aut(X, \mu)$ generates a closed subgroup isomorphic to $L^0(X,\mu)$?

Thank you for your attention!