Central sequence C^* -algebras and absorption of the Jiang-Su algebra (Joint work with Eberhard Kirchberg)

Mikael Rørdam rordam@math.ku.dk

Department of Mathematics University of Copenhagen

Fields Institute, Workshop on applications to operator algebras, September 11, 2012.

Outline

2 [Absorbing the Jiang-Su algebra](#page-16-0)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Let A be a unital C^* -algebra, and let ω be a free (ultra) filter on $\mathbb N$. Consider the central sequence $\mathcal C^*$ -algebra $\mathcal A_\omega\cap\mathcal A'$, where

$$
A_{\omega} = \ell^{\infty}(A)/c_{\omega}(A), \quad c_{\omega}(A) = \{(x_n) \in \ell^{\infty}(A) \mid \lim_{\omega} ||x_n|| = 0\}.
$$

What do we know about central sequence C^* -algebra $A_\omega \cap A'$?

If A is a unital Kirchberg algebra (i.e., A is unital simple purely infinite separable and nuclear) and if ω is a free ultrafilter on N, then $A_{\omega} \cap A'$ is simple and purely infinite. In particular, $\mathcal{O}_{\infty} \hookrightarrow A_{\omega} \cap A'$, which entails that $A \cong A \otimes \mathcal{O}_{\infty}$.

Fact: $A \cong A \otimes \mathcal{Z} \iff \exists$ unital *-homomorphism $\mathcal{Z} \to A_{\omega} \cap A'$ for some free filter ω.

If A is unital and approximately divisible, then $\bigotimes_{k=1}^{\infty} (M_2 \oplus M_3)$ maps unitally into $A_\omega \cap A'$. Hence $\mathcal{Z} \hookrightarrow A_\omega \cap A'$, so $A \cong A \otimes \mathcal{Z}$. Let A be a unital C^* -algebra, and let ω be a free (ultra) filter on $\mathbb N$. Consider the central sequence $\mathcal C^*$ -algebra $\mathcal A_\omega\cap\mathcal A'$, where

$$
A_{\omega} = \ell^{\infty}(A)/c_{\omega}(A), \quad c_{\omega}(A) = \{(x_n) \in \ell^{\infty}(A) \mid \lim_{\omega} ||x_n|| = 0\}.
$$

What do we know about central sequence C^* -algebra $A_\omega \cap A'$?

Theorem (Kirchberg, 1994)

If A is a unital Kirchberg algebra (i.e., A is unital simple purely infinite separable and nuclear) and if ω is a free ultrafilter on $\mathbb N$, then $A_{\omega} \cap A'$ is simple and purely infinite. In particular, $\mathcal{O}_\infty \hookrightarrow A_\omega \cap A'$, which entails that $A \cong A \otimes \mathcal{O}_\infty$.

Fact: $A \cong A \otimes \mathcal{Z} \iff \exists$ unital *-homomorphism $\mathcal{Z} \to A_{\omega} \cap A'$ for some free filter ω.

Example

university-logo If A is unital and approximately divisible, then $\bigotimes_{k=1}^{\infty} (M_2 \oplus M_3)$ maps unitally into $A_\omega \cap A'$. Hence $\mathcal{Z} \hookrightarrow A_\omega \cap A'$, so $A \cong A \otimes \mathcal{Z}$.

Fact: If M is a II₁ von Neumann factor and if ω is a free ultrafilter, then $\mathcal{M}^{\omega}\cap\mathcal{M}'$ is either a II_1 von Neumann algebra or it is abelian.

If the former holds, then M is said to be a *McDuff factor*, and in this case $\mathcal{R} \hookrightarrow M^{\omega} \cap M'$ which entails that $M \cong M \bar{\otimes} \mathcal{R}$.

Theorem (Strengthened version of a theorem of Matui-Sato)

Let A be a unital separable C^* -algebra with a faithful trace τ . Let $M = \pi_{\tau}(A)^{\prime\prime}$, and let ω be a free ultrafilter on $\mathbb N$. Then the canonical map

 $A_\omega \cap A' \to M^\omega \cap M'$

is surjective.

In particular, if A is non-elementary, unital, simple, nuclear and stably finite, then a quotient of $A_\omega \cap A'$ contains a subalgebra isomorphic to R.

Matui and Sato proved the theorem above under the additional assumptions that A is simple and nuclear.4 D > 4 P + 4 B + 4 B + B + 9 Q O

Idea of proof: The inclusion $A \rightarrow M$ induces a *-homomorphism $\Phi: A_{\omega} \to M^{\omega}$ which is surjective (by Kaplanski's density theorem). Let π_{ω} : $\ell^{\infty}(A) \to A_{\omega}$ be the quotient mapping and put

 $\widetilde{\Phi} = \Phi \circ \pi_{\omega} \colon \ell^{\infty}(A) \to M^{\omega}.$

Enough to show that if $b = (b_1, b_2, ...) \in \ell^{\infty}(A)$ is such that $\widetilde{\Phi}(b) \in M^{\omega} \cap M'$, then $\exists c = (c_1, c_2, \dots) \in \ell^{\infty}(A)$ st $\widetilde{\Phi}(c) = \widetilde{\Phi}(b)$ and $\pi_{\omega}(c) \in A_{\omega} \cap A'$.

Put $D = C^*(A, b) \subseteq \ell^{\infty}(A)$ and put $J = \text{Ker}(\tilde{\Phi}|_D)$. Let $(e^{(k)}) \subseteq J$ be an asymptocially central approximate unit for J. Note that $ba - ab \in J$ for all $a \in A$. Hence, for all $a \in A$:

$$
0 = \lim_{k \to \infty} ||(1 - e^{(k)})(ba - ab)(1 - e^{(k)})||
$$

=
$$
\lim_{k \to \infty} ||(1 - e^{(k)})b(1 - e^{(k)})a - a(1 - e^{(k)})b(1 - e^{(k)})||.
$$

We can therefore take $c_n = (1-e_n^{(k_n)}) b_n (1-e_n^{(k_n)})$ for a suitable sequence (k_n) . **KORKAR KERKER E VOOR**

Idea of proof: The inclusion $A \rightarrow M$ induces a *-homomorphism $\Phi: A_{\omega} \to M^{\omega}$ which is surjective (by Kaplanski's density theorem). Let π_{ω} : $\ell^{\infty}(A) \rightarrow A_{\omega}$ be the quotient mapping and put

 $\widetilde{\Phi} = \Phi \circ \pi_{\omega} \colon \ell^{\infty}(A) \to M^{\omega}.$

Enough to show that if $b = (b_1, b_2, ...) \in \ell^{\infty}(A)$ is such that $\widetilde{\Phi}(b) \in M^{\omega} \cap M'$, then $\exists c = (c_1, c_2, \dots) \in \ell^{\infty}(A)$ st $\widetilde{\Phi}(c) = \widetilde{\Phi}(b)$ and $\pi_{\omega}(c) \in A_{\omega} \cap A'$.

 P ut $D = C^*(A, b) \subseteq \ell^{\infty}(A)$ and put $J = \text{Ker}(\widetilde{\Phi}|_D)$. Let $(e^{(k)}) \subseteq J$ be an asymptocially central approximate unit for J. Note that $ba - ab \in J$ for all $a \in A$. Hence, for all $a \in A$:

$$
0 = \lim_{k \to \infty} ||(1 - e^{(k)})(ba - ab)(1 - e^{(k)})||
$$

=
$$
\lim_{k \to \infty} ||(1 - e^{(k)})b(1 - e^{(k)})a - a(1 - e^{(k)})b(1 - e^{(k)})||.
$$

We can therefore take $\mathsf{c}_n = (1 - e_n^{(k_n)}) b_n (1 - e_n^{(k_n)})$ for a suitable sequence (k_n) . **KORKAR KERKER E VOOR**

Example

There exist non-elementary, unital, simple, separable, nuclear (stably finite) C^* -algebras A that do not absorb the Jiang-Su algebra. E.g.:

- Villadsen's examples of simple AH-algebras with strongly perforated K_0 -groups or with stable rank > 1 .
- The example of a simple unital nuclear separable C^* -algebra with a finite and an infinite projection, [R], (which also provided a counterexample to the Elliott conjecture).
- Toms' refined counterexamples to the Elliott conjecture (which are AH-algebras).
- Many others!

For any of the C^* -algebras mentioned above, $\mathcal Z$ does not embed unitally into $A_\omega \cap A'$. For the stably finite ones, we still have a university-logo surjection $A_\omega\cap A'\to {\cal R}^\omega\cap {\cal R}'$, so $A_\omega\cap A'$ is not small (or abelian). **KOD KARD KED KED E VOOR**

Proposition (Kirchberg (Abel Proceedings))

Let A and D be unital separable C^* -algebras, and let ω be a free filter on $\mathbb N$. If there is a unital * -hom $D\to A_\omega\cap A'$, then there is a unital [∗] -hom ∞

$$
\bigotimes_{n=1} D \to A_\omega \cap A'
$$

(where $\otimes = \otimes_{\max}$).

If $A_\omega \cap A'$ has no character, then \exists unital separable $D \subseteq A_\omega \cap A'$ st D has no character.

If A is separable and $A_\omega \cap A'$ has no character, then \exists unital C^{*}-algebra D with no characters and a unital *-homomorphism $\bigotimes_{n=1}^{\infty} D \to A_{\omega} \cap A'.$

Proposition (Kirchberg (Abel Proceedings))

Let A and D be unital separable C^* -algebras, and let ω be a free filter on $\mathbb N$. If there is a unital * -hom $D\to A_\omega\cap A'$, then there is a unital [∗] -hom ∞

$$
\bigotimes_{n=1} D \to A_\omega \cap A'
$$

(where $\otimes = \otimes_{\max}$).

Lemma

If $A_\omega\cap A'$ has no character, then \exists unital separable $D\subseteq A_\omega\cap A'$ st D has no character.

Corollary

If A is separable and $A_\omega \cap A'$ has no character, then \exists unital C ∗ -algebra D with no characters and a unital [∗] -homomorphism $\bigotimes_{n=1}^{\infty} D \to A_{\omega} \cap A'.$

university-logo

Hence, if there is a unital *-homomorphism $D\to A_\omega\cap A'$ (where D has no character), then there is a unital *-homomorphism

$$
A\otimes\Big(\bigotimes_{n=1}^{\infty} D\Big)\to A_{\omega}, \quad \text{s.t.} \quad a\otimes 1\mapsto a, \ (a\in A).
$$

Let D be a unital C^{*}-algebra. If $\bigotimes_{k=1}^{\infty} D$ contains a unital subhomogeneous C^{*}-algebra without characters, then $\mathcal{Z} \hookrightarrow \bigotimes_{k=1}^{\infty} D.$

Hence: $A \cong A \otimes \mathcal{Z}$ if and only if $A_{\omega} \cap A'$ contains a unital subhomogeneous C^* -algebra without characters.

Fact: $\exists I(2,3) \rightarrow A_{\omega} \cap A'$ unital *-hom (and hence $\mathcal{Z} \hookrightarrow A_{\omega} \cap A'$) if \exists a, $b\in A_\omega\cap A'$ positive contractions st

$$
a \sim b
$$
, $a \perp b$, $1-a-b \precsim (a-\varepsilon)_+$,

i.e., if the[r](#page-10-0)[e](#page-0-0) exists *-ho[m](#page-1-0) $\mathit{CM}_2 \rightarrow A_\omega \cap A'$ w[ith](#page-9-0) ", large [i](#page-0-0)m[ag](#page-16-0)e["](#page-1-0)[.](#page-15-0) 000 Hence, if there is a unital *-homomorphism $D\to A_\omega\cap A'$ (where D has no character), then there is a unital *-homomorphism

$$
A\otimes\Big(\bigotimes_{n=1}^{\infty} D\Big)\to A_{\omega}, \quad \text{st.} \;\; a\otimes 1\mapsto a, \; (a\in A).
$$

Theorem (Dadarlat–Toms)

Let D be a unital C * -algebra. If $\bigotimes_{k=1}^{\infty}$ D contains a unital subhomogeneous C^{*}-algebra without characters, then $\mathcal{Z} \hookrightarrow \bigotimes_{k=1}^{\infty} D.$

Hence: $A \cong A \otimes \mathcal{Z}$ if and only if $A_{\omega} \cap A'$ contains a unital subhomogeneous C^* -algebra without characters.

Fact: $\exists I(2,3) \rightarrow A_{\omega} \cap A'$ unital *-hom (and hence $\mathcal{Z} \hookrightarrow A_{\omega} \cap A'$) if \exists a, $b\in A_\omega\cap A'$ positive contractions st

$$
a \sim b
$$
, $a \perp b$, $1-a-b \precsim (a-\varepsilon)_+$,

i.e., if the[r](#page-10-0)[e](#page-0-0) exists *-ho[m](#page-1-0) $\mathit{CM}_2 \rightarrow A_\omega \cap A'$ w[ith](#page-10-0) ", large [i](#page-0-0)m[ag](#page-16-0)e["](#page-1-0)[.](#page-15-0) 000 Hence, if there is a unital *-homomorphism $D\to A_\omega\cap A'$ (where D has no character), then there is a unital *-homomorphism

$$
A\otimes\Big(\bigotimes_{n=1}^{\infty} D\Big)\to A_{\omega}, \quad \text{st.} \;\; a\otimes 1\mapsto a, \; (a\in A).
$$

Theorem (Dadarlat–Toms)

Let D be a unital C * -algebra. If $\bigotimes_{k=1}^{\infty}$ D contains a unital subhomogeneous C^{*}-algebra without characters, then $\mathcal{Z} \hookrightarrow \bigotimes_{k=1}^{\infty} D.$

Hence: $A \cong A \otimes \mathcal{Z}$ if and only if $A_{\omega} \cap A'$ contains a unital subhomogeneous C^* -algebra without characters.

Fact: \exists /(2,3) \rightarrow $A_\omega \cap A'$ unital *-hom (and hence $\mathcal{Z} \hookrightarrow A_\omega \cap A'$) if ∃a, $b\in A_\omega\cap A'$ positive contractions st

$$
a \sim b, \qquad a \perp b, \qquad 1-a-b \precsim (a-\varepsilon)_+,
$$

i.e., if the[r](#page-10-0)[e](#page-0-0) exists *-ho[m](#page-1-0) $\mathit{CM}_2 \rightarrow A_\omega \cap A'$ w[ith](#page-11-0) ["l](#page-13-0)arge [i](#page-0-0)m[ag](#page-16-0)e["](#page-1-0)[.](#page-15-0) \equiv 0.992

Question

Suppose that A is a unital separable C*-algebra st $A_\omega \cap A'$ has no characters (for some ultrafilter ω). Does it follow that $A_\omega \cap A'$ contains a unital copy of Z (so that $A \cong A \otimes Z$)?

By the result of Dadarlat–Toms, this question is equivalent to the question if $\bigotimes_{n=1}^\infty D$ contains a unital copy of a subhomogeneous C^* -algebra without characters whenever D is a unital C^* -algebra without characters.

Definition

A unital C^{*}-algebra is said to have the splitting property if there are positive full elements $a, b \in A$ with $a \perp b$.

Note: A has the splitting property \implies A has no characters.

The opposite implication is false in general, but it may be true if $A = \bigotimes_{n=1}^{\infty} D$ for some unital D . I don't know.

Lemma

If $A_\omega \cap A'$ has the splitting property, then there is a full * -homomorphism $\mathsf{CM}_2 \to \mathsf{A}_\omega \cap \mathsf{A}'.$

Using results of [L. Robert $+$ R] about divisibility properties for C ∗ -algebras we obtain:

Proposition

Let A be a unital separable C^* -algebra and let ω be a free ultrafilter on $\mathbb N$

- \textbf{D} If $A_\omega \cap A'$ has no characters, then A has the strong Corona Factorization Property.
- 2 If $A_\omega \cap A'$ has the splitting property, then $\exists N_k \in \mathbb{N}$ st

 $\bullet \ \forall k \geq 2 \ \forall y \in \text{Cu}(A) \ \exists x \in \text{Cu}(A) : kx \leq y \leq N_k x.$

2 Let $x, y \in Cu(A)$. If $N_k x \le ky$ for some $k \ge 1$, then $x \le y$.

university-logo \bullet If $A_\omega \cap A'$ has the splitting property and A is simple, then A is either stably finite or purely infinite.

Proposition

Let A be a unital separable C^* -algebra and let ω be a free ultrafilter on N.

- \textbf{D} If $A_\omega \cap A'$ has no character, then A has the strong Corona Factorization Property.
- 2 If $A_\omega \cap A'$ has the splitting property, then $\exists N_k \in \mathbb{N}$ st $\bullet \ \forall k \geq 2 \ \forall y \in \text{Cu}(A) \ \exists x \in \text{Cu}(A) : kx \leq y \leq N_k x.$
	- **2** Let $x, y \in Cu(A)$. If $N_k x \le ky$ for some $k \ge 1$, then $x \le y$.
- \bullet If $A_\omega \cap A'$ has the splitting property and A is simple, then A is either stably finite or purely infinite.

Corollary

university-logo There exist non-elementary, unital, simple, separable, nuclear C^* -algebras A st $A_\omega \cap A'$ has a character (and, at the same time, a sub-quotient $\cong \mathcal{R}$).

Outline

A year ago, the following remarkable result was proved:

Theorem (Matui–Sato)

Let A be a unital, separable, simple, non-elementary, stably finite, nuclear C * -algebra, and suppose that $\partial_\mathbf{e} \, \mathcal{T}(A)$ is finite. Then the following are equivalent:

 \bullet A \cong A \otimes Z,

- \bullet A has strict comparison (i.e., $Cu(A)$ is almost divisible),
- \bullet Every cp map $A \rightarrow A$ can be excised in small central sequences,
- **4** A has property (SI).

We get back to the properties mentioned in (3) and (4).

Note that if A is not stably finite, then $T(A) = \emptyset$ and (2) implies that A is purely infinite. Hence A is a Kirchberg algebra and $A \cong A \otimes \mathcal{O}_{\infty} \cong A \otimes \mathcal{Z}.$

It would be desirable to remove the conditio[n t](#page-16-0)[ha](#page-18-0)[t](#page-16-0) $\partial_e \mathcal{T}(A)$ [i](#page-15-0)[s](#page-16-0) [fin](#page-35-0)[it](#page-0-0)[e!](#page-35-0)

A unital C^* -algebra with $\mathcal{T}(A) \neq \emptyset$. Define

$$
||a||_{2,\tau} = \tau(a^*a)^{1/2}, \qquad ||a||_2 = \sup_{\tau \in \mathcal{T}(A)} ||a||_{2,\tau}, \quad a \in A.
$$

Define $\|\cdot\|_2$ on A_{ω} by

$$
\|\pi_{\omega}(a_1,a_2,a_3,\dots)\|_2=\lim_{\omega}\|a_n\|_2,
$$

where π_{ω} : $\ell^{\infty}(A) \to A_{\omega}$ is the quotient map. Set

$$
J_A=\{x\in A_\omega: \|a\|_2=0\}\ \vartriangleleft\ A_\omega.
$$

Definition (Matui–Sato)

A unital simple C^* -algebra A is said to have property (SI) if for all positive contractions $e,f\in A_\omega\cap A'$ such that

 $k_{\rm B}$

$$
e \in J_A, \qquad \sup_k ||1 - f^k||_2 < 1,
$$
\n
$$
\text{there is } s \in A_\omega \cap A' \text{ with } fs = s \text{ and } s^*fs = e.
$$

university-logo

Proposition

Let A be a separable, simple, unital, stably finite C[∗] -algebra with property (SI). TFAE:

- \bullet A \cong A \otimes Z,
- $\mathbf{2} \hspace{0.2cm} \exists \hspace{0.2cm}$ unital *-homomorphism $M_2 \rightarrow (A_{\omega} \cap A')/J_A$.
- $\textbf{3}\ \ \forall\ \ \textit{UHF-algebras}\ \ B\ \ \exists\ \ \textit{unital}\ \textrm{``-hom}\ \ B \rightarrow (A_\omega \cap A')/J_A.$

Fact: $(2) + (SI) \implies \exists$ unital *-hom $I(2,3) \rightarrow A_{\omega} \cap A' \implies (1)$.

If A is a non-elementary, unital, simple, separable, exact, stably finite C[∗] -algebra st

- \Box $\pi_{\tau}(A)''$ is McDuff factor for all $\tau \in \partial_{e} \mathcal{T}(A)$.
- ⊇ $\partial_e \, \mathcal{T}(A)$ is (weak *) closed in $\mathcal{T}(A)$ (i.e., $\mathcal{T}(A)$ is a Bauer simplex).
- Θ ∂_eT(A) has finite covering dimension,

then there is a unital *-homomorphism $M_2 \to (A_\omega \cap A')/J_A$ $M_2 \to (A_\omega \cap A')/J_A$ [.](#page-16-0)

Proposition

Let A be a separable, simple, unital, stably finite C[∗] -algebra with property (SI). TFAE:

- $A \cong A \otimes \mathcal{Z}$,
- $\mathbf{2} \hspace{0.2cm} \exists \hspace{0.2cm}$ unital *-homomorphism $M_2 \rightarrow (A_{\omega} \cap A')/J_A$.
- $\textbf{3}\ \ \forall\ \ \textit{UHF-algebras}\ \ B\ \ \exists\ \ \textit{unital}\ \textrm{``-hom}\ \ B \rightarrow (A_\omega \cap A')/J_A.$

Fact: $(2) + (SI) \implies \exists$ unital *-hom $I(2,3) \rightarrow A_{\omega} \cap A' \implies (1)$.

Theorem

If A is a non-elementary, unital, simple, separable, exact, stably finite C[∗] -algebra st

- $\textbf{1}$ $\pi_{\tau}(A)''$ is McDuff factor for all $\tau \in \partial_{\bm{\mathrm{e}}} \, \mathcal{T}(A)$.
- ? ∂e $\mathcal{T}(A)$ is (weak *) closed in $\mathcal{T}(A)$ (i.e., $\mathcal{T}(A)$ is a Bauer simplex).
- Θ ∂_eT(A) has finite covering dimension,

then there is a unital *-homomorphism $M_2 \to (A_\omega \cap A')/J_A$ $M_2 \to (A_\omega \cap A')/J_A$ [.](#page-16-0)

university-logo

Results similar to the ones above and below have been obtained independently by Andrew Toms, Stuart White and Wilhelm Winter.

Corollary

Let A be a non-elementary, unital, simple, separable, exact, stably finite C[∗] -algebra st

- $\textbf{1} \ \ \pi_{\tau}(A)''$ is McDuff factor for all $\tau \in \partial_{\bm{\mathrm{e}}} \, \mathcal{T}(A).$
- ? ∂_eT(A) is weak * closed in T(A) (i.e., T(A) is a Bauer simplex).
- Θ ∂_eT(A) has finite covering dimension.
- **4** A has property (SI)

Then $A \cong A \otimes \mathcal{Z}$.

- Note that $A \cong A \otimes \mathcal{Z}$ implies (1), but not (2) and (3).
- • It is not known if $A \cong A \otimes \mathcal{Z}$ implies (4).

KORK STRAIN A BAR SHOP

Results similar to the ones above and below have been obtained independently by Andrew Toms, Stuart White and Wilhelm Winter.

Corollary

Let A be a non-elementary, unital, simple, separable, exact, stably finite C[∗] -algebra st

- $\textbf{1} \ \ \pi_{\tau}(A)''$ is McDuff factor for all $\tau \in \partial_{\bm{\mathrm{e}}} \, \mathcal{T}(A).$
- ? ∂_eT(A) is weak * closed in T(A) (i.e., T(A) is a Bauer simplex).
- Θ ∂_eT(A) has finite covering dimension.
- **4** A has property (SI)

Then $A \cong A \otimes \mathcal{Z}$.

- Note that $A \cong A \otimes \mathcal{Z}$ implies (1), but not (2) and (3).
- It is not known if $A \cong A \otimes \mathcal{Z}$ implies (4).

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{B} + \math$

 2990

Definition (Matui–Sato)

A cp map $\varphi: A \to A \subseteq A_{\omega}$ can be excised in small central *sequences* if for all positive contractions $e, f \in A_\omega \cap A'$ with

$$
e\in J_A,\qquad \sup_k\|1-f^k\|_2<1,
$$

there exists $s \in A_{\omega}$ st

$$
fs = s, \qquad s^*as = \varphi(a)e, \qquad a \in A.
$$

Let A be a unital simple C^{*}-algebra.

- \bigcirc If id_A: $A \rightarrow A$ can be excised in small central sequences, then A has property (SI).
- 2 If A is simple, separable, unital and nuclear, and if A has strict comparison, then id_A can be excised in small central

Definition (Matui–Sato)

A cp map $\varphi: A \to A \subseteq A_{\omega}$ can be excised in small central *sequences* if for all positive contractions $e, f \in A_\omega \cap A'$ with

$$
e\in J_A,\qquad \sup_k\|1-f^k\|_2<1,
$$

there exists $s \in A_{\omega}$ st

$$
fs = s, \qquad s^*as = \varphi(a)e, \qquad a \in A.
$$

Proposition (Matui–Sato)

Let A be a unital simple C^{*}-algebra.

- **1** If id_A : $A \to A$ can be excised in small central sequences, then A has property (SI).
- university-logo **2** If A is simple, separable, unital and nuclear, and if A has strict comparison, then id_A can be excised in small central sequences.

Definition

Let A be a unital, simple, stably finite C^* -algebra. Then A has *local weak comparison* if there exists a constant $\gamma = \gamma(A)$ st for all positive element $a, b \in A$:

$$
\gamma \cdot \sup_{\tau \in QT(A)} d_{\tau}(a) < \inf_{\tau \in QT(A)} d_{\tau}(b) \implies a \precsim b.
$$

A has strict comparison \iff Cu(A) is weakly unperforated \Longrightarrow $Cu(A)$ has *m*-comparison for some $m < \infty$ (in the sense of Winter) \implies A has local weak comparison.

Let A be a unital, simple, stably finite C^{*}-algebra.

- **1** If A has local weak comparison, then every nuclear cp $\varphi: A \rightarrow A$ can be excised in small central sequences.
- ² If A is nuclear and has local weak comparison, then A has property (SI).

THE REPORT OF A STATE

Definition

Let A be a unital, simple, stably finite C^* -algebra. Then A has *local weak comparison* if there exists a constant $\gamma = \gamma(A)$ st for all positive element $a, b \in A$:

$$
\gamma \cdot \sup_{\tau \in QT(A)} d_{\tau}(a) < \inf_{\tau \in QT(A)} d_{\tau}(b) \implies a \precsim b.
$$

A has strict comparison \iff Cu(A) is weakly unperforated \Longrightarrow $Cu(A)$ has *m*-comparison for some $m < \infty$ (in the sense of Winter) \implies A has local weak comparison.

Proposition

Let A be a unital, simple, stably finite C^{*}-algebra.

- \bullet If A has local weak comparison, then every nuclear cp $\varphi: A \rightarrow A$ can be excised in small central sequences.
- 2 If A is nuclear and has local weak comparison, then A has property (SI).

university-logo

コロイ コモイコモ

Corollary

Let A be a non-elementary, stably finite, simple, separable, unital and nuclear C * -algebra. Suppose that $\partial_e\, T(A)$ is closed in $T(A)$ and that $\partial_e T(A)$ has finite covering dimension. Then the following are equivalent:

 $A \cong A \otimes \mathcal{Z}$.

2 A has local weak comparison.

3 A has strict comparison (\iff Cu(A) is weakly unperforated).

Are (1) , (2) and (3) above equivalent for all non-elementary, stably finite, simple, separable, unital and nuclear C[∗]-algebra?

Are (2) and (3) above equivalent for all non-elementary, stably finite, simple, separable, unital and nuclear C^{*}-algebra!?

Corollary

Let A be a non-elementary, stably finite, simple, separable, unital and nuclear C * -algebra. Suppose that $\partial_e\, T(A)$ is closed in $T(A)$ and that $\partial_{\epsilon}T(A)$ has finite covering dimension. Then the following are equivalent:

 $A \cong A \otimes \mathcal{Z}$.

2 A has local weak comparison,

3 A has strict comparison (\iff Cu(A) is weakly unperforated).

Question

Are (1), (2) and (3) above equivalent for all non-elementary, stably finite, simple, separable, unital and nuclear C^{*}-algebra?

Are (2) and (3) above equivalent for all non-elementary, stably finite, simple, separable, unital and nuclear C^{*}-algebra!?

university-logo

A bit about the proof. We want to find a unital *-homomorphism $M_2 \rightarrow (A_{\omega} \cap A')/J_A$.

Proposition

Let B be a unital C^{*}-algebra, and let $\varphi_1, \varphi_2, \ldots, \varphi_m \colon M_2 \to B$ be cpc order zero maps with commuting images.

1 If $\varphi_1(1) + \varphi_2(2) + \cdots + \varphi_m(1) \leq 1$, then there is a cpc order zero map ψ : $M_2 \rightarrow B$ such that

$$
\psi(1)=\varphi_1(1)+\varphi_2(2)+\cdots+\varphi_m(1).
$$

2 If $\varphi_1(1) + \varphi_2(2) + \cdots + \varphi_m(1) = 1$, then $\psi: M_2 \to B$ from (i) is a [∗] -homomorphism.

Hence it suffices to find cp order zero maps

$$
W_1, W_2 \ldots, W_m \colon M_2 \to (A_\omega \cap A')/J_A
$$

with commuting images such that

 $W_1(1) + W_2(1) + \cdots + W_m(1) = 1.$

A bit about the proof. We want to find a unital *-homomorphism $M_2 \rightarrow (A_{\omega} \cap A')/J_A$.

Proposition

Let B be a unital C^{*}-algebra, and let $\varphi_1, \varphi_2, \ldots, \varphi_m \colon M_2 \to B$ be cpc order zero maps with commuting images.

1 If $\varphi_1(1) + \varphi_2(2) + \cdots + \varphi_m(1) \leq 1$, then there is a cpc order zero map $\psi \colon M_2 \to B$ such that

$$
\psi(1)=\varphi_1(1)+\varphi_2(2)+\cdots+\varphi_m(1).
$$

2 If $\varphi_1(1) + \varphi_2(2) + \cdots + \varphi_m(1) = 1$, then $\psi: M_2 \to B$ from (i) is a [∗] -homomorphism.

Hence it suffices to find cp order zero maps

$$
W_1, W_2 \ldots, W_m \colon M_2 \to (A_\omega \cap A')/J_A
$$

with commuting images such that

$$
W_1(1) + W_2(1) + \cdots + W_m(1) = 1.
$$

Let now $\tau \in \partial_{\epsilon} T(A)$.

Apply the fact that $A_\omega \cap A' \to M_\tau^\omega \cap M_\tau{}'$ is onto and the assumption that M_{τ} is McDuff to find:

 $\varphi\colon\;\; M_2\to M_\tau^\omega\cap M_{\tau}'$ (unital [∗] -homomorphism) $V_0: M_2 \to A_\omega \cap A'$ (ucp lift of φ) $V = (V_1, V_2, V_3, \dots): M_2 \to \ell^{\infty}(A)$ (ucp lift of V_0)

Lemma

The ucp maps V_n : $M_2 \rightarrow A$ satisfy:

- **■** $\lim_{\omega} \tau (V_n(b^*b) V_n(b)^*V_n(b)) = 0$ for all $b \in M_2$.
- **3** lim $\left\| [a, V_n(b)] \right\| = 0$ for all $a \in A$ and all $b \in M_2$.

We must glue these maps (one for each trace) together!

We have a natural ucp map $\mathcal{T}: A \to C(\partial_e \mathcal{T}(A))$ given by

$$
\mathcal{T}(a)(\tau)=\tau(a), \qquad a\in A, \ \tau\in \partial_e\,\mathcal{T}(A).
$$

This induces a ucp map \mathcal{T}_{ω} : $A_{\omega} \to C(\partial_{e} T(A))_{\omega}$

Proposition

If A is a unital separable C^{*}-algebra, for which $\partial_e T(A)$ is closed in $T(A)$, and if A denotes the multiplicative domain of T_{ω} , then $\mathcal{A}\subseteq(A_{\omega}\cap A')+J_{\mathcal{A}}$, and

$$
\mathcal{T}_{\omega}|_{\mathcal{A}} \colon \mathcal{A} \to \mathcal{C}(\partial_{\mathtt{e}}\, \mathcal{T}(A))_{\omega}
$$

is a [∗] -isomorphism.

It follows that if $f_1, \ldots, f_n \subseteq C(\partial_{\rho} T(A))$ are pairwise orthogonal positive contractions, $\varepsilon > 0$ and $F \subset A$ is finite, then there are pairwise orthogonal contractions $a_1, \ldots, a_n \in A$ such that

 $\|\mathcal{T}(a_j)-f_j\|_\infty<\varepsilon,\quad \|\mathcal{T}(a_j^2)-f_j^2\|_\infty<\varepsilon,\quad \|[a,a_j]\|<\varepsilon,\quad a\in\mathcal{F}.$

We have a natural ucp map $\mathcal{T}: A \to C(\partial_e \mathcal{T}(A))$ given by

$$
\mathcal{T}(a)(\tau)=\tau(a), \qquad a\in A, \ \tau\in \partial_e\,\mathcal{T}(A).
$$

This induces a ucp map \mathcal{T}_{ω} : $A_{\omega} \to C(\partial_{e} T(A))_{\omega}$

Proposition

If A is a unital separable C^{*}-algebra, for which $\partial_e T(A)$ is closed in $T(A)$, and if A denotes the multiplicative domain of T_{ω} , then $\mathcal{A}\subseteq(A_{\omega}\cap A')+J_{\mathcal{A}}$, and

$$
\mathcal{T}_{\omega}|_{\mathcal{A}} \colon \mathcal{A} \to \mathcal{C}(\partial_{\mathtt{e}}\, \mathcal{T}(A))_{\omega}
$$

is a [∗] -isomorphism.

It follows that if $f_1, \ldots, f_n \subseteq C(\partial_e \mathcal{T}(A))$ are pairwise orthogonal positive contractions, $\varepsilon > 0$ and $F \subset A$ is finite, then there are pairwise orthogonal contractions $a_1, \ldots, a_n \in A$ such that

$$
\|\mathcal{T}(a_j)-f_j\|_\infty<\varepsilon,\quad \|\mathcal{T}(a_j^2)-f_j^2\|_\infty<\varepsilon,\quad \|[a,a_j]\|<\varepsilon,\quad a\in\mathsf{F}.
$$

Suppose we are given:

- $\bullet \varepsilon > 0$ and $F \subseteq A$ finite,
- $V_1, V_2, \ldots, V_k: M_2 \rightarrow A$ ucp maps,
- \bullet $U_1, U_2, \ldots, U_k \subseteq \partial_{\epsilon} T(A)$ open, pairwise disjoint,
- $f_1, f_2, \ldots, f_k \in C(\partial_e \, \mathcal{T}(A))^+$ contractions; $\mathrm{supp}(f_j) \subseteq U_j$,

• $a_1, a_2, \ldots, a_k \in A$ pairwise orthogonal positive contractions such that

- $\tau\bigl(V_j(b^*b) V_j(b)^*V_j(b)\bigr) < \varepsilon$ for all contractions $b \in M_2$ and all $\tau \in U_j$,
- $\|[a, V_i(b)]\| < \varepsilon$ for all contractions $b \in M_2$ and all $a \in F$,
- $\|[a, a_j]\| < \varepsilon$ for all $a \in F \cup \{ \text{images of balls of the V_j'}s\},$
- $\|\mathcal{T}(a_j) f_j\| < \varepsilon$ and $\|\mathcal{T}(a_j^2) f_j^2\| < \varepsilon$

Then

$$
W(b) = \sum_{j=1}^k a_j^{1/2} V_j(b) a_j^{1/2}, \qquad b \in M_2
$$

defines a cp "tracially almost order zero" map $M_2 \rightarrow A$ with $W(1) = \sum_{j=1}^{m} a_j$. **KORKAR KERKER E VOOR**

KOD KARD KED KED E VOOR

Advertisement:

Masterclass on Sofic groups and Applications to Operator Algebras

Copenhagen, November 5.-9., 2012.

The Masterclass is aimed at PhD students and postdocs (others are also welcome). There are lecture series (mini courses) by:

- **David Kerr**
- Narutaka Ozawa
- Andreas Thom
- $+$ a few additional lectures, including by Nicolas Monod.

Some support for PhD students and postdoc is available (you must apply). Don't wait too long.

The webpage for the conference can be found under "conferences" in the departments homepage www.math.ku.dk.