FINITE GENERATORS FOR COUNTABLE GROUP ACTIONS

Anush Tserunyan

UCLA

Definition

A countable Borel partition \mathcal{P} of X is called a *generator* if its G-translates

 $\{gA: g \in G, A \in \mathcal{P}\}$ generate the Borel σ -algebra of X.

Definition

A countable Borel partition \mathcal{P} of X is called a *generator* if its G-translates

 $\{gA: g \in G, A \in \mathcal{P}\}$ generate the Borel σ -algebra of X.

Another way of thinking about it is as follows: for a Borel partition $\mathcal{P} = \{P_n\}_{n < k}, \ k \le \infty$, define a map $f_{\mathcal{P}} : X \to k^G$ by $x \mapsto (n_g)_{g \in G}$, where $gx \in P_{n_g}$.

Definition

A countable Borel partition \mathcal{P} of X is called a *generator* if its G-translates

 $\{gA: g \in G, A \in \mathcal{P}\}$ generate the Borel σ -algebra of X.

Another way of thinking about it is as follows: for a Borel partition $\mathcal{P} = \{P_n\}_{n < k}, k \leq \infty$, define a map $f_{\mathcal{P}} : X \to k^G$ by $x \mapsto (n_g)_{g \in G}$, where $gx \in P_{n_g}$. This $f_{\mathcal{P}}$ is called the *symbolic representation map* of \mathcal{P} .

Definition

A countable Borel partition \mathcal{P} of X is called a *generator* if its G-translates

 $\{gA: g \in G, A \in \mathcal{P}\}$ generate the Borel σ -algebra of X.

Another way of thinking about it is as follows: for a Borel partition $\mathcal{P} = \{P_n\}_{n < k}, k \leq \infty$, define a map $f_{\mathcal{P}} : X \to k^G$ by $x \mapsto (n_g)_{g \in G}$, where $gx \in P_{n_g}$. This $f_{\mathcal{P}}$ is called the *symbolic representation map* of \mathcal{P} .

Easy fact: \mathcal{P} is a generator if and only if $f_{\mathcal{P}}$ is injective.

Example

If X is an invariant Borel subset of the shift k^G , then letting $V_i = \{x \in k^G : x(1_G) = i\}, i < k$, we get that $\mathcal{P} = \{V_i\}_{i < k}$ is a

k-generator.

Example

If X is an invariant Borel subset of the shift k^{G} , then letting

$$V_i = \{x \in k^G : x(1_G) = i\}, i < k$$
, we get that $\mathcal{P} = \{V_i\}_{i < k}$ is a

k-generator.

Observation

For $k \leq \infty$, X admits a k-generator if and only if there is a Borel

G-embedding of X into k^G .

Theorem (Weiss '87 for $G = \mathbb{Z}$; Jackson-Kechris-Louveau '02)

Every aperiodic Borel G-space X admits a countable generator.

Theorem (Weiss '87 for $G = \mathbb{Z}$; Jackson-Kechris-Louveau '02)

Every aperiodic Borel G-space X admits a countable generator. In particular, there is a Borel G-embedding of X into \mathbb{N}^{G} .

Theorem (Weiss '87 for $G = \mathbb{Z}$; Jackson-Kechris-Louveau '02)

Every aperiodic Borel G-space X admits a countable generator. In particular, there is a Borel G-embedding of X into \mathbb{N}^{G} .

This is sharp in the sense that we could not hope to obtain a finite generator solely from the aperiodicity assumption as we will explain later.

Theorem (Weiss '87 for $G = \mathbb{Z}$; Jackson-Kechris-Louveau '02)

Every aperiodic Borel G-space X admits a countable generator. In particular, there is a Borel G-embedding of X into \mathbb{N}^{G} .

This is sharp in the sense that we could not hope to obtain a finite generator solely from the aperiodicity assumption as we will explain later.

In this talk, we are concerned with the existence of finite generators.

Let (X, μ, T) be a dynamical system. For a finite partition \mathcal{P} of X consider the following interpretation:

Let (X, μ, T) be a dynamical system. For a finite partition \mathcal{P} of X consider the following interpretation:

• X is the set of possible pictures of the world,

Let (X, μ, T) be a dynamical system. For a finite partition \mathcal{P} of X consider the following interpretation:

- X is the set of possible pictures of the world,
- T is a unit of time,

Let (X, μ, T) be a dynamical system. For a finite partition \mathcal{P} of X consider the following interpretation:

- X is the set of possible pictures of the world,
- T is a unit of time,
- \mathcal{P} is an experiment.

Let (X, μ, T) be a dynamical system. For a finite partition \mathcal{P} of X consider the following interpretation:

- X is the set of possible pictures of the world,
- T is a unit of time,
- \mathcal{P} is an experiment.

We repeat the experiment every day and record its outcome.

Let (X, μ, T) be a dynamical system. For a finite partition \mathcal{P} of X consider the following interpretation:

- X is the set of possible pictures of the world,
- T is a unit of time,
- \mathcal{P} is an experiment.

We repeat the experiment every day and record its outcome.

The goal is to find the true picture of the world (i.e. a randomly chosen $x \in X$) with probability 1.

Let (X, μ, T) be a dynamical system. For a finite partition \mathcal{P} of X consider the following interpretation:

- X is the set of possible pictures of the world,
- T is a unit of time,
- \mathcal{P} is an experiment.

We repeat the experiment every day and record its outcome.

The goal is to find the true picture of the world (i.e. a randomly chosen $x \in X$) with probability 1. This happens precisely when \mathcal{P} is a generator mod μ -NULL.

Recall: for a finite experiment (partition of X) $\mathcal{P} = \{P_n\}_{n < k}$, the *static* entropy $h_{\mu}(\mathcal{P})$ is a real number that measures our probabilistic uncertainty about the outcome of the experiment;

Recall: for a finite experiment (partition of X) $\mathcal{P} = \{P_n\}_{n < k}$, the *static* entropy $h_{\mu}(\mathcal{P})$ is a real number that measures our probabilistic uncertainty about the outcome of the experiment; equivalently, it measures how much information we gain from learning the outcome of the experiment.

Recall: for a finite experiment (partition of X) $\mathcal{P} = \{P_n\}_{n < k}$, the *static* entropy $h_{\mu}(\mathcal{P})$ is a real number that measures our probabilistic uncertainty about the outcome of the experiment; equivalently, it measures how much information we gain from learning the outcome of the experiment.

One then defines the time average of the entropy of ${\mathcal P}$ by

$$h_{\mu}(\mathcal{P},T) = \lim_{n \to \infty} \frac{1}{n} h_{\mu}(\bigvee_{i < n} T^{i} \mathcal{P}).$$

Recall: for a finite experiment (partition of X) $\mathcal{P} = \{P_n\}_{n < k}$, the *static* entropy $h_{\mu}(\mathcal{P})$ is a real number that measures our probabilistic uncertainty about the outcome of the experiment; equivalently, it measures how much information we gain from learning the outcome of the experiment.

One then defines the time average of the entropy of ${\mathcal P}$ by

$$h_{\mu}(\mathcal{P},T) = \lim_{n \to \infty} \frac{1}{n} h_{\mu}(\bigvee_{i < n} T^{i} \mathcal{P}).$$

The sequence in the limit is decreasing and hence the limit is finite.

Recall: for a finite experiment (partition of X) $\mathcal{P} = \{P_n\}_{n < k}$, the *static* entropy $h_{\mu}(\mathcal{P})$ is a real number that measures our probabilistic uncertainty about the outcome of the experiment; equivalently, it measures how much information we gain from learning the outcome of the experiment.

One then defines the time average of the entropy of ${\mathcal P}$ by

$$h_{\mu}(\mathcal{P},T) = \lim_{n\to\infty} \frac{1}{n} h_{\mu}(\bigvee_{i< n} T^{i}\mathcal{P}).$$

The sequence in the limit is decreasing and hence the limit is finite.

Finally the *entropy of the dynamical system* (X, μ, T) is defined as the supremum over all (finite) experiments:

$$h_{\mu}(T) = \sup_{\mathcal{P}} h_{\mu}(\mathcal{P}, T),$$

Recall: for a finite experiment (partition of X) $\mathcal{P} = \{P_n\}_{n < k}$, the *static* entropy $h_{\mu}(\mathcal{P})$ is a real number that measures our probabilistic uncertainty about the outcome of the experiment; equivalently, it measures how much information we gain from learning the outcome of the experiment.

One then defines the time average of the entropy of ${\mathcal P}$ by

$$h_{\mu}(\mathcal{P},T) = \lim_{n \to \infty} \frac{1}{n} h_{\mu}(\bigvee_{i < n} T^{i} \mathcal{P}).$$

The sequence in the limit is decreasing and hence the limit is finite.

Finally the *entropy of the dynamical system* (X, μ, T) is defined as the supremum over all (finite) experiments:

$$h_{\mu}(T) = \sup_{\mathcal{P}} h_{\mu}(\mathcal{P}, T),$$

and it could be finite or infinite.

Recall: for a finite experiment (partition of X) $\mathcal{P} = \{P_n\}_{n < k}$, the *static* entropy $h_{\mu}(\mathcal{P})$ is a real number that measures our probabilistic uncertainty about the outcome of the experiment; equivalently, it measures how much information we gain from learning the outcome of the experiment.

One then defines the time average of the entropy of ${\mathcal P}$ by

$$h_{\mu}(\mathcal{P},T) = \lim_{n \to \infty} \frac{1}{n} h_{\mu}(\bigvee_{i < n} T^{i} \mathcal{P}).$$

The sequence in the limit is decreasing and hence the limit is finite.

Finally the *entropy of the dynamical system* (X, μ, T) is defined as the supremum over all (finite) experiments:

$$h_{\mu}(T) = \sup_{\mathcal{P}} h_{\mu}(\mathcal{P}, T),$$

and it could be finite or infinite. When is this supremum achieved?

It is plausible that if \mathcal{P} is a finite generator, then $h_{\mu}(\mathcal{P}, T)$ should be all the information there is to obtain about X

Theorem (Kolmogorov-Sinai, '58-59)

If \mathcal{P} is a finite generator modulo μ -NULL, then $h_{\mu}(T) = h_{\mu}(\mathcal{P}, T)$.

Theorem (Kolmogorov-Sinai, '58-59)

If \mathcal{P} is a finite generator modulo μ -NULL, then $h_{\mu}(T) = h_{\mu}(\mathcal{P}, T)$. In particular, the entropy is finite: $h_{\mu}(T) \leq \log(|\mathcal{P}|) < \infty$.

Theorem (Kolmogorov-Sinai, '58-59)

If \mathcal{P} is a finite generator modulo μ -NULL, then $h_{\mu}(\mathcal{T}) = h_{\mu}(\mathcal{P}, \mathcal{T})$. In particular, the entropy is finite: $h_{\mu}(\mathcal{T}) \leq \log(|\mathcal{P}|) < \infty$.

In case of ergodic systems, the converse is also true:

Theorem (Kolmogorov-Sinai, '58-59)

If \mathcal{P} is a finite generator modulo μ -NULL, then $h_{\mu}(\mathcal{T}) = h_{\mu}(\mathcal{P}, \mathcal{T})$. In particular, the entropy is finite: $h_{\mu}(\mathcal{T}) \leq \log(|\mathcal{P}|) < \infty$.

In case of ergodic systems, the converse is also true:

Theorem (Krieger, '70)

Suppose (X, μ, T) is ergodic. If $h_{\mu}(T) < \log k$, for some $k \ge 2$, then there is a k-generator modulo μ -NULL.

Now let X be just a Borel \mathbb{Z} -space (no measure specified).

Now let X be just a Borel \mathbb{Z} -space (no measure specified).

By the Kolmogorov-Sinai theorem,
By the Kolmogorov-Sinai theorem, if there exists an invariant probability measure on X of infinite entropy, then X does not admit a finite generator.

By the Kolmogorov-Sinai theorem, if there exists an invariant probability measure on X of infinite entropy, then X does not admit a finite generator.

It is because of this measure-theoretic obstruction that finite generators don't exist for aperiodic actions in general.

By the Kolmogorov-Sinai theorem, if there exists an invariant probability measure on X of infinite entropy, then X does not admit a finite generator.

It is because of this measure-theoretic obstruction that finite generators don't exist for aperiodic actions in general.

What happens when we get rid of the measures?

By the Kolmogorov-Sinai theorem, if there exists an invariant probability measure on X of infinite entropy, then X does not admit a finite generator.

It is because of this measure-theoretic obstruction that finite generators don't exist for aperiodic actions in general.

What happens when we get rid of the measures?

Question (Weiss '87)

If a Borel \mathbb{Z} -space X does not admit any invariant probability measure, does it have a finite generator?

It is perhaps more natural to ask the following

Question

If a Borel \mathbb{Z} -space X does not admit an invariant probability measure of

infinite entropy, does it have a finite generator?

It is perhaps more natural to ask the following

Question

If a Borel \mathbb{Z} -space X does not admit an invariant probability measure of

infinite entropy, does it have a finite generator?

I show that these questions are actually equivalent

It is perhaps more natural to ask the following

Question

If a Borel Z-space X does not admit an invariant probability measure of *infinite entropy*, does it have a finite generator?

I show that **these questions are actually equivalent**, so a positive answer to Weiss's question would imply a nice dichotomy for Borel actions of \mathbb{Z} .

It is perhaps more natural to ask the following

Question

If a Borel \mathbb{Z} -space X does not admit an invariant probability measure of infinite entropy, does it have a finite generator?

I show that **these questions are actually equivalent**, so a positive answer to Weiss's question would imply a nice dichotomy for Borel actions of \mathbb{Z} .

Thus we focus on Weiss's question for arbitrary group G.

Question (Weiss '87)

If a Borel G-space X does not admit any invariant probability measure,

does it have a finite generator?

Theorem (Krengel, Kuntz, '74)

Let X be a Borel G-space and let μ be a quasi-invariant Borel probability measure on X (i.e. G preserves the μ -null sets).

Theorem (Krengel, Kuntz, '74)

Let X be a Borel G-space and let μ be a quasi-invariant Borel probability measure on X (i.e. G preserves the μ -null sets). If there is no invariant Borel probability measure absolutely continuous with respect to μ ,

Theorem (Krengel, Kuntz, '74)

Let X be a Borel G-space and let μ be a quasi-invariant Borel probability measure on X (i.e. G preserves the μ -null sets). If there is no invariant Borel probability measure absolutely continuous with respect to μ , then X admits a 2-generator modulo μ -NULL.

Baire category context: Kechris's question

In the early '90s, Kechris asked whether an analogue of the Krengel-Kuntz theorem holds in the context of Baire category:

Question (Kechris, mid-'90s)

If X is an aperiodic Polish G-space, does there exist a finite generator on an invariant comeager set?

Question (Kechris, mid-'90s)

If X is an aperiodic Polish G-space, does there exist a finite generator on an invariant comeager set?

Note that a positive answer to Weiss's question would imply a positive answer to this question

Question (Kechris, mid-'90s)

If X is an aperiodic Polish G-space, does there exist a finite generator on an invariant comeager set?

Note that a positive answer to Weiss's question would imply a positive answer to this question because, by the Generic Compressibility theorem of Kechris-Miller, we can always restrict to a comeager invariant set with no invariant probability measure on it

Question (Kechris, mid-'90s)

If X is an aperiodic Polish G-space, does there exist a finite generator on an invariant comeager set?

Note that a positive answer to Weiss's question would imply a positive answer to this question because, by the Generic Compressibility theorem of Kechris-Miller, we can always restrict to a comeager invariant set with no invariant probability measure on it and then apply the positive answer to Weiss's question.

Answers: Kechris's question (Baire category setting)

Answers: Kechris's question (Baire category setting)

One may first try to adapt the proof of Krengel-Kuntz result to the Baire category setting.

One may first try to adapt the proof of Krengel-Kuntz result to the Baire category setting. However, their proof relies on the existence of so-called *weakly wandering sets* of arbitrarily large measure,

Using a different approach, we give an affirmative answer to Kechris's question:

Using a different approach, we give an affirmative answer to Kechris's question:

Theorem (Ts.)

If X is an aperiodic Polish G-space, then there exists a 4-generator on an invariant comeager set.

Using a different approach, we give an affirmative answer to Kechris's question:

Theorem (Ts.)

If X is an aperiodic Polish G-space, then there exists a 4-generator on an invariant comeager set.

The proof of this uses the Kuratowski-Ulam method introduced in the proofs of generic hyperfiniteness and generic compressibility by Kechris and Miller.

It is not hard to show that any Borel G-space X has a Polish topological realization, i.e. there is a Polish topology on X having the same Borel sets and making the action continuous.

It is not hard to show that any Borel G-space X has a Polish topological realization, i.e. there is a Polish topology on X having the same Borel sets and making the action continuous. So we reformulate:

Question (Weiss, '87)

If a Polish G-space X does not admit any invariant probability measure, does it have a finite generator?

It is not hard to show that any Borel G-space X has a Polish topological realization, i.e. there is a Polish topology on X having the same Borel sets and making the action continuous. So we reformulate:

Question (Weiss, '87)

If a Polish G-space X does not admit any invariant probability measure, does it have a finite generator?

We give a positive answer to Weiss's question in case X is a σ -compact Polish G-space

It is not hard to show that any Borel G-space X has a Polish topological realization, i.e. there is a Polish topology on X having the same Borel sets and making the action continuous. So we reformulate:

Question (Weiss, '87)

If a Polish G-space X does not admit any invariant probability measure, does it have a finite generator?

We give a positive answer to Weiss's question in case X is a σ -compact Polish G-space, in particular if X is a locally compact Polish G-space.

It is not hard to show that any Borel G-space X has a Polish topological realization, i.e. there is a Polish topology on X having the same Borel sets and making the action continuous. So we reformulate:

Question (Weiss, '87)

If a Polish G-space X does not admit any invariant probability measure, does it have a finite generator?

We give a positive answer to Weiss's question in case X is a σ -compact Polish G-space, in particular if X is a locally compact Polish G-space. Actually, we don't really need Polishness as long as the topology has the same Borel sets,

It is not hard to show that any Borel G-space X has a Polish topological realization, i.e. there is a Polish topology on X having the same Borel sets and making the action continuous. So we reformulate:

Question (Weiss, '87)

If a Polish G-space X does not admit any invariant probability measure, does it have a finite generator?

We give a positive answer to Weiss's question in case X is a σ -compact Polish G-space, in particular if X is a locally compact Polish G-space. Actually, we don't really need Polishness as long as the topology has the same Borel sets, so the precise formulation is:

Theorem (Ts.)

Let X be a Borel G-space that admits a σ -compact realization.

It is not hard to show that any Borel G-space X has a Polish topological realization, i.e. there is a Polish topology on X having the same Borel sets and making the action continuous. So we reformulate:

Question (Weiss, '87)

If a Polish G-space X does not admit any invariant probability measure, does it have a finite generator?

We give a positive answer to Weiss's question in case X is a σ -compact Polish G-space, in particular if X is a locally compact Polish G-space. Actually, we don't really need Polishness as long as the topology has the same Borel sets, so the precise formulation is:

Theorem (Ts.)

Let X be a Borel G-space that admits a σ -compact realization. If there is no invariant probability measure on X, then X admits a 32-generator.

Let X be a Borel G-space that admits a σ -compact realization. If there is no invariant probability measure on X, then X admits a 32-generator.

Let X be a Borel G-space that admits a σ -compact realization. If there is no invariant probability measure on X, then X admits a 32-generator.

Remark: We were wondering if every Borel *G*-space had a σ -compact realization

Let X be a Borel G-space that admits a σ -compact realization. If there is no invariant probability measure on X, then X admits a 32-generator.

Remark: We were wondering if every Borel *G*-space had a σ -compact realization, but it was shown in a recent Conley-Kechris-Miller paper that it is not the case.

Let X be a Borel G-space that admits a σ -compact realization. If there is no invariant probability measure on X, then X admits a 32-generator.

Remark: We were wondering if every Borel *G*-space had a σ -compact realization, but it was shown in a recent Conley-Kechris-Miller paper that it is not the case. E.g. the standard coordinatewise action of $\mathbb{Z}^{\leq \mathbb{N}}$ on $\mathbb{Z}^{\mathbb{N}}$.
Theorem (Ts.)

Let X be a Borel G-space that admits a σ -compact realization. If there is no invariant probability measure on X, then X admits a 32-generator.

Remark: We were wondering if every Borel *G*-space had a σ -compact realization, but it was shown in a recent Conley-Kechris-Miller paper that it is not the case. E.g. the standard coordinatewise action of $\mathbb{Z}^{<\mathbb{N}}$ on $\mathbb{Z}^{\mathbb{N}}$.

We will spend the remaining time discussing the idea of the proof of the above theorem.

X does not admit an invariant probability measure.

X does not admit an invariant probability measure.

It is a negative statement, but fortunately there is a positive equivalent condition due to Nadkarni and we will work towards presenting it (although the proof does not directly use this condition).

X does not admit an invariant probability measure.

It is a negative statement, but fortunately there is a positive equivalent condition due to Nadkarni and we will work towards presenting it (although the proof does not directly use this condition).

Definition

Two Borel sets $A, B \subseteq X$ are said to be *equidecomposable*

X does not admit an invariant probability measure.

It is a negative statement, but fortunately there is a positive equivalent condition due to Nadkarni and we will work towards presenting it (although the proof does not directly use this condition).

Definition

Two Borel sets $A, B \subseteq X$ are said to be *equidecomposable* (denoted by $A \sim B$)

X does not admit an invariant probability measure.

It is a negative statement, but fortunately there is a positive equivalent condition due to Nadkarni and we will work towards presenting it (although the proof does not directly use this condition).

Definition

Two Borel sets $A, B \subseteq X$ are said to be *equidecomposable* (denoted by $A \sim B$) if there are Borel partitions $\{A_n\}_{n \in \mathbb{N}}$ and $\{B_n\}_{n \in \mathbb{N}}$ of A and B, respectively,

X does not admit an invariant probability measure.

It is a negative statement, but fortunately there is a positive equivalent condition due to Nadkarni and we will work towards presenting it (although the proof does not directly use this condition).

Definition

Two Borel sets $A, B \subseteq X$ are said to be *equidecomposable* (denoted by $A \sim B$) if there are Borel partitions $\{A_n\}_{n \in \mathbb{N}}$ and $\{B_n\}_{n \in \mathbb{N}}$ of A and B, respectively, and $\{g_n\}_{n \in \mathbb{N}} \subseteq G$

X does not admit an invariant probability measure.

It is a negative statement, but fortunately there is a positive equivalent condition due to Nadkarni and we will work towards presenting it (although the proof does not directly use this condition).

Definition

Two Borel sets $A, B \subseteq X$ are said to be *equidecomposable* (denoted by $A \sim B$) if there are Borel partitions $\{A_n\}_{n \in \mathbb{N}}$ and $\{B_n\}_{n \in \mathbb{N}}$ of A and B, respectively, and $\{g_n\}_{n \in \mathbb{N}} \subseteq G$ such that $g_n A_n = B_n$.

We write $A \leq B$ if $A \sim B' \subseteq B$,

We write $A \leq B$ if $A \sim B' \subseteq B$, and we write $A \prec B$ if moreover this B' leaves out at least one point from every orbit in B.

We write $A \leq B$ if $A \sim B' \subseteq B$, and we write $A \prec B$ if moreover this B' leaves out at least one point from every orbit in B.

Observation

We write $A \leq B$ if $A \sim B' \subseteq B$, and we write $A \prec B$ if moreover this B' leaves out at least one point from every orbit in B.

Observation

Let $A, B \subseteq X$ be Borel sets and μ an invariant probability measure on X. (a) If $A \sim B$, then $\mu(A) = \mu(B)$.

We write $A \leq B$ if $A \sim B' \subseteq B$, and we write $A \prec B$ if moreover this B' leaves out at least one point from every orbit in B.

Observation

Let $A, B \subseteq X$ be Borel sets and μ an invariant probability measure on X.

- (a) If $A \sim B$, then $\mu(A) = \mu(B)$.
- (b) If $A \leq B$, then $\mu(A) \leq \mu(B)$.

We write $A \leq B$ if $A \sim B' \subseteq B$, and we write $A \prec B$ if moreover this B' leaves out at least one point from every orbit in B.

Observation

Let $A, B \subseteq X$ be Borel sets and μ an invariant probability measure on X.

(a) If
$$A \sim B$$
, then $\mu(A) = \mu(B)$.

(b) If $A \leq B$, then $\mu(A) \leq \mu(B)$.

(c) If $A \prec B$, then either $\mu(A) < \mu(B)$ or $\mu(A) = \mu(B) = 0$.

We write $A \leq B$ if $A \sim B' \subseteq B$, and we write $A \prec B$ if moreover this B' leaves out at least one point from every orbit in B.

Observation

Let $A, B \subseteq X$ be Borel sets and μ an invariant probability measure on X.

(a) If
$$A \sim B$$
, then $\mu(A) = \mu(B)$.

(b) If $A \leq B$, then $\mu(A) \leq \mu(B)$.

(c) If $A \prec B$, then either $\mu(A) < \mu(B)$ or $\mu(A) = \mu(B) = 0$.

We call A *compressible* if $A \prec A$.

We write $A \leq B$ if $A \sim B' \subseteq B$, and we write $A \prec B$ if moreover this B' leaves out at least one point from every orbit in B.

Observation

Let $A, B \subseteq X$ be Borel sets and μ an invariant probability measure on X.

(a) If
$$A \sim B$$
, then $\mu(A) = \mu(B)$.

(b) If $A \leq B$, then $\mu(A) \leq \mu(B)$.

(c) If $A \prec B$, then either $\mu(A) < \mu(B)$ or $\mu(A) = \mu(B) = 0$.

We call A *compressible* if $A \prec A$.

It is clear from (c) that if X is compressible then there is no invariant probability measure on X.

We write $A \leq B$ if $A \sim B' \subseteq B$, and we write $A \prec B$ if moreover this B' leaves out at least one point from every orbit in B.

Observation

Let $A, B \subseteq X$ be Borel sets and μ an invariant probability measure on X.

(a) If
$$A \sim B$$
, then $\mu(A) = \mu(B)$.

(b) If $A \leq B$, then $\mu(A) \leq \mu(B)$.

(c) If $A \prec B$, then either $\mu(A) < \mu(B)$ or $\mu(A) = \mu(B) = 0$.

We call A *compressible* if $A \prec A$.

It is clear from (c) that if X is compressible then there is no invariant probability measure on X. The converse is also true!

We write $A \leq B$ if $A \sim B' \subseteq B$, and we write $A \prec B$ if moreover this B' leaves out at least one point from every orbit in B.

Observation

Let $A, B \subseteq X$ be Borel sets and μ an invariant probability measure on X.

(a) If
$$A \sim B$$
, then $\mu(A) = \mu(B)$.

(b) If $A \leq B$, then $\mu(A) \leq \mu(B)$.

(c) If $A \prec B$, then either $\mu(A) < \mu(B)$ or $\mu(A) = \mu(B) = 0$.

We call A *compressible* if $A \prec A$.

It is clear from (c) that if X is compressible then there is no invariant probability measure on X. The converse is also true!

Theorem (Nadkarni, '91)

There is no invariant probability measure on X if and only if X is compressible.

The idea of the proof

So we take the nonconstructive approach, i.e. try to prove the contrapositive of Weiss's question:

No finite generators $\longrightarrow \exists$ an invariant probability measure

So we take the nonconstructive approach, i.e. try to prove the contrapositive of Weiss's question:

No finite generators $\longrightarrow \exists$ an invariant probability measure

When constructing an invariant measure (e.g. Haar measure), one usually needs some notion of "largeness" so that X is "large" (e.g. having nonempty interior, being incompressible).

So we take the nonconstructive approach, i.e. try to prove the contrapositive of Weiss's question:

No finite generators $\longrightarrow \exists$ an invariant probability measure

When constructing an invariant measure (e.g. Haar measure), one usually needs some notion of "largeness" so that X is "large" (e.g. having nonempty interior, being incompressible). So we aim at something like this:

No finite generators

 \exists an invariant probability measure

X is not "small" = X is "large"

The key definition towards the right notion of "smallness"

The key definition towards the right notion of "smallness"

In the definition of equidecomposability of sets A and B, the partitions $\{A_n\}_{n\in\mathbb{N}}$ and $\{B_n\}_{n\in\mathbb{N}}$ belong to the Borel σ -algebra.

In the definition of equidecomposability of sets A and B, the partitions $\{A_n\}_{n\in\mathbb{N}}$ and $\{B_n\}_{n\in\mathbb{N}}$ belong to the Borel σ -algebra.

For $i \ge 1$, we define a finer notion of equidecomposability by restricting to some σ -algebra that is generated by the *G*-translates of *i*-many Borel sets.

In the definition of equidecomposability of sets A and B, the partitions $\{A_n\}_{n\in\mathbb{N}}$ and $\{B_n\}_{n\in\mathbb{N}}$ belong to the Borel σ -algebra.

For $i \ge 1$, we define a finer notion of equidecomposability by restricting to some σ -algebra that is generated by the *G*-translates of *i*-many Borel sets. In this case we say that *A* and *B* are *i*-equidecomposable and denote by $A \sim_i B$. In the definition of equidecomposability of sets A and B, the partitions $\{A_n\}_{n\in\mathbb{N}}$ and $\{B_n\}_{n\in\mathbb{N}}$ belong to the Borel σ -algebra.

For $i \ge 1$, we define a finer notion of equidecomposability by restricting to some σ -algebra that is generated by the *G*-translates of *i*-many Borel sets. In this case we say that *A* and *B* are *i*-equidecomposable and denote by $A \sim_i B$.

In other words, $A \sim_i B$ if *i*-many Borel sets are enough to generate a *G*-invariant σ -algebra that is sufficiently fine to carve out partitions $\{A_n\}_{n\in\mathbb{N}}$ and $\{B_n\}_{n\in\mathbb{N}}$ witnessing $A \sim B$.

As before, we say that a set A is *i-compressible* if $A \prec_i A$.

As before, we say that a set A is *i-compressible* if $A \prec_i A$.

Taking *i*-compressibility as our notion of "smallness", we prove the following:

As before, we say that a set A is *i*-compressible if $A \prec_i A$.

Taking *i*-compressibility as our notion of "smallness", we prove the following:

No 32-generator \exists an invariant probability measure (1) \searrow (2)

X is not 4-compressible

Lemma

If X is i-compressible, then it admits a 2^{i+1} -generator.

Lemma

If X is i-compressible, then it admits a 2^{i+1} -generator.

Thus we obtain:

No 2⁵-generator $\longrightarrow X$ is not 4-compressible

Lemma

If X is i-compressible, then it admits a 2^{i+1} -generator.

Thus we obtain:

No 2⁵-generator $\longrightarrow X$ is not 4-compressible

Remark: It is not hard to see that *i*-compressibility is necessary for the existence of a finite generator under the assumption that X is compressible.

This step is proving an analog of Nadkarni's theorem for *i*-compressibility: X is not 4-compressible $\rightarrow \exists$ an invariant probability measure
This step is proving an analog of Nadkarni's theorem for *i*-compressibility: X is not 4-compressible $\longrightarrow \exists$ an invariant probability measure

Firstly, we show that *i*-compressibility is indeed a notion of "smallness", i.e. that the set of *i*-compressible sets (roughly speaking) forms a σ -ideal.

This step is proving an analog of Nadkarni's theorem for *i*-compressibility: X is not 4-compressible $\longrightarrow \exists$ an invariant probability measure

Firstly, we show that *i*-compressibility is indeed a notion of "smallness", i.e. that the set of *i*-compressible sets (roughly speaking) forms a σ -ideal. The difficulty here is to prevent *i* from growing when taking unions.

This step is proving an analog of Nadkarni's theorem for *i*-compressibility: X is not 4-compressible $\rightarrow \exists$ an invariant probability measure

Firstly, we show that *i*-compressibility is indeed a notion of "smallness", i.e. that the set of *i*-compressible sets (roughly speaking) forms a σ -ideal. The difficulty here is to prevent *i* from growing when taking unions.

Secondly, we assume that X is not 4-compressible and give a construction of a measure reminiscent of the one in the proof of Nadkarni's theorem or the existence of Haar measure.

This step is proving an analog of Nadkarni's theorem for *i*-compressibility: X is not 4-compressible $\rightarrow \exists$ an invariant probability measure

Firstly, we show that *i*-compressibility is indeed a notion of "smallness", i.e. that the set of *i*-compressible sets (roughly speaking) forms a σ -ideal. The difficulty here is to prevent *i* from growing when taking unions.

Secondly, we assume that X is not 4-compressible and give a construction of a measure reminiscent of the one in the proof of Nadkarni's theorem or the existence of Haar measure. But unfortunately our proof only yields a finitely additive invariant probability measure.

This step is proving an analog of Nadkarni's theorem for *i*-compressibility: X is not 4-compressible $\longrightarrow \exists$ an invariant probability measure

Firstly, we show that *i*-compressibility is indeed a notion of "smallness", i.e. that the set of *i*-compressible sets (roughly speaking) forms a σ -ideal. The difficulty here is to prevent *i* from growing when taking unions.

Secondly, we assume that X is not 4-compressible and give a construction of a measure reminiscent of the one in the proof of Nadkarni's theorem or the existence of Haar measure. But unfortunately our proof only yields a finitely additive invariant probability measure. However... with the additional assumption that X is σ -compact, we are able to concoct a countably additive invariant probability measure out of it. Putting steps (1) and (2) together, we obtain the main

Putting steps (1) and (2) together, we obtain the main

Theorem (Ts.)

Let X be a Borel G-space that admits a σ -compact realization. If there is

no invariant probability measure on X, then X admits a 32-generator.

THANK YOU