Dynamics, dimension and classification of C*-algebras

Wilhelm Winter

WWU Münster

Fields Institute, 10.9.2012

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 1/20

Dimension and C*-algebraic regularity

Dynamic versions of dimension and regularity

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 2 / 20

DEFINITION

Let *X* be locally compact and metrizable. We say *X* has dimension at most *n*, dim $X \le n$, if the following holds:

イロン イロン イヨン イヨン

DEFINITION

Let *X* be locally compact and metrizable. We say *X* has dimension at most *n*, dim $X \le n$, if the following holds: For any open cover \mathcal{V} of *X*, there is a finite open cover

 $(U_{\lambda})_{\lambda \in \Lambda}$

DEFINITION

Let *X* be locally compact and metrizable. We say *X* has dimension at most *n*, dim $X \le n$, if the following holds: For any open cover \mathcal{V} of *X*, there is a finite open cover

 $(U_{\lambda})_{\lambda \in \Lambda}$

such that

• $(U_{\lambda})_{\lambda \in \Lambda}$ refines \mathcal{V}

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *X* be locally compact and metrizable. We say *X* has dimension at most *n*, dim $X \le n$, if the following holds: For any open cover \mathcal{V} of *X*, there is a finite open cover

 $(U_{\lambda})_{\lambda \in \Lambda}$

such that

- $(U_{\lambda})_{\lambda \in \Lambda}$ refines \mathcal{V}
- $\Lambda = \Lambda^{(0)} \cup \ldots \cup \Lambda^{(n)}$ and for each $i \in \{0, \ldots, n\}$, the $(U_{\lambda})_{\Lambda^{(i)}}$ are pairwise disjoint.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DEFINITION (W–Zacharias) Let *A* be a C*-algebra, $n \in \mathbb{N}$. We say *A* has nuclear dimension at most *n*, dim_{nuc} $A \leq n$, if the following holds:

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 4 / 20

<ロト < 同ト < 巨ト < 巨ト

DEFINITION (W–Zacharias)

Let *A* be a C*-algebra, $n \in \mathbb{N}$. We say *A* has nuclear dimension at most *n*, dim_{nuc} $A \leq n$, if the following holds:

For any $\mathcal{F} \subset A$ finite and any $\varepsilon > 0$ there is an approximation

$$A \xrightarrow{\psi} F \xrightarrow{\varphi} A$$

DEFINITION (W–Zacharias)

Let *A* be a C*-algebra, $n \in \mathbb{N}$. We say *A* has nuclear dimension at most *n*, dim_{nuc} $A \leq n$, if the following holds:

For any $\mathcal{F} \subset A$ finite and any $\varepsilon > 0$ there is an approximation

$$A \xrightarrow{\psi} F \xrightarrow{\varphi} A$$

with F finite dimensional, ψ c.p.c., φ c.p. and

$$\varphi \circ \psi =_{\mathcal{F},\varepsilon} \mathsf{id}_{\!A},$$

DEFINITION (W–Zacharias) Let *A* be a C*-algebra, $n \in \mathbb{N}$. We say *A* has nuclear dimension at most *n*, dim_{nuc} $A \leq n$, if the following holds:

For any $\mathcal{F} \subset A$ finite and any $\varepsilon > 0$ there is an approximation

$$A \xrightarrow{\psi} F \xrightarrow{\varphi} A$$

with F finite dimensional, ψ c.p.c., φ c.p. and

$$\varphi \circ \psi =_{\mathcal{F},\varepsilon} \mathsf{id}_A,$$

and such that F can be written as

$$F = F^{(0)} \oplus \ldots \oplus F^{(n)}$$

with c.p.c. order zero maps

$$\varphi^{(i)} := \varphi|_{F^{(i)}}.$$

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 4 / 20

ヘロト ヘ戸ト ヘヨト ヘヨト

DEFINITION (Kirchberg)

Let *A* be unital. *A* has covering number at most *n*, if the following holds:

DEFINITION (Kirchberg)

Let *A* be unital. *A* has covering number at most *n*, if the following holds: For any $k \in \mathbb{N}$ there are c.p.c. order zero maps

$$\phi^{(i)}: M_k \oplus M_{k+1} \to A, \ i \in \{0,\ldots,n\},$$

such that

$$\sum_{i=0}^{n} \phi^{(i)}(1_k \oplus 1_{k+1}) \ge 1_A.$$

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 5/20

DEFINITION/PROPOSITION (using Toms–W, Rørdam–W) A C*-algebra *A* is \mathcal{Z} -stable if and only if for every $k \in \mathbb{N}$ there are c.p.c. order zero maps

$$\Phi: M_k \to A_\infty \cap A'$$

and

$$\Psi: M_2 \to A_\infty \cap A'$$

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 6/20

DEFINITION/PROPOSITION (using Toms–W, Rørdam–W) A C*-algebra *A* is \mathcal{Z} -stable if and only if for every $k \in \mathbb{N}$ there are c.p.c. order zero maps

$$\Phi: M_k \to A_\infty \cap A'$$

and

$$\Psi: M_2 \to A_\infty \cap A'$$

such that

$$\Psi(e_{11}) = \mathbf{1} - \Phi(\mathbf{1}_{M_k})$$

and

$$\Phi(e_{11})\Psi(e_{22}) = \Psi(e_{22})\Phi(e_{11}) = \Psi(e_{22}).$$

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 6/20

DEFINITION

A unital simple C*-algebra *A* has tracial *m*-comparison, if whenever $0 \neq a, b \in M_{\infty}(A)_+$ satisfy

 $d_{\tau}(a) < d_{\tau}(b)$

for all $\tau \in T(A)$, then

 $a \precsim b^{\oplus m+1}.$

W. Winter (WWU Münster)

Dynamics dimension and classification

▲ 重 ▶ 重 ∽ Q @ 10.9.2012 7 / 20

THEOREM (by many hands) Let

 $\mathcal{E} = \{ \mathcal{C}(X) \rtimes_{\alpha} \mathbb{Z} \mid X \text{ compact, metrizable, infinite,} \\ \alpha \text{ induced by a uniquely ergodic, minimal homeomorphism} \}.$

THEOREM (by many hands) Let

 $\mathcal{E} = \{ \mathcal{C}(X) \rtimes_{\alpha} \mathbb{Z} \mid X \text{ compact, metrizable, infinite,} \\ \alpha \text{ induced by a uniquely ergodic, minimal homeomorphism} \}.$

For any $A \in \mathcal{E}$, dim_{nuc} $A < \infty \iff A$ is \mathcal{Z} -stable $\iff A$ has tracial *m*-comparison for some $m \in \mathbb{N}$.

THEOREM (by many hands) Let

 $\mathcal{E} = \{\mathcal{C}(X) \rtimes_{\alpha} \mathbb{Z} \mid X \text{ compact, metrizable, infinite,} \\ \alpha \text{ induced by a uniquely ergodic, minimal homeomorphism} \}.$

For any $A \in \mathcal{E}$, dim_{nuc} $A < \infty \iff A$ is \mathcal{Z} -stable $\iff A$ has tracial *m*-comparison for some $m \in \mathbb{N}$.

Moreover, the regularity properties ensure classification by ordered *K*-theory in this case.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THEOREM (by many hands) Let

 $\mathcal{E} = \{\mathcal{C}(X) \rtimes_{\alpha} \mathbb{Z} \mid X \text{ compact, metrizable, infinite,} \\ \alpha \text{ induced by a uniquely ergodic, minimal homeomorphism} \}.$

For any $A \in \mathcal{E}$, dim_{nuc} $A < \infty \iff A$ is \mathcal{Z} -stable $\iff A$ has tracial *m*-comparison for some $m \in \mathbb{N}$.

Moreover, the regularity properties ensure classification by ordered *K*-theory in this case. (Countable structures are sufficient for classification since T(A) is a singleton for each A.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dimension and C*-algebraic regularity

Dynamic versions of dimension and regularity

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 9 / 20

DEFINITION

Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \frown X$ an action.

10.9.2012 10 / 20

(ロ) (四) (E) (E) (E)

Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has Rokhlin dimension (with single towers) at most *n*, dim_{Rok} $(X, \mathbb{Z}, \alpha) \leq n$, if the following holds:

Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \frown X$ an action. We say (X, \mathbb{Z}, α) has Rokhlin dimension (with single towers) at most *n*, $\dim_{\mathsf{Rok}}(X, \mathbb{Z}, \alpha) \leq n$, if the following holds: For any $L \in \mathbb{N}$, there is a system

$$(U_l^{(i)} \mid i \in \{0, \dots, n\}, l \in \{1, \dots, L\})$$

of open subsets

Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \frown X$ an action. We say (X, \mathbb{Z}, α) has Rokhlin dimension (with single towers) at most *n*, $\dim_{\mathsf{Rok}}(X, \mathbb{Z}, \alpha) \leq n$, if the following holds: For any $L \in \mathbb{N}$, there is a system

$$(U_l^{(i)} \mid i \in \{0, \dots, n\}, l \in \{1, \dots, L\})$$

of open subsets such that

•
$$\alpha_1(U_l^{(i)}) = U_{l+1}^{(i)}$$
 for $i \in \{0, \dots, n\}, l \in \{1, \dots, L-1\}$

Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \frown X$ an action. We say (X, \mathbb{Z}, α) has Rokhlin dimension (with single towers) at most *n*, $\dim_{\mathsf{Rok}}(X, \mathbb{Z}, \alpha) \leq n$, if the following holds: For any $L \in \mathbb{N}$, there is a system

$$(U_l^{(i)} \mid i \in \{0, \dots, n\}, l \in \{1, \dots, L\})$$

of open subsets such that

•
$$\alpha_1(U_l^{(i)}) = U_{l+1}^{(i)}$$
 for $i \in \{0, \dots, n\}, l \in \{1, \dots, L-1\}$

▶ for each fixed $i \in \{0, ..., n\}$ the sets $U_l^{(i)}$ are pairwise disjoint

Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \frown X$ an action. We say (X, \mathbb{Z}, α) has Rokhlin dimension (with single towers) at most *n*, $\dim_{\mathsf{Rok}}(X, \mathbb{Z}, \alpha) \leq n$, if the following holds: For any $L \in \mathbb{N}$, there is a system

$$(U_l^{(i)} \mid i \in \{0, \dots, n\}, l \in \{1, \dots, L\})$$

of open subsets such that

•
$$\alpha_1(U_l^{(i)}) = U_{l+1}^{(i)}$$
 for $i \in \{0, \dots, n\}, l \in \{1, \dots, L-1\}$

▶ for each fixed $i \in \{0, ..., n\}$ the sets $U_l^{(i)}$ are pairwise disjoint

• $(U_l^{(i)} \mid i \in \{0, \dots, n\}, l \in \{1, \dots, L\})$ is an open cover of *X*.

W. Winter (WWU Münster)

10.9.2012 10 / 20

DEFINITION Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \frown X$ an action.

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 11/20

DEFINITION Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \frown X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most *n*, dim $(X, \mathbb{Z}, \alpha) \le n$, if the following holds:

Dynamics dimension and classification

10.9.2012 11/20

DEFINITION Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most *n*, dim $(X, \mathbb{Z}, \alpha) \leq n$, if the following holds: For any open cover \mathcal{U} of *X* and any $L \in \mathbb{N}$, there is a system

$$(U_{k,l}^{(i)} \mid i \in \{0, \dots, n\}, k \in \{1, \dots, K^{(i)}\}, l \in \{1, \dots, L\})$$

of open subsets

DEFINITION Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \frown X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most *n*, dim $(X, \mathbb{Z}, \alpha) \leq n$, if the following holds: For any open cover \mathcal{U} of *X* and any $L \in \mathbb{N}$, there is a system

$$(U_{k,l}^{(i)} \mid i \in \{0, \dots, n\}, k \in \{1, \dots, K^{(i)}\}, l \in \{1, \dots, L\})$$

of open subsets such that

•
$$\alpha_1(U_{k,l}^{(i)}) = U_{k,l+1}^{(i)}$$
 for
 $i \in \{0, \dots, n\}, k \in \{1, \dots, K^{(i)}\}, l \in \{1, \dots, L-1\}$

イロト 不得 とくほ とくほ とうほ

DEFINITION Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most *n*, dim $(X, \mathbb{Z}, \alpha) \le n$, if the following holds: For any open cover \mathcal{U} of *X* and any $L \in \mathbb{N}$, there is a system

$$(U_{k,l}^{(i)} \mid i \in \{0, \dots, n\}, k \in \{1, \dots, K^{(i)}\}, l \in \{1, \dots, L\})$$

of open subsets such that

•
$$\alpha_1(U_{k,l}^{(i)}) = U_{k,l+1}^{(i)}$$
 for
 $i \in \{0, \dots, n\}, k \in \{1, \dots, K^{(i)}\}, l \in \{1, \dots, L-1\}$

▶ for each fixed $i \in \{0, ..., n\}$ the sets $U_{k,l}^{(i)}$ are pairwise disjoint

イロト 不得 とくほ とくほ とうほ

DEFINITION Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most *n*, dim $(X, \mathbb{Z}, \alpha) \le n$, if the following holds: For any open cover \mathcal{U} of *X* and any $L \in \mathbb{N}$, there is a system

$$(U_{k,l}^{(i)} \mid i \in \{0, \dots, n\}, k \in \{1, \dots, K^{(i)}\}, l \in \{1, \dots, L\})$$

of open subsets such that

•
$$\alpha_1(U_{k,l}^{(i)}) = U_{k,l+1}^{(i)}$$
 for
 $i \in \{0, \dots, n\}, k \in \{1, \dots, K^{(i)}\}, l \in \{1, \dots, L-1\}$

- ▶ for each fixed $i \in \{0, ..., n\}$ the sets $U_{k,l}^{(i)}$ are pairwise disjoint
- ▶ $(U_{k,l}^{(i)} | i \in \{0,...,n\}, k \in \{1,...,K^{(i)}\}, l \in \{1,...,L\})$ is an open cover of *X* refining U.

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 11/20

DEFINITION Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \frown X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most *n*, dim $(X, \mathbb{Z}, \alpha) \le n$, if the following holds: For any open cover \mathcal{U} of *X* and any $L \in \mathbb{N}$, there is a system

$$(U_{k,l}^{(i)} \mid i \in \{0, \dots, n\}, k \in \{1, \dots, K^{(i)}\}, l \in \{1, \dots, L\})$$

of open subsets such that

•
$$\alpha_1(U_{k,l}^{(i)}) = U_{k,l+1}^{(i)}$$
 for
 $i \in \{0, \dots, n\}, k \in \{1, \dots, K^{(i)}\}, l \in \{1, \dots, L-1\}$

- ▶ for each fixed $i \in \{0, ..., n\}$ the sets $U_{k,l}^{(i)}$ are pairwise disjoint
- ▶ $(U_{k,l}^{(i)} | i \in \{0,...,n\}, k \in \{1,...,K^{(i)}\}, l \in \{1,...,L\})$ is an open cover of *X* refining *U*.

REMARK We think of n + 1 as the number of colors, of $K^{(i)}$ as the number of towers of color *i*, and of *L* as the length of the towers.

W. Winter (WWU Münster)

10.9.2012 11 / 20

・ロット 御り とほう とほう 一日

DEFINITION

Let (X, \mathbb{Z}, α) be a compact dynamical system, $m \in \mathbb{N}$ and $U, V \subset X$ open subsets.

DEFINITION

Let (X, \mathbb{Z}, α) be a compact dynamical system, $m \in \mathbb{N}$ and $U, V \subset X$ open subsets.

We say *U* is *m*-dominated by *V*, $U \preceq_m V$, if the following holds:

Let (X, \mathbb{Z}, α) be a compact dynamical system, $m \in \mathbb{N}$ and $U, V \subset X$ open subsets.

We say *U* is *m*-dominated by *V*, $U \preceq_m V$, if the following holds:

For any compact subset $Y \subset U$, there are a system of open subsets of Y

$$(U_k^{(i)} \mid i \in \{0, \dots, m\}, k \in \{1, \dots, K^{(i)}\})$$

and a system of open subsets of V

$$(V_k^{(i)} \mid i \in \{0, \dots, m\}, k \in \{1, \dots, K^{(i)}\})$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Let (X, \mathbb{Z}, α) be a compact dynamical system, $m \in \mathbb{N}$ and $U, V \subset X$ open subsets.

We say *U* is *m*-dominated by *V*, $U \preceq_m V$, if the following holds:

For any compact subset $Y \subset U$, there are a system of open subsets of Y

$$(U_k^{(i)} \mid i \in \{0, \dots, m\}, k \in \{1, \dots, K^{(i)}\})$$

and a system of open subsets of V

$$(V_k^{(i)} \mid i \in \{0, \dots, m\}, k \in \{1, \dots, K^{(i)}\})$$

such that

• for each
$$i,k$$
 there is $r_k^{(i)}$ with $lpha_{r_k^{(i)}}(U_k^{(i)}) \subset V_k^{(i)}$

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 12/20

Let (X, \mathbb{Z}, α) be a compact dynamical system, $m \in \mathbb{N}$ and $U, V \subset X$ open subsets.

We say *U* is *m*-dominated by *V*, $U \preceq_m V$, if the following holds:

For any compact subset $Y \subset U$, there are a system of open subsets of Y

$$(U_k^{(i)} \mid i \in \{0, \dots, m\}, k \in \{1, \dots, K^{(i)}\})$$

and a system of open subsets of V

$$(V_k^{(i)} \mid i \in \{0, \dots, m\}, k \in \{1, \dots, K^{(i)}\})$$

such that

- ▶ for each *i*, *k* there is $r_k^{(i)}$ with $\alpha_{r_i^{(i)}}(U_k^{(i)}) \subset V_k^{(i)}$
- for each fixed *i*, the sets $V_k^{(i)}$ are pairwise disjoint

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let (X, \mathbb{Z}, α) be a compact dynamical system, $m \in \mathbb{N}$ and $U, V \subset X$ open subsets.

We say *U* is *m*-dominated by *V*, $U \preceq_m V$, if the following holds:

For any compact subset $Y \subset U$, there are a system of open subsets of Y

$$(U_k^{(i)} \mid i \in \{0, \dots, m\}, k \in \{1, \dots, K^{(i)}\})$$

and a system of open subsets of V

$$(V_k^{(i)} \mid i \in \{0, \dots, m\}, k \in \{1, \dots, K^{(i)}\})$$

such that

- ► for each *i*, *k* there is $r_k^{(i)}$ with $\alpha_{r_k^{(i)}}(U_k^{(i)}) \subset V_k^{(i)}$
- for each fixed *i*, the sets $V_k^{(i)}$ are pairwise disjoint
- the $U_k^{(i)}$ cover all of *Y*.

イロト (過) (目) (目) (日) (の)

DEFINITION

We say (X, \mathbb{Z}, α) (α minimal) has dynamic *m*-comparison, if, whenever $U, V \subset X$ are open subsets with $\mu(U) < \mu(V)$ for any regular invariant Borel probability measure μ on *X*, then $U \preceq_m V$.

DEFINITION

Let (X, \mathbb{Z}, α) be a compact dynamical system.

We say (X, \mathbb{Z}, α) is dynamically \mathcal{Z} -stable, if the following holds:

Let (X, \mathbb{Z}, α) be a compact dynamical system.

We say (X, \mathbb{Z}, α) is dynamically \mathcal{Z} -stable, if the following holds:

For any $K \in \mathbb{N}$, there are systems

$$(V_{j,k} \mid j,k \in \{1,\ldots,K\})$$
 and $(U_k \mid k \in \{1,\ldots,K\})$

of open subsets of X

Let (X, \mathbb{Z}, α) be a compact dynamical system.

We say (X, \mathbb{Z}, α) is dynamically \mathcal{Z} -stable, if the following holds:

For any $K \in \mathbb{N}$, there are systems

 $(V_{j,k} \mid j,k \in \{1,\ldots,K\})$ and $(U_k \mid k \in \{1,\ldots,K\})$

of open subsets of X such that

▶ the sets $\bigcup_k V_{j,k}$ are pairwise disjoint for $1 \le j \le K$

Let (X, \mathbb{Z}, α) be a compact dynamical system.

We say (X, \mathbb{Z}, α) is dynamically \mathcal{Z} -stable, if the following holds:

For any $K \in \mathbb{N}$, there are systems

 $(V_{j,k} \mid j,k \in \{1,\ldots,K\})$ and $(U_k \mid k \in \{1,\ldots,K\})$

of open subsets of X such that

- the sets $\bigcup_k V_{j,k}$ are pairwise disjoint for $1 \le j \le K$
- $\alpha_1(V_{j,k}) = \alpha_1(V_{j,k+1})$ for each $1 \le j \le K$ and $1 \le k \le K 1$

Let (X, \mathbb{Z}, α) be a compact dynamical system.

We say (X, \mathbb{Z}, α) is dynamically \mathcal{Z} -stable, if the following holds:

For any $K \in \mathbb{N}$, there are systems

$$(V_{j,k} \mid j,k \in \{1,\ldots,K\})$$
 and $(U_k \mid k \in \{1,\ldots,K\})$

of open subsets of X such that

- the sets $\bigcup_k V_{j,k}$ are pairwise disjoint for $1 \le j \le K$
- $\alpha_1(V_{j,k}) = \alpha_1(V_{j,k+1})$ for each $1 \le j \le K$ and $1 \le k \le K 1$
- $\alpha_1(U_k) = \alpha_1(U_{k+1})$ for each $1 \le k \le K 1$

Let (X, \mathbb{Z}, α) be a compact dynamical system.

We say (X, \mathbb{Z}, α) is dynamically \mathcal{Z} -stable, if the following holds:

For any $K \in \mathbb{N}$, there are systems

$$(V_{j,k} | j, k \in \{1, \dots, K\})$$
 and $(U_k | k \in \{1, \dots, K\})$

of open subsets of X such that

- the sets $\bigcup_k V_{j,k}$ are pairwise disjoint for $1 \le j \le K$
- $\alpha_1(V_{j,k}) = \alpha_1(V_{j,k+1})$ for each $1 \le j \le K$ and $1 \le k \le K 1$
- $\alpha_1(U_k) = \alpha_1(U_{k+1})$ for each $1 \le k \le K 1$
- ► $V_{j,k} \sim V_{j+1,k}$ for each $1 \le j \le K 1$ and $1 \le k \le K$

Let (X, \mathbb{Z}, α) be a compact dynamical system.

We say (X, \mathbb{Z}, α) is dynamically \mathcal{Z} -stable, if the following holds:

For any $K \in \mathbb{N}$, there are systems

$$(V_{j,k} | j, k \in \{1, \dots, K\})$$
 and $(U_k | k \in \{1, \dots, K\})$

of open subsets of X such that

- the sets $\bigcup_k V_{j,k}$ are pairwise disjoint for $1 \le j \le K$
- $\alpha_1(V_{j,k}) = \alpha_1(V_{j,k+1})$ for each $1 \le j \le K$ and $1 \le k \le K 1$
- $\alpha_1(U_k) = \alpha_1(U_{k+1})$ for each $1 \le k \le K 1$
- ► $V_{j,k} \sim V_{j+1,k}$ for each $1 \le j \le K 1$ and $1 \le k \le K$
- for each fixed $k, X = \bigcup_j V_{j,k} \cup U_k$

Let (X, \mathbb{Z}, α) be a compact dynamical system.

We say (X, \mathbb{Z}, α) is dynamically \mathcal{Z} -stable, if the following holds:

For any $K \in \mathbb{N}$, there are systems

$$(V_{j,k} | j, k \in \{1, \dots, K\})$$
 and $(U_k | k \in \{1, \dots, K\})$

of open subsets of X such that

- the sets $\bigcup_k V_{j,k}$ are pairwise disjoint for $1 \le j \le K$
- $\alpha_1(V_{j,k}) = \alpha_1(V_{j,k+1})$ for each $1 \le j \le K$ and $1 \le k \le K 1$
- $\alpha_1(U_k) = \alpha_1(U_{k+1})$ for each $1 \le k \le K 1$
- ► $V_{j,k} \sim V_{j+1,k}$ for each $1 \le j \le K 1$ and $1 \le k \le K$
- for each fixed $k, X = \bigcup_j V_{j,k} \cup U_k$
- $U_1 \precsim V_{1,1}$.

W. Winter (WWU Münster)

THEOREM

Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \frown X$ minimal.

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 15 / 20

イロト イポト イモト イモト 一日

THEOREM

Let *X* be compact, metrizable, infinite, and $\alpha : \mathbb{Z} \curvearrowright X$ minimal. If (X, \mathbb{Z}, α) is dynamically \mathcal{Z} -stable, then $\mathcal{C}(X) \rtimes_{\alpha} \mathbb{Z}$ is \mathcal{Z} -stable.

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 15 / 20

イロト イポト イヨト イヨト

THEOREM Let (X, \mathbb{Z}, α) be compact, metrizable, and minimal.

Dynamics dimension and classification

10.9.2012 16 / 20

イロト イポト イヨト イヨト 二日

THEOREM

Let (X, \mathbb{Z}, α) be compact, metrizable, and minimal. If dim $(X, \mathbb{Z}, \alpha) \leq m$, then (X, \mathbb{Z}, α) has *m*-comparison.

10.9.2012 16 / 20

イロト イポト イヨト イヨト

THEOREM Let (X, \mathbb{Z}, α) be compact, metrizable, and minimal. If dim $(X, \mathbb{Z}, \alpha) \leq m$, then (X, \mathbb{Z}, α) has *m*-comparison.

For the proof, one has to construct invariant measures from a system of open coverings of the form

$$(U_{k,l}^{(i)} \mid i \in \{0, \dots, n\}, k \in \{1, \dots, K^{(i)}\}, l \in \{1, \dots, L\})$$

(as in the definition of dynamic dimension), which become finer and finer, and for which L becomes larger and larger.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THEOREM Let (X, \mathbb{Z}, α) be compact, metrizable, and minimal. If dim $(X, \mathbb{Z}, \alpha) \leq m$, then (X, \mathbb{Z}, α) has *m*-comparison.

For the proof, one has to construct invariant measures from a system of open coverings of the form

$$(U_{k,l}^{(i)} \mid i \in \{0, \dots, n\}, k \in \{1, \dots, K^{(i)}\}, l \in \{1, \dots, L\})$$

(as in the definition of dynamic dimension), which become finer and finer, and for which L becomes larger and larger.

For $V \subset X$ open, $\mu(V)$ is then defined as a limit along some ultrafilter of expressions like

$$rac{\sharp\{l\mid U_{k,l}^{(i)}\subset V\}}{L}.$$

THEOREM (Hirshberg–W–Zacharias, 2011)

Let (X, \mathbb{Z}, α) be compact, metrizable, and minimal. Suppose *X* is finite dimensional.

```
THEOREM (Hirshberg–W–Zacharias, 2011)
Let (X, \mathbb{Z}, \alpha) be compact, metrizable, and minimal. Suppose X is finite dimensional.
```

Then,

$$\dim_{\mathsf{Rok}}\left(X,\mathbb{Z},\alpha\right) \leq 2(\dim X+1)-1$$

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 17 / 20

THEOREM (Hirshberg–W–Zacharias, 2011)

Let (X, \mathbb{Z}, α) be compact, metrizable, and minimal. Suppose *X* is finite dimensional.

Then,

$$\dim_{\mathsf{Rok}}\left(X,\mathbb{Z},\alpha\right) \leq 2(\dim X+1)-1$$

and

$$\dim(X,\mathbb{Z},\alpha) \le 2(\dim X+1)^2 - 1.$$

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 17 / 20

What about more general groups?

Dynamics dimension and classification

10.9.2012 18 / 20

イロト イポト イヨト イヨト 二日

What about more general groups?

For \mathbb{Z}^d , replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\mathsf{Rok}}(X, \mathbb{Z}^d, \alpha)$.

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 18 / 20

For \mathbb{Z}^d , replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\mathsf{Rok}}(X, \mathbb{Z}^d, \alpha)$.

In this case, we don't have a general theorem, but:

For \mathbb{Z}^d , replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\mathsf{Rok}}(X, \mathbb{Z}^d, \alpha)$.

In this case, we don't have a general theorem, but:

EXAMPLE (Matui)

 $C^*(Penrose tiling) \sim_M C(X) \rtimes_{\alpha} \mathbb{Z}^2,$

where *X* is the Cantor set and α is free and minimal.

For \mathbb{Z}^d , replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\mathsf{Rok}}(X, \mathbb{Z}^d, \alpha)$.

In this case, we don't have a general theorem, but:

EXAMPLE (Matui)

$$C^*(\text{Penrose tiling}) \sim_M C(X) \rtimes_\alpha \mathbb{Z}^2,$$

where *X* is the Cantor set and α is free and minimal. (*X*, \mathbb{Z}^2, α) has a factor of form (*X* × *X*, $\mathbb{Z}^2, \alpha_1 \times \alpha_2$) with α_1, α_2 both minimal.

For \mathbb{Z}^d , replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\mathsf{Rok}}(X, \mathbb{Z}^d, \alpha)$.

In this case, we don't have a general theorem, but:

EXAMPLE (Matui)

$$C^*(\text{Penrose tiling}) \sim_M C(X) \rtimes_{\alpha} \mathbb{Z}^2,$$

where *X* is the Cantor set and α is free and minimal. (*X*, \mathbb{Z}^2, α) has a factor of form (*X* × *X*, $\mathbb{Z}^2, \alpha_1 \times \alpha_2$) with α_1, α_2 both minimal. From the preceding theorem we get dim_{Rok} (*X*, \mathbb{Z}^2, α) < ∞ ,

For \mathbb{Z}^d , replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\mathsf{Rok}}(X, \mathbb{Z}^d, \alpha)$.

In this case, we don't have a general theorem, but:

EXAMPLE (Matui)

$$C^*(\text{Penrose tiling}) \sim_M C(X) \rtimes_{\alpha} \mathbb{Z}^2,$$

where *X* is the Cantor set and α is free and minimal. $(X, \mathbb{Z}^2, \alpha)$ has a factor of form $(X \times X, \mathbb{Z}^2, \alpha_1 \times \alpha_2)$ with α_1, α_2 both minimal. From the preceding theorem we get dim_{Rok} $(X, \mathbb{Z}^2, \alpha) < \infty$, hence dim_{Rok} $(X, \mathbb{Z}^2, \alpha) < \infty$

W. Winter (WWU Münster)

For \mathbb{Z}^d , replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\mathsf{Rok}}(X, \mathbb{Z}^d, \alpha)$.

In this case, we don't have a general theorem, but:

EXAMPLE (Matui)

$$C^*(\text{Penrose tiling}) \sim_M C(X) \rtimes_{\alpha} \mathbb{Z}^2,$$

where *X* is the Cantor set and α is free and minimal. $(X, \mathbb{Z}^2, \alpha)$ has a factor of form $(X \times X, \mathbb{Z}^2, \alpha_1 \times \alpha_2)$ with α_1, α_2 both minimal. From the preceding theorem we get dim_{Rok} $(X, \mathbb{Z}^2, \alpha) < \infty$, hence dim_{Rok} $(X, \mathbb{Z}^2, \alpha) < \infty$ and dim_{nuc} (C*(Penrose tiling)) $< \infty$.

W. Winter (WWU Münster)

For \mathbb{Z}^d , replace $\{1, \ldots, L\}$ by $\{1, \ldots, L\}^d$ in definition of $\dim_{\mathsf{Rok}}(X, \mathbb{Z}^d, \alpha)$.

In this case, we don't have a general theorem, but:

EXAMPLE (Matui)

 $C^*(\text{Penrose tiling}) \sim_M C(X) \rtimes_{\alpha} \mathbb{Z}^2,$

where *X* is the Cantor set and α is free and minimal. $(X, \mathbb{Z}^2, \alpha)$ has a factor of form $(X \times X, \mathbb{Z}^2, \alpha_1 \times \alpha_2)$ with α_1, α_2 both minimal. From the preceding theorem we get dim_{Rok} $(X, \mathbb{Z}^2, \alpha) < \infty$, hence dim_{Rok} $(X, \mathbb{Z}^2, \alpha) < \infty$ and dim_{nuc} (C*(Penrose tiling)) $< \infty$. We do not know, however, whether this ensures classifiability.

For *G* finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$.

10.9.2012 19 / 20

イロト イポト イヨト イヨト 二日

For *G* finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

10.9.2012 19 / 20

For *G* finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels–Lück–Reich)

Let *G* be a hyperbolic group acting on its Rips complex \overline{X} (*G* acts freely, \overline{X}/G is compact, \overline{X} is contractible).

For *G* finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels–Lück–Reich)

Let *G* be a hyperbolic group acting on its Rips complex \overline{X} (*G* acts freely, \overline{X}/G is compact, \overline{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \overline{X}$ satisfying

For *G* finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels–Lück–Reich)

Let *G* be a hyperbolic group acting on its Rips complex *X* (*G* acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \overline{X}$ satisfying

• \mathcal{U} has covering number (or dimension) at most d

For *G* finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels–Lück–Reich) Let *G* be a hyperbolic group acting on its Rips complex \bar{X} (*G* acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \overline{X}$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- ▶ for every $x \in \overline{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in U$

イロト 不得 とくほ とくほ とうほ
For *G* finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels–Lück–Reich) Let *G* be a hyperbolic group acting on its Rips complex \bar{X} (*G* acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \overline{X}$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- ▶ for every $x \in \overline{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in U$
- for every $g \in G$ and $U \in \mathcal{U}, gU \in \mathcal{U}$

For *G* finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels–Lück–Reich) Let *G* be a hyperbolic group acting on its Rips complex \bar{X} (*G* acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \overline{X}$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- ▶ for every $x \in \overline{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in U$
- ▶ for every $g \in G$ and $U \in U$, $gU \in U$
- ▶ for every $g \in G$ and $U \in U$, either gU = U or $gU \cap U = \emptyset$

For *G* finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels–Lück–Reich) Let *G* be a hyperbolic group acting on its Rips complex \bar{X} (*G* acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \overline{X}$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- ▶ for every $x \in \overline{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in U$
- for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$
- ▶ for every $g \in G$ and $U \in U$, either gU = U or $gU \cap U = \emptyset$
- For every U ∈ U, the subgroup G_U = {g ∈ G | gU = U} is virtually cyclic (contains a cyclic subgroup with finite index).

For *G* finitely generated with word length metric, one might use $B_L(e)$ in place of $\{1, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels–Lück–Reich) Let *G* be a hyperbolic group acting on its Rips complex \bar{X} (*G* acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \overline{X}$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- ▶ for every $x \in \overline{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in U$
- ▶ for every $g \in G$ and $U \in U$, $gU \in U$
- ▶ for every $g \in G$ and $U \in U$, either gU = U or $gU \cap U = \emptyset$
- For every U ∈ U, the subgroup G_U = {g ∈ G | gU = U} is virtually cyclic (contains a cyclic subgroup with finite index).

(This plays a crucial role in their proof of the Farrell–Jones conjecture for hyperbolic groups.)

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 19 / 20

In this picture, our result can be rephrased as follows:

W. Winter (WWU Münster)

Dynamics dimension and classification

10.9.2012 20 / 20

(ロ) (四) (E) (E) (E)

In this picture, our result can be rephrased as follows:

THEOREM

Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite dimensional, infinite space *X*.

THEOREM

Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite dimensional, infinite space *X*.

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THEOREM

Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite dimensional, infinite space *X*.

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying

• \mathcal{U} has covering number (or dimension) at most d

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THEOREM

Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite dimensional, infinite space *X*.

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- ▶ for every $x \in X$, $B_L(e) \times \{x\} \subset U$ for some $U \in U$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

THEOREM

Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite dimensional, infinite space *X*.

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- ▶ for every $x \in X$, $B_L(e) \times \{x\} \subset U$ for some $U \in U$
- for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$

THEOREM

Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite dimensional, infinite space *X*.

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- ▶ for every $x \in X$, $B_L(e) \times \{x\} \subset U$ for some $U \in U$
- for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$
- ▶ for every $0 \neq g \in G$ and $U \in U$, $gU \cap U = \emptyset$,

THEOREM

Let α be a minimal action of $G = \mathbb{Z}$ on the compact, metrizable, finite dimensional, infinite space *X*.

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying

- \mathcal{U} has covering number (or dimension) at most d
- ▶ for every $x \in X$, $B_L(e) \times \{x\} \subset U$ for some $U \in U$
- ▶ for every $g \in G$ and $U \in U$, $gU \in U$
- For every 0 ≠ g ∈ G and U ∈ U, gU ∩ U = Ø, i.e., for every U ∈ U, the subgroup G_U = {g ∈ G | gU = U} is trivial.