Introduction	Methods	Results 1	Energy budgets	Results 2	Summary

Focussing and normal mode scattering of the first mode internal tide by mesoscale eddy interaction

Michael Dunphy

University of Waterloo

June 12, 2013

Workshop on Sub-mesoscale Ocean Processes

Michael Dunphy

Focussing and normal mode scattering

Introduction	Methods 0000000	Results 1 000	Energy budgets	Results 2 000000000000	Summary 000000

Introduction

- 2 Methods
 - Numerical experiment setup
 - Normal modes
- 3 Results 1
 - Snapshots
- 4 Energy budgets
- 5 Results 2
 - Energy analysis

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
●0000					
Internal tides					

• There are a variety of internal wave generation mechanisms

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000					
Internal tides					

- There are a variety of internal wave generation mechanisms
- Barotropic tide-topography interaction has received a lot of attention

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000					
Internal tides					

- There are a variety of internal wave generation mechanisms
- Barotropic tide-topography interaction has received a lot of attention
- [Bell(1975)], [Legg and Huijts(2006)], and many others
- M_2 internal tide generation is among the most prominent

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
0●000	0000000	000	0000000000	000000000000	000000
Internal tides					

 M_2 internal tide generation: (Simmons, 2004), two layer model

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00●00	0000000	000	0000000000	000000000000	000000
Internal tides					

 M_2 internal tide generation: (Simmons, 2004), two layer model

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
000●0	0000000	000	0000000000	000000000000	000000
Internal tides					

 M_2 internal tide generation: (Simmons, 2004), two layer model

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
Internal tides					000000

• The fate of the internal tide is still under investigation

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
Internal tides					000000

- The fate of the internal tide is still under investigation
 - Local dissipation vs. propagation

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
0000●	0000000	000		000000000000	000000
Internal tides					

- The fate of the internal tide is still under investigation
 - Local dissipation vs. propagation
 - Interaction with oceanic flows

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000					
Internal tides					

- The fate of the internal tide is still under investigation
 - Local dissipation vs. propagation
 - Interaction with oceanic flows
 - Absorbtion into the background wavefield

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000					
Internal tides					

- The fate of the internal tide is still under investigation
 - Local dissipation vs. propagation
 - Interaction with oceanic flows
 - Absorbtion into the background wavefield
 - Remote breaking

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000					
Internal tides					

- The fate of the internal tide is still under investigation
 - Local dissipation vs. propagation
 - Interaction with oceanic flows
 - Absorbtion into the background wavefield
 - Remote breaking
- I'm looking at mesoscale eddy interaction

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000					
Internal tides					

- The fate of the internal tide is still under investigation
 - Local dissipation vs. propagation
 - Interaction with oceanic flows
 - Absorbtion into the background wavefield
 - Remote breaking
- I'm looking at mesoscale eddy interaction
- This interaction is not unstudied:

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000					
Internal tides					

- The fate of the internal tide is still under investigation
 - Local dissipation vs. propagation
 - Interaction with oceanic flows
 - Absorbtion into the background wavefield
 - Remote breaking
- I'm looking at mesoscale eddy interaction
- This interaction is not unstudied:
 - Wave-wave-vortex resonance has been looked at by [Lelong and Riley(1991)] and [Bartello(1995)]

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000					
Internal tides					

- The fate of the internal tide is still under investigation
 - Local dissipation vs. propagation
 - Interaction with oceanic flows
 - Absorbtion into the background wavefield
 - Remote breaking
- I'm looking at mesoscale eddy interaction
- This interaction is not unstudied:
 - Wave-wave-vortex resonance has been looked at by [Lelong and Riley(1991)] and [Bartello(1995)]
 - Wave capture, [Bühler and McIntyre(2005)]

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary	
00000	●000000	000		000000000000	000000	
Numerical experiment setup						

• We numerically simulate the interaction of a mode-one internal tide and an isolated mesoscale eddy

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary	
00000	●000000	000		000000000000	000000	
Numerical experiment setup						

- We numerically simulate the interaction of a mode-one internal tide and an isolated mesoscale eddy
- 3D hydrostatic MITgcm with a rigid lid on an *f*-plane

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	●000000	000	0000000000	000000000000	000000
Numerical experiment se	tup				

- We numerically simulate the interaction of a mode-one internal tide and an isolated mesoscale eddy
- 3D hydrostatic MITgcm with a rigid lid on an *f*-plane
- The domain is a constant depth rectangular region

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary		
00000	●000000	000		000000000000	000000		
Numerical experiment setup							

- We numerically simulate the interaction of a mode-one internal tide and an isolated mesoscale eddy
- 3D hydrostatic MITgcm with a rigid lid on an *f*-plane
- The domain is a constant depth rectangular region
- Two latitude regimes:
 - Low $(f = 0.5 \times 10^{-4} \text{ s}^{-1})$, $\approx 20^{\circ} \text{N}$
 - Mid $(f = 1.0 \times 10^{-4} \text{ s}^{-1})$, $\approx 43^{\circ} \text{N}$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary		
00000	●000000	000		000000000000	000000		
Numerical experiment setup							

- We numerically simulate the interaction of a mode-one internal tide and an isolated mesoscale eddy
- 3D hydrostatic MITgcm with a rigid lid on an *f*-plane
- The domain is a constant depth rectangular region
- Two latitude regimes:
 - Low $(f = 0.5 \times 10^{-4} \text{ s}^{-1})$, $\approx 20^{\circ} \text{N}$

• Mid
$$(f = 1.0 \times 10^{-4} \text{ s}^{-1})$$
, $\approx 43^{\circ} \text{N}$

Parameter	Value
N ₀	$1.0 imes 10^{-3} \ { m s}^{-1}$
Т	44712 s (one tidal period)
ω	$1.4053 imes 10^{-4}~{ m s}^{-1}~(M_2)$
U_t	5 cm s^{-1}
g	9.81 m s ⁻²
$ ho_0$	$1028 \ { m kg} \ { m m}^{-3}$
Δt	69 s

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary	
00000	o●ooooo	000		000000000000	000000	
Numerical experiment setup						

$$\Psi=\psi(r)\Phi(z)=-rac{5^{rac{5}{2}}}{64}U_{ heta}L_{E}\mathrm{sech}^{4}\left(rac{r}{L_{E}}
ight)\Phi(z),$$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	o●ooooo	000	0000000000	000000000000	000000
Numerical experiment se	tup				

$$\Psi = \psi(r)\Phi(z) = -rac{5^{rac{5}{2}}}{64}U_{ heta}L_E {
m sech}^4\left(rac{r}{L_F}
ight)\Phi(z),$$

- L_E eddy length scale
- $U_{ heta}$ eddy peak velocity (at $r pprox 0.48 L_E$)

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	o●ooooo	000		000000000000	000000
Numerical experiment se	tup				

$$\Psi = \psi(r)\Phi(z) = -rac{5^{rac{5}{2}}}{64}U_{ heta}L_E {
m sech}^4\left(rac{r}{L_F}
ight)\Phi(z),$$

- L_E eddy length scale
- $U_{ heta}$ eddy peak velocity (at $r pprox 0.48 L_E$)
- Barotropic eddy: $\Phi(z) = 1$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0●00000	000	0000000000	00000000000	000000
Numerical experiment se	tup				

$$\Psi=\psi(r)\Phi(z)=-rac{5^{rac{5}{2}}}{64}U_{ heta}L_{E}\mathrm{sech}^{4}\left(rac{r}{L_{E}}
ight)\Phi(z),$$

- L_E eddy length scale
- $U_{ heta}$ eddy peak velocity (at $r pprox 0.48 L_E$)
- Barotropic eddy: $\Phi(z) = 1$
- Baroclinic eddy: $\Phi(z) = \cos(\pi z/H)$ mode one

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0●00000	000	0000000000	00000000000	000000
Numerical experiment se	tup				

$$\Psi=\psi(r)\Phi(z)=-rac{5^{rac{5}{2}}}{64}U_{ heta}L_{E}{
m sech}^{4}\left(rac{r}{L_{E}}
ight)\Phi(z),$$

- L_E eddy length scale
- $U_{ heta}$ eddy peak velocity (at $r pprox 0.48 L_E$)
- Barotropic eddy: $\Phi(z) = 1$
- Baroclinic eddy: $\Phi(z) = \cos(\pi z/H)$ mode one
- Initialise with $(u, v) = (-\Psi_y, \Psi_x)$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
Numerical experiment se	tup	000	0000000000	000000000000000000000000000000000000000	000000

$$\Psi=\psi(r)\Phi(z)=-rac{5^{rac{5}{2}}}{64}U_{ heta}L_{E}\mathrm{sech}^{4}\left(rac{r}{L_{E}}
ight)\Phi(z),$$

- L_E eddy length scale
- $U_{ heta}$ eddy peak velocity (at $r pprox 0.48 L_E$)
- Barotropic eddy: $\Phi(z) = 1$
- Baroclinic eddy: $\Phi(z) = \cos(\pi z/H)$ mode one
- Initialise with $(u, v) = (-\Psi_y, \Psi_x)$
- $\bullet\,$ Use cyclo-geostrophic and hydrostatic balances to find ρ'

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	00●0000	000	0000000000	000000000000	000000
Numerical experiment se	tup				

- We let the eddy adjust for 5 tidal periods, $0 \le t \le 5T$
- Shaded region is relaxed to no-flow

• Then we force a mode-one internal tide at the west boundary

$$u(x = 0, z, t) = U_t \sin(\omega(t - 5T)) \cos\left(\frac{\pi z}{H}\right) R(t - 5T),$$

$$5T \le t \le 30T,$$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	○○○○●○○	000		000000000000	000000
Barotropic eddy cases					

Parameter	Value
Barotropic cases:	
$L \times W \times H$	600 km $ imes$ 800 km $ imes$ 5000 m
$N_x \times N_v \times N_z$	1200 imes 1600 imes 25
$\Delta x \times \Delta y \times \Delta z$	0.5 km $ imes$ 0.5 km $ imes$ 200 m
eddy centre	$(x_c, y_c) = (250, 400) \text{ km}$

$\bigvee U_{\theta}$	30	45	60	75	90
LE	cm/s	cm/s	cm/s	cm/s	cm/s
20 km		Х			
30 km	X	X	Х	X	Х
40 km		X			
50 km		X			

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	○○○○○●○	000	00000000000	000000000000	000000
Baroclinic eddy cases					

Parameter	Value
Baroclinic cases:	
$L\timesW\timesH$	720 km \times 400 km \times 5000 m
$N_x \times N_y \times N_z$	1440 $ imes$ 800 $ imes$ 50
$\Delta x \times \Delta y \times \Delta z$	0.5 km $ imes$ 0.5 km $ imes$ 100 m
eddy centre	$(x_c, y_c) = (250, 200) \text{ km}$

	\bigcup_{θ}	30	45	60
LE		cm/s	cm/s	$\rm cm/s$
15	km	Х		
20	km	Х	Х	
25	km	Х	Х	Х
30	km	Х	Х	Х
35	km	Х	Х	Х
40	km	Х	Х	Х
45	km	Х	Х	Х
50	km	Х	Х	Х
55	km	Х	Х	Х

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	○○○○○●	000		000000000000	000000
Normal modes					

• Constant N yields vertical mode solutions following cosine/sine

$$\{\vec{u}_h, p'\} = \{\vec{u}_{h_0}, p'_0\}(x, y, t) + \sum_{n=1}^{\infty} \{\vec{u}_{h_n}, p'_n\}(x, y, t) \cos(m_n z), \\ \{w, \rho'\} = \sum_{n=1}^{\infty} \{w_n, \rho'_n\}(x, y, t) \sin(m_n z),$$

where $m_n = \frac{n\pi}{H}$.

• We compute the coefficients from the flow fields by

$$\{\vec{u}_{h_0}, p'_0\} = \frac{1}{H} \int_{-H}^0 \{\vec{u}_h, p'\} \, \mathrm{d}z,$$

$$\{\vec{u}_{h_n}, p'_n\} = \frac{2}{H} \int_{-H}^0 \{\vec{u}_h, p'\} \cos(m_n z) \, \mathrm{d}z,$$

$$\{w_n, \rho'_n\} = \frac{2}{H} \int_{-H}^0 \{w, \rho'\} \sin(m_n z) \, \mathrm{d}z.$$

- Top: low latitude PSI
- Bottom: mid latitude no PSI

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	○○●		000000000000	000000
Baroclinic eddy					

• Density perturbation at modes 2 and 3

• Low f,
$$L_E = 35$$
 km, $U_{\theta} = 45$ cm/s, $t = 16T$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
			••••		
Total pseudo-energy bud	get				

• Review of the total pseudoenergy budget derivation

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
			••••		
Total pseudo-energy bud	get				

- Review of the total pseudoenergy budget derivation
- Start with the hydrostatic Boussinesq equations

$$\begin{aligned} \frac{\partial \vec{u}_h}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u}_h + f \times \vec{u}_h &= \frac{-1}{\rho_0} \vec{\nabla}_h \rho', \\ \epsilon_{nh} \left(\frac{\partial w}{\partial t} + (\vec{u} \cdot \vec{\nabla}) w \right) &= -\frac{1}{\rho_0} \frac{\partial \rho'}{\partial z} - \frac{g \rho'}{\rho_0}, \\ \frac{\partial \rho'}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \rho' &= \frac{\rho_0 N_0^2}{g} w, \end{aligned}$$

where $p = \overline{p}(z) + p'$ and $\rho = \rho_0 + \overline{\rho_1}(z) + \rho'$.

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
			••••		
Total pseudo-energy bud	get				

- Review of the total pseudoenergy budget derivation
- Start with the hydrostatic Boussinesq equations

$$\begin{split} \frac{\partial \vec{u}_h}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u}_h + f \times \vec{u}_h &= \frac{-1}{\rho_0} \vec{\nabla}_h p', \\ \epsilon_{nh} \left(\frac{\partial w}{\partial t} + (\vec{u} \cdot \vec{\nabla}) w \right) &= -\frac{1}{\rho_0} \frac{\partial p'}{\partial z} - \frac{g \rho'}{\rho_0}, \\ \frac{\partial \rho'}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \rho' &= \frac{\rho_0 N_0^2}{g} w, \end{split}$$

where $p = \overline{p}(z) + p'$ and $\rho = \rho_0 + \overline{\rho_1}(z) + \rho'$.

• Hydrostatic approximation sets $\epsilon_{nh} = 0$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
			0000000000		
Total pseudo-energy bud	get				

• Dot product between $ho_0 ec{u}$ and the momentum equations

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
			000000000		
Total pseudo-energy bud	get				

- Dot product between $ho_0 \vec{u}$ and the momentum equations
- Multiply density equation by $\frac{g^2 \rho'}{\rho_0 N_0^2}$

Introduction	Methods	Results 1	Energy budgets	Results 2		
00000	0000000	000	000000000	000000000000	000000	
Total pseudo-energy budget						

- $\bullet\,$ Dot product between $\rho_0 \vec{u}$ and the momentum equations
- Multiply density equation by $\frac{g^2 \rho'}{\rho_0 N_0^2}$
- Add the results, integrate over a volume, use some algebra, we get

$$\frac{\mathrm{d}}{\mathrm{d}t}P + W + K_f + A_f = 0$$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		000000000000	000000
Total pseudo-energy bud	get				

$$\frac{\mathrm{d}}{\mathrm{d}t}P+W+K_f+A_f=0,$$

where

$$\begin{split} P &= \iiint_V \rho_0 \frac{1}{2} (u^2 + v^2) + \frac{g^2 \rho'^2}{2N^2 \rho_0} \, \mathrm{d}V \text{ (total pseudo-energy),} \\ W &= \iint_{\delta V} \rho' \vec{u} \cdot \hat{n} \, \mathrm{d}S \text{ (linear energy flux),} \\ K_f &= \iint_{\delta V} \frac{\rho_0}{2} \vec{u} \cdot \hat{n} (u^2 + v^2) \, \mathrm{d}S \text{ (nonlinear flux of kinetic energy),} \\ A_f &= \frac{g^2}{2\rho_0 N^2} \iint_{\delta V} \rho'^2 \vec{u} \cdot \hat{n} \, \mathrm{d}S \end{split}$$

(nonlinear flux of available potential energy).

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
			000000000		
Projection of governing	equations				

• We wish to have an energy budget for each vertical mode

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
			0000000000		
Projection of governing e	equations				

- We wish to have an energy budget for each vertical mode
- Recall the cosine and sine series:

$$\{\vec{u}_h, p'\} = \{\vec{u}_{h_0}, p'_0\}(x, y, t) + \sum_{n=1}^{\infty} \{\vec{u}_{h_n}, p'_n\}(x, y, t) \cos(m_n z),$$

$$\{w, \rho'\} = \sum_{n=1}^{\infty} \{w_n, \rho'_n\}(x, y, t)\sin(m_n z),$$

where $m_n = \frac{n\pi}{H}$.

Introduction	Methods	Results 1	Energy budgets	Results 2	
00000	0000000		0000000000	000000000000	000000
Projection of governing e	equations				

- We wish to have an energy budget for each vertical mode
- Recall the cosine and sine series:

$$\{\vec{u}_h, p'\} = \{\vec{u}_{h_0}, p'_0\}(x, y, t) + \sum_{n=1}^{\infty} \{\vec{u}_{h_n}, p'_n\}(x, y, t) \cos(m_n z),$$

$$\{w, \rho'\} = \sum_{n=1}^{\infty} \{w_n, \rho'_n\}(x, y, t)\sin(m_n z),$$

where $m_n = \frac{n\pi}{H}$.

• These series are substituted into the horizontal momentum and density equations

Introduction	Methods	Results 1	Energy budgets	Results 2	
00000	0000000		0000000000	000000000000	000000
Projection of governing e	equations				

- We wish to have an energy budget for each vertical mode
- Recall the cosine and sine series:

$$\{\vec{u}_h, p'\} = \{\vec{u}_{h_0}, p'_0\}(x, y, t) + \sum_{n=1}^{\infty} \{\vec{u}_{h_n}, p'_n\}(x, y, t) \cos(m_n z),$$

$$\{w, \rho'\} = \sum_{n=1}^{\infty} \{w_n, \rho'_n\}(x, y, t)\sin(m_n z),$$

where $m_n = \frac{n\pi}{H}$.

- These series are substituted into the horizontal momentum and density equations
- Then we collect terms at each vertical mode

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		000000000000	000000
Projection of governing	equations				

• The linear terms are straightforward,

$$\begin{split} \frac{\partial \vec{u}_h}{\partial t} &= \frac{\partial \vec{u}_{h_0}}{\partial t} + \sum_{n=1}^{\infty} \frac{\partial \vec{u}_{h_n}}{\partial t} \cos(m_n z), \\ \vec{f} \times \vec{u}_h &= \vec{f} \times \vec{u}_{h_0} + \sum_{n=1}^{\infty} \vec{f} \times \vec{u}_{h_n} \cos(m_n z), \\ \frac{-1}{\rho_0} \nabla_h p' &= \frac{-1}{\rho_0} \nabla_h p'_0 + \frac{-1}{\rho_0} \sum_{n=1}^{\infty} \nabla_h p'_n \cos(m_n z) \end{split}$$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		00000000000	000000
Projection of governing e	equations				

• The linear terms are straightforward,

$$egin{aligned} rac{\partialec{u}_h}{\partial t} &= rac{\partialec{u}_{h_0}}{\partial t} + \sum_{n=1}^\infty rac{\partialec{u}_{h_n}}{\partial t}\cos(m_n z), \ ec{f} imes ec{u}_h &= ec{f} imes ec{u}_{h_0} + \sum_{n=1}^\infty ec{f} imes ec{u}_{h_n}\cos(m_n z), \ rac{-1}{
ho_0}
abla_h p' &= rac{-1}{
ho_0}
abla_h p'_0 + rac{-1}{
ho_0} \sum_{n=1}^\infty
abla_h p'_n \cos(m_n z). \end{aligned}$$

• The nonlinear terms require a bit of work

$$(\vec{u}\cdot\vec{\nabla})\vec{u}_h=\vec{N}^u=\vec{N}_0^u+\sum_{n=1}^\infty\vec{N}_n^u\cos(m_nz),$$

• Copious use of trig substitution yields

$$\begin{split} \vec{N}_{0}^{u} &= (\vec{u}_{h_{0}} \cdot \vec{\nabla}_{h})\vec{u}_{h_{0}} + \frac{1}{2}\sum_{i=1}^{\infty} (\vec{u}_{h_{i}} \cdot \vec{\nabla}_{h})\vec{u}_{h_{i}} - \frac{1}{2}\sum_{i=1}^{\infty} w_{i}\vec{u}_{h_{i}}m_{i}, \\ \vec{N}_{1}^{u} &= \left[\left((\vec{u}_{h_{0}} \cdot \vec{\nabla}_{h})\vec{u}_{h_{1}} + (\vec{u}_{h_{1}} \cdot \vec{\nabla}_{h})\vec{u}_{h_{0}} \right) + \frac{1}{2}\sum_{i=1}^{\infty} \left((\vec{u}_{h_{i}} \cdot \vec{\nabla}_{h})\vec{u}_{h_{i+1}} + (\vec{u}_{h_{i+1}} \cdot \vec{\nabla}_{h})\vec{u}_{h_{i}} \right) \right] \\ &- \frac{1}{2} \left[\sum_{i=1}^{\infty} w_{i}\vec{u}_{h_{i+1}}m_{i+1} + w_{i+1}\vec{u}_{h_{i}}m_{i} \right], \\ \vec{N}_{2}^{u} &= \left[\left((\vec{u}_{h_{0}} \cdot \vec{\nabla}_{h})\vec{u}_{h_{2}} + (\vec{u}_{h_{2}} \cdot \vec{\nabla}_{h})\vec{u}_{h_{0}} \right) + \frac{1}{2} (\vec{u}_{h_{1}} \cdot \vec{\nabla}_{h})\vec{u}_{h_{1}} \\ &+ \frac{1}{2}\sum_{i=1}^{\infty} \left((\vec{u}_{h_{i}} \cdot \vec{\nabla}_{h})\vec{u}_{h_{i+2}} + (\vec{u}_{h_{i+2}} \cdot \vec{\nabla}_{h})\vec{u}_{h_{i}} \right) \right] \\ &+ \frac{1}{2} \left[w_{1}\vec{u}_{h_{1}}m_{1} - \sum_{i=1}^{\infty} (w_{i}\vec{u}_{h_{i+2}}m_{i+2} + w_{i+2}\vec{u}_{h_{i}}m_{i}) \right] \\ \vec{v}^{i} u \end{split}$$

 $\hat{N}_3^u = \dots$

Finally, the projected horizontal momentum equation is written as as sum over modes

$$\vec{M}_0 + \sum_{n=1}^{\infty} \vec{M}_n \cos(m_n z) = 0,$$

Finally, the projected horizontal momentum equation is written as as sum over modes

$$\vec{M}_0 + \sum_{n=1}^{\infty} \vec{M}_n \cos(m_n z) = 0,$$

where the coefficients of each mode sum to zero,

$$\vec{M}_0 = \frac{\partial \vec{u}_{h_0}}{\partial t} + N_0^u + \vec{f} \times \vec{u}_{h_0} + \frac{1}{\rho_0} \vec{\nabla}_h p_0' = 0,$$

$$\vec{M}_n = \frac{\partial \vec{u}_{h_n}}{\partial t} + N_n^u + \vec{f} \times \vec{u}_{h_n} + \frac{1}{\rho_0} \vec{\nabla}_h p_n' = 0, \qquad n = 1, 2, 3, \dots$$

Finally, the projected horizontal momentum equation is written as as sum over modes

$$\vec{M}_0 + \sum_{n=1}^{\infty} \vec{M}_n \cos(m_n z) = 0,$$

where the coefficients of each mode sum to zero,

$$\begin{split} \vec{M}_0 &= \frac{\partial \vec{u}_{h_0}}{\partial t} + N_0^u + \vec{f} \times \vec{u}_{h_0} + \frac{1}{\rho_0} \vec{\nabla}_h p_0' = 0, \\ \vec{M}_n &= \frac{\partial \vec{u}_{h_n}}{\partial t} + N_n^u + \vec{f} \times \vec{u}_{h_n} + \frac{1}{\rho_0} \vec{\nabla}_h p_n' = 0, \qquad n = 1, 2, 3, \dots \end{split}$$

A similar procedure is used for the density equation,

$$\sum_{n=1}^{\infty} D_n \sin(m_n z) = 0, \text{ which gives}$$
$$D_n = \frac{\partial \rho'_n}{\partial t} + N_n^{\rho} - \frac{\rho_0 N_0^2}{g} w_n = 0, \qquad n = 1, 2, 3, \dots$$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		000000000000	000000
Modal budgets					

We take the dot product,

$$(\rho_0 H)\vec{u}_{h_0}\cdot\vec{M}_0=0$$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
			00000000000		
Modal budgets					

We take the dot product,

$$(\rho_0 H)\vec{u}_{h_0}\cdot\vec{M}_0=0$$

then integrate over an area, employ some algebra, to get

$$\frac{\mathrm{d}}{\mathrm{d}t}K_0 + W_0 + S_0 = 0,$$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		000000000000	000000
Modal budgets					

We take the dot product,

$$(\rho_0 H)\vec{u}_{h_0}\cdot\vec{M}_0=0$$

then integrate over an area, employ some algebra, to get

$$\frac{\mathrm{d}}{\mathrm{d}t}K_0 + W_0 + S_0 = 0,$$

where

$$\begin{split} \mathcal{K}_0 &= \rho_0 \frac{H}{2} \iint_A (u_0^2 + v_0^2) \, \mathrm{d}A \quad \text{ is total barotropic kinetic energy,} \\ \mathcal{W}_0 &= H \oint_{\delta A} (\vec{u}_{h_0} \cdot \hat{n}) p_0' \, \mathrm{d}S \quad \text{ is the linear barotropic energy flux, and} \\ \mathcal{S}_0 &= \rho_0 H \iint_A \vec{u}_{h_0} \cdot \vec{N}_0^u \, \mathrm{d}A \quad \text{ is the nonlinear barotropic energy sink.} \end{split}$$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000	○○○○○○○●○○	00000000000	000000
Modal budgets					

A similar procedure yields the *n*-th baroclinic mode pseudo-energy budget,

$$rac{\mathrm{d}}{\mathrm{d}t} P_n + W_n + S_n = 0, \quad ext{where}$$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000	○○○○○○○●○○	00000000000	000000
Modal budgets					

A similar procedure yields the *n*-th baroclinic mode pseudo-energy budget,

$$\frac{\mathrm{d}}{\mathrm{d}t}P_n + W_n + S_n = 0, \quad \text{where}$$

$$P_{n} = \rho_{0} \frac{H}{4} \iint_{A} (u_{n}^{2} + v_{n}^{2}) \, \mathrm{d}A + \frac{Hg^{2}}{4\rho_{0}N_{0}^{2}} \iint_{A} \rho_{n}^{\prime 2} \, \mathrm{d}A$$

is the total pseudo energy at mode-n,

$$W_n = rac{H}{2} \oint\limits_{\delta A} (\vec{u}_{h_n} \cdot \hat{n}) p'_n \,\mathrm{d}S,$$

is the linear baroclinic energy flux at mode-n, and

$$S_n = \frac{\rho_0 H}{2} \iint_A \vec{u}_{h_n} \cdot \vec{N}_n^u \, \mathrm{d}A + \frac{Hg^2}{2\rho_0 N_0^2} \iint_A \rho_n N_n^\rho \, \mathrm{d}A,$$

is the nonlinear sink of pseudo-energy at mode-n.

Michael Dunphy

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
			00000000000		
Energy budget summary					

The budgets are

Barotropic kinetic energy:

Baroclinic pseudo-energy:

Total pseudo-energy:

$$\begin{aligned} \frac{\mathrm{d}K_0}{\mathrm{d}t} + W_0 + S_0 &= 0\\ \frac{\mathrm{d}P_n}{\mathrm{d}t} + W_n + S_n &= 0\\ \frac{\mathrm{d}P}{\mathrm{d}t} + W + K_f + A_f &= 0 \end{aligned}$$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
			00000000000		
Energy budget summary					

The budgets are

Barotropic kinetic energy:

Baroclinic pseudo-energy:

$$\frac{\mathrm{d}K_0}{\mathrm{d}t} + W_0 + S_0 = 0$$
$$\frac{\mathrm{d}P_n}{\mathrm{d}t} + W_n + S_n = 0$$

Total pseudo-energy:

$$\frac{\mathrm{d}P}{\mathrm{d}t} + W + K_f + A_f \qquad = 0$$

which, as you might expect, sum via

$$\frac{\mathrm{d}}{\mathrm{d}t}K_{0} + \sum_{n=1}^{\infty} \frac{\mathrm{d}}{\mathrm{d}t}P_{n} = \frac{\mathrm{d}}{\mathrm{d}t}P,$$
$$W_{0} + \sum_{n=1}^{\infty} W_{n} = W,$$
$$S_{0} + \sum_{n=1}^{\infty} S_{n} = K_{f} + A_{f}$$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000	○○○○○○○○○	000000000000	000000
Energy budget summary					

• The energy budget is computed inside the dashed circle

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		000000000000	000000
Energy budget summary					

• The energy budget is computed inside the dashed circle

Also we have the tidal average operator,

$$ar{X}(t) = rac{1}{T} \int\limits_{t-T}^t X(t) \,\mathrm{d}t, \quad t \geq T,$$

Michael Dunphy

Focussing and normal mode scattering

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
No eddy					000000

- Top: low latitude PSI
- Bottom: mid latitude no PSI

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		○●000000000000000000000000000000000000	000000
Barotropic eddy					

- Energy flux magnitude
- $|p'_1 \vec{u_1}|$
- $f = 0.5 \times 10^{-4} \text{ s}^{-1}$
- $L_E = 50 \text{ km}$
- $U_{ heta} = 45 \text{ cm/s}.$
- Base flux = 4.78 kW/m.
- Average 15T < t < 16T

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000		0000000000	000000000000000000000000000000000000000	000000
Barotropic eddy					

- Energy flux magnitude
- $|p'_1 \vec{u_1}|$
- $f = 1.0 \times 10^{-4} \text{ s}^{-1}$
- $L_E = 30 \text{ km}$
- $U_{\theta} = 30 \text{ cm/s}.$
- Base flux = 3.68 kW/m.
- Average 16T < t < 17T

• Top: $U_{\theta} = 45 \text{ cm/s}, L_E = 20, 30, 40, 50 \text{ km}$

• Bottom: L_E = 30 km, $U_{ heta}$ = 15, 30, 45, 60, 75, 90 cm/s.

Michael Dunphy

Michael Dunphy

June 12, 2013 33 / 46

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		000000000000000000000000000000000000	000000
Baroclinic eddy					

- Energy flux normal to 80km radius circle
- $L_E = 35$ km, $U_{\theta} = 30$, 45, 60 cm/s

• Average
$$15T < t < 16T$$

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary	
00000	0000000	000		○○○○○●○○○○○	000000	
Baroclinic eddy induced conversion rates						

• Tidal-averaged terms for low f, $L_E = 35$ km, $U_{\theta} = 45$ cm/s

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
				0000000000000	
Baroclinic eddy induced	conversion rates				

\bigcup_{θ}	30	45	60
LE	cm/s	cm/s	cm/s
15 km	Х		
20 km	X	Х	
25 km	X	Х	X
30 km	X	Х	Х
35 km	X	Х	Х
40 km	X	Х	X
45 km	X	Х	X
50 km	X	Х	X
55 km	X	Х	X

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		○○○○○○○○●○○	000000
Baroclinic eddy induced conversion rates					

956 1051

60 cm/s
Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		○○○○○○○○○●○	000000
Baroclinic eddy induced	conversion rates				

200 220

732 805

60 cm/s

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
				000000000000	
Baroclinic eddy induced	conversion rates				

• Potential weaknesses:

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
				000000000000	
Baroclinic eddy induced	conversion rates				

- Potential weaknesses:
- The mode-one energy budget includes the eddy and the forced mode-one wave

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
				000000000000	
Baroclinic eddy induced	conversion rates				

- Potential weaknesses:
- The mode-one energy budget includes the eddy and the forced mode-one wave
- Energy may be lost from the eddy

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
				000000000000	
Baroclinic eddy induced	conversion rates				

- Potential weaknesses:
- The mode-one energy budget includes the eddy and the forced mode-one wave
- Energy may be lost from the eddy
- However there is no evidence to support this (everything indicates resonance)

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		000000000000	•00000
Summary					

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		000000000000	•00000
Summary					

• strongly affect energy flux patterns by creating hot and cold spots of energy flux

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000	0000000000	000000000000	●00000
Summary					

- strongly affect energy flux patterns by creating hot and cold spots of energy flux
- use the constructive/destructive interference mechanism, which reduces the coherence of mode-one internal tides

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000	0000000000	000000000000	●00000
Summary					

- strongly affect energy flux patterns by creating hot and cold spots of energy flux
- use the constructive/destructive interference mechanism, which reduces the coherence of mode-one internal tides
- are not efficient at scattering energy between internal tide modes

Implications for the background field:

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000	0000000000	000000000000	●00000
Summary					

- strongly affect energy flux patterns by creating hot and cold spots of energy flux
- use the constructive/destructive interference mechanism, which reduces the coherence of mode-one internal tides
- are not efficient at scattering energy between internal tide modes

Implications for the background field:

• Stronger energy cascade in hotspots, weaker in cold spots

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
					00000
Summary					

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		000000000000	000000
Summary					

• are efficient at scattering energy to higher internal tide modes

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		000000000000	0●0000
Summary					

- are efficient at scattering energy to higher internal tide modes
- use the resonant triad mechanism to scatter energy

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000	0000000000	000000000000	00000
Summary					

- are efficient at scattering energy to higher internal tide modes
- use the resonant triad mechanism to scatter energy
- act as a drag on a mode-one internal tide (analogous to the topographic drag on the barotropic tide)

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		000000000000	000000
Summary					

- are efficient at scattering energy to higher internal tide modes
- use the resonant triad mechanism to scatter energy
- act as a drag on a mode-one internal tide (analogous to the topographic drag on the barotropic tide)

Further,

• Low mode internal tides and mesoscale eddies are highly scale-compatible for interaction

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000	0000000000	000000000000	00000
Summary					

- are efficient at scattering energy to higher internal tide modes
- use the resonant triad mechanism to scatter energy
- act as a drag on a mode-one internal tide (analogous to the topographic drag on the barotropic tide)

Further,

• Low mode internal tides and mesoscale eddies are highly scale-compatible for interaction

Implications include enhanced localised dissipation:

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000	0000000000	000000000000	00000
Summary					

- are efficient at scattering energy to higher internal tide modes
- use the resonant triad mechanism to scatter energy
- act as a drag on a mode-one internal tide (analogous to the topographic drag on the barotropic tide)

Further,

• Low mode internal tides and mesoscale eddies are highly scale-compatible for interaction

Implications include enhanced localised dissipation:

• Energy is shifted from mode-one to mode-two and higher

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		000000000000	000000
Summary					

- are efficient at scattering energy to higher internal tide modes
- use the resonant triad mechanism to scatter energy
- act as a drag on a mode-one internal tide (analogous to the topographic drag on the barotropic tide)

Further,

• Low mode internal tides and mesoscale eddies are highly scale-compatible for interaction

Implications include enhanced localised dissipation:

- Energy is shifted from mode-one to mode-two and higher
- Higher modes propagate slower, subject to more interactions

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000		000000000000	000000
Summary					

- are efficient at scattering energy to higher internal tide modes
- use the resonant triad mechanism to scatter energy
- act as a drag on a mode-one internal tide (analogous to the topographic drag on the barotropic tide)

Further,

• Low mode internal tides and mesoscale eddies are highly scale-compatible for interaction

Implications include enhanced localised dissipation:

- Energy is shifted from mode-one to mode-two and higher
- Higher modes propagate slower, subject to more interactions
- Reduces the mode-one energy that reaches a shoreline

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
					000000
Summary					

Future work

- $\bullet\,$ Extend this work to non-constant N
- Parameterisation?

Introduction	Methods	Results 1	Energy budgets	Results 2	Summary
00000	0000000	000	0000000000	000000000000	00●000
Summary					

Future work

- Extend this work to non-constant N
- Parameterisation?

Related questions

 Can mode-two internal tides be observed emanating from an eddy? (satellite measurements, moorings, etc)

Introduction 00000	Methods 0000000	Results 1 000	Energy budgets 0000000000	Results 2 000000000000	Summary 000●●●
Summary					
References	1				

P. Bartello.

Geostrophic Adjustment and Inverse Cascades in Rotating Stratified Turbulence.

Journal of Atmospheric Sciences, 52:4410–4428, December 1995.

T. H. Bell.

Topographically generated internal waves in the open ocean. *Journal of Geophysical Research*, 80:320–327, January 1975. doi: 10.1029/JC080i003p00320.

Introduction 00000	Methods 0000000	Results 1 000	Energy budgets	Results 2 000000000000	Summary 000●●●
Summary					
References	s II				

Oliver Bühler and Michael E. McIntyre.

Wave capture and wave-vortex duality. Journal of Fluid Mechanics, 534:67-95, 6 2005. ISSN 1469-7645. doi: 10.1017/S0022112005004374. URL http://journals.cambridge.org/article_ S0022112005004374.

 S. Legg and K. M. H. Huijts.
Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography.
Deep Sea Research Part II: Topical Studies in Oceanography, 53:140–156, January 2006.
doi: 10.1016/j.dsr2.2005.09.014.

Introduction 00000	Methods 0000000	Results 1 000	Energy budgets	Results 2 000000000000	Summary 000000
Summary					
References	III				

M.-P. Lelong and J. J. Riley.

Internal wave-vortical mode interactions in strongly stratified flows.

Journal of Fluid Mechanics, 232:1–19, 1991. doi: 10.1017/S0022112091003609.