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Internal tides

There are a variety of internal wave generation mechanisms

Barotropic tide-topography interaction has received a lot of
attention
[Bell(1975)], [Legg and Huĳts(2006)], and many others
M2 internal tide generation is among the most prominent
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Internal tides

M2 internal tide generation: (Simmons, 2004), two layer model

 120oE  180oW  120oW   60oW    0o    60oE 

  60oS 

  30oS 

   0o  

  30oN 

  60oN 

  90oN 

Day = 2

Interface Displacement (m)
−20 −15 −10 −5 0 5 10 15 20

0 1 2

Figure 6: Interface displacement, η̂, normalized according to Eq. (15), on day two of spinup of the two-layer M2 simulation. The
resting depth of the interface is at 1100 meters. The zonal mean of the normalization factor is shown on the right side of the plot.
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Figure 7: Interface displacement, η̂, normalized according to Eq. (15), on day six of spinup of the two-layer M2 simulation. The
resting depth of the interface is at 1100 meters. The zonal mean of the normalization factor is shown on the right side of the plot.
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Internal tides

M2 internal tide generation: (Simmons, 2004), two layer model
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Figure 8: Interface displacement, η̂, normalized according to Eq. (15), on day twenty of spinup of the two-layer M2 simulation. The
resting depth of the interface is at 1100 meters. The zonal mean of the normalization factor is shown on the right side of the plot.
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Internal tides

The fate of the internal tide is still under investigation

Local dissipation vs. propagation
Interaction with oceanic flows
Absorbtion into the background wavefield
Remote breaking

I’m looking at mesoscale eddy interaction
This interaction is not unstudied:

Wave-wave-vortex resonance has been looked at by
[Lelong and Riley(1991)] and [Bartello(1995)]
Wave capture, [Bühler and McIntyre(2005)]

Michael Dunphy Focussing and normal mode scattering June 12, 2013 7 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Internal tides

The fate of the internal tide is still under investigation
Local dissipation vs. propagation

Interaction with oceanic flows
Absorbtion into the background wavefield
Remote breaking

I’m looking at mesoscale eddy interaction
This interaction is not unstudied:

Wave-wave-vortex resonance has been looked at by
[Lelong and Riley(1991)] and [Bartello(1995)]
Wave capture, [Bühler and McIntyre(2005)]

Michael Dunphy Focussing and normal mode scattering June 12, 2013 7 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Internal tides

The fate of the internal tide is still under investigation
Local dissipation vs. propagation
Interaction with oceanic flows

Absorbtion into the background wavefield
Remote breaking

I’m looking at mesoscale eddy interaction
This interaction is not unstudied:

Wave-wave-vortex resonance has been looked at by
[Lelong and Riley(1991)] and [Bartello(1995)]
Wave capture, [Bühler and McIntyre(2005)]

Michael Dunphy Focussing and normal mode scattering June 12, 2013 7 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Internal tides

The fate of the internal tide is still under investigation
Local dissipation vs. propagation
Interaction with oceanic flows
Absorbtion into the background wavefield

Remote breaking
I’m looking at mesoscale eddy interaction
This interaction is not unstudied:

Wave-wave-vortex resonance has been looked at by
[Lelong and Riley(1991)] and [Bartello(1995)]
Wave capture, [Bühler and McIntyre(2005)]

Michael Dunphy Focussing and normal mode scattering June 12, 2013 7 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Internal tides

The fate of the internal tide is still under investigation
Local dissipation vs. propagation
Interaction with oceanic flows
Absorbtion into the background wavefield
Remote breaking

I’m looking at mesoscale eddy interaction
This interaction is not unstudied:

Wave-wave-vortex resonance has been looked at by
[Lelong and Riley(1991)] and [Bartello(1995)]
Wave capture, [Bühler and McIntyre(2005)]

Michael Dunphy Focussing and normal mode scattering June 12, 2013 7 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Internal tides

The fate of the internal tide is still under investigation
Local dissipation vs. propagation
Interaction with oceanic flows
Absorbtion into the background wavefield
Remote breaking

I’m looking at mesoscale eddy interaction

This interaction is not unstudied:
Wave-wave-vortex resonance has been looked at by
[Lelong and Riley(1991)] and [Bartello(1995)]
Wave capture, [Bühler and McIntyre(2005)]

Michael Dunphy Focussing and normal mode scattering June 12, 2013 7 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Internal tides

The fate of the internal tide is still under investigation
Local dissipation vs. propagation
Interaction with oceanic flows
Absorbtion into the background wavefield
Remote breaking

I’m looking at mesoscale eddy interaction
This interaction is not unstudied:

Wave-wave-vortex resonance has been looked at by
[Lelong and Riley(1991)] and [Bartello(1995)]
Wave capture, [Bühler and McIntyre(2005)]

Michael Dunphy Focussing and normal mode scattering June 12, 2013 7 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Internal tides

The fate of the internal tide is still under investigation
Local dissipation vs. propagation
Interaction with oceanic flows
Absorbtion into the background wavefield
Remote breaking

I’m looking at mesoscale eddy interaction
This interaction is not unstudied:

Wave-wave-vortex resonance has been looked at by
[Lelong and Riley(1991)] and [Bartello(1995)]

Wave capture, [Bühler and McIntyre(2005)]

Michael Dunphy Focussing and normal mode scattering June 12, 2013 7 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Internal tides

The fate of the internal tide is still under investigation
Local dissipation vs. propagation
Interaction with oceanic flows
Absorbtion into the background wavefield
Remote breaking

I’m looking at mesoscale eddy interaction
This interaction is not unstudied:

Wave-wave-vortex resonance has been looked at by
[Lelong and Riley(1991)] and [Bartello(1995)]
Wave capture, [Bühler and McIntyre(2005)]

Michael Dunphy Focussing and normal mode scattering June 12, 2013 7 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Numerical experiment setup

We numerically simulate the interaction of a mode-one
internal tide and an isolated mesoscale eddy

3D hydrostatic MITgcm with a rigid lid on an f -plane
The domain is a constant depth rectangular region
Two latitude regimes:

Low (f = 0.5× 10−4 s−1), ≈ 20◦N
Mid (f = 1.0× 10−4 s−1), ≈ 43◦N

Parameter Value
N0 1.0× 10−3 s−1

T 44712 s (one tidal period)
ω 1.4053× 10−4 s−1 (M2)
Ut 5 cm s−1

g 9.81 m s−2

ρ0 1028 kg m−3

∆t 69 s
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Numerical experiment setup

We prescribe an isolated eddy via

Ψ = ψ(r)Φ(z) = −5 5
2

64UθLE sech4
( r

LE

)
Φ(z),

LE - eddy length scale
Uθ - eddy peak velocity (at r ≈ 0.48LE )
Barotropic eddy: Φ(z) = 1
Baroclinic eddy: Φ(z) = cos(πz/H) - mode one
Initialise with (u, v) = (−Ψy ,Ψx )

Use cyclo-geostrophic and hydrostatic balances to find ρ′
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Numerical experiment setup

We let the eddy adjust for 5 tidal periods, 0 ≤ t ≤ 5T
Shaded region is relaxed to no-flow
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Numerical experiment setup

Then we force a mode-one internal tide at the west boundary

u(x = 0, z , t) = Ut sin(ω(t − 5T )) cos
(
πz
H

)
R(t − 5T ),

5T ≤ t ≤ 30T ,
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Barotropic eddy cases

Parameter Value
Barotropic cases:
L × W × H 600 km × 800 km × 5000 m
Nx × Ny × Nz 1200 × 1600 × 25
∆x × ∆y × ∆z 0.5 km × 0.5 km × 200 m
eddy centre (xc , yc) = (250, 400) km

HHH
HHHLE

Uθ 30 45 60 75 90
cm/s cm/s cm/s cm/s cm/s

20 km X
30 km X X X X X
40 km X
50 km X
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Baroclinic eddy cases

Parameter Value
Baroclinic cases:
L × W × H 720 km × 400 km × 5000 m
Nx × Ny × Nz 1440 × 800 × 50
∆x × ∆y × ∆z 0.5 km × 0.5 km × 100 m
eddy centre (xc , yc) = (250, 200) km

H
HHH

HHLE

Uθ 30 45 60
cm/s cm/s cm/s

15 km X
20 km X X
25 km X X X
30 km X X X
35 km X X X
40 km X X X
45 km X X X
50 km X X X
55 km X X X
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Normal modes

Constant N yields vertical mode solutions following cosine/sine

{~uh, p′} ={~uh0 , p
′
0}(x , y , t) +

∞∑
n=1
{~uhn , p′n}(x , y , t) cos(mnz),

{w , ρ′} =
∞∑

n=1
{wn, ρ

′
n}(x , y , t) sin(mnz),

where mn = nπ
H .

We compute the coefficients from the flow fields by

{~uh0 , p
′
0} =

1
H

∫ 0

−H
{~uh, p′}dz ,

{~uhn , p′n} =
2
H

∫ 0

−H
{~uh, p′} cos(mnz) dz ,

{wn, ρ
′
n} =

2
H

∫ 0

−H
{w , ρ′} sin(mnz) dz .
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Barotropic eddy

Low latitude, LE = 50 km, Uθ = 45 cm/s, t = 16T
Left: ρ′1, Right: ρ′1 − ρ′1NOEDDY
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Baroclinic eddy

Density perturbation at modes 2 and 3
Low f , LE = 35 km, Uθ = 45 cm/s, t = 16T
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Total pseudo-energy budget

Review of the total pseudoenergy budget derivation

Start with the hydrostatic Boussinesq equations

∂~uh
∂t + (~u · ~∇)~uh + f × ~uh =

−1
ρ0

~∇hp′,

εnh

(
∂w
∂t + (~u · ~∇)w

)
= − 1

ρ0

∂p′
∂z −

gρ′
ρ0
,

∂ρ′

∂t + (~u · ~∇)ρ′ =
ρ0N2

0
g w ,

where p = p̄(z) + p′ and ρ = ρ0 + ρ̄1(z) + ρ′.
Hydrostatic approximation sets εnh = 0

Michael Dunphy Focussing and normal mode scattering June 12, 2013 18 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Total pseudo-energy budget

Review of the total pseudoenergy budget derivation
Start with the hydrostatic Boussinesq equations

∂~uh
∂t + (~u · ~∇)~uh + f × ~uh =

−1
ρ0

~∇hp′,

εnh

(
∂w
∂t + (~u · ~∇)w

)
= − 1

ρ0

∂p′
∂z −

gρ′
ρ0
,

∂ρ′

∂t + (~u · ~∇)ρ′ =
ρ0N2

0
g w ,

where p = p̄(z) + p′ and ρ = ρ0 + ρ̄1(z) + ρ′.

Hydrostatic approximation sets εnh = 0

Michael Dunphy Focussing and normal mode scattering June 12, 2013 18 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Total pseudo-energy budget

Review of the total pseudoenergy budget derivation
Start with the hydrostatic Boussinesq equations

∂~uh
∂t + (~u · ~∇)~uh + f × ~uh =

−1
ρ0

~∇hp′,

εnh

(
∂w
∂t + (~u · ~∇)w

)
= − 1

ρ0

∂p′
∂z −

gρ′
ρ0
,

∂ρ′

∂t + (~u · ~∇)ρ′ =
ρ0N2

0
g w ,

where p = p̄(z) + p′ and ρ = ρ0 + ρ̄1(z) + ρ′.
Hydrostatic approximation sets εnh = 0

Michael Dunphy Focussing and normal mode scattering June 12, 2013 18 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Total pseudo-energy budget

Dot product between ρ0~u and the momentum equations

Multiply density equation by g2ρ′

ρ0N2
0

Add the results, integrate over a volume, use some algebra,
we get

d
dt P + W + Kf + Af = 0
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Total pseudo-energy budget

d
dt P + W + Kf + Af = 0,

where

P =

∫∫∫
V

ρ0
1
2(u2 + v2) +

g2ρ′2

2N2ρ0
dV (total pseudo-energy),

W =

∫∫
δV

p′~u · n̂ dS (linear energy flux),

Kf =

∫∫
δV

ρ0
2
~u · n̂(u2 + v2) dS (nonlinear flux of kinetic energy),

Af =
g2

2ρ0N2

∫∫
δV

ρ′2~u · n̂ dS

(nonlinear flux of available potential energy).
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Projection of governing equations

We wish to have an energy budget for each vertical mode

Recall the cosine and sine series:

{~uh, p′} ={~uh0 , p
′
0}(x , y , t) +

∞∑
n=1
{~uhn , p′n}(x , y , t) cos(mnz),

{w , ρ′} =
∞∑

n=1
{wn, ρ

′
n}(x , y , t) sin(mnz),

where mn = nπ
H .

These series are substituted into the horizontal momentum
and density equations
Then we collect terms at each vertical mode
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Projection of governing equations

The linear terms are straightforward,

∂~uh
∂t =

∂~uh0

∂t +
∞∑

n=1

∂~uhn

∂t cos(mnz),

~f × ~uh = ~f × ~uh0 +
∞∑

n=1

~f × ~uhn cos(mnz),

−1
ρ0
∇hp′ =

−1
ρ0
∇hp′0 +

−1
ρ0

∞∑
n=1
∇hp′n cos(mnz)

The nonlinear terms require a bit of work

(~u · ~∇)~uh = ~Nu = ~Nu
0 +

∞∑
n=1

~Nu
n cos(mnz),
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Projection of governing equations

Copious use of trig substitution yields

~Nu
0 = (~uh0 · ~∇h)~uh0 +

1
2

∞∑
i=1

(~uhi · ~∇h)~uhi −
1
2

∞∑
i=1

wi~uhi mi ,

~Nu
1 =

[(
(~uh0 · ~∇h)~uh1 + (~uh1 · ~∇h)~uh0

)
+

1
2

∞∑
i=1

(
(~uhi · ~∇h)~uhi+1 + (~uhi+1 · ~∇h)~uhi

)]

− 1
2

[ ∞∑
i=1

wi~uhi+1mi+1 + wi+1~uhi mi

]
,

~Nu
2 =

[(
(~uh0 · ~∇h)~uh2 + (~uh2 · ~∇h)~uh0

)
+

1
2 (~uh1 · ~∇h)~uh1

+
1
2

∞∑
i=1

(
(~uhi · ~∇h)~uhi+2 + (~uhi+2 · ~∇h)~uhi

)]

+
1
2

[
w1~uh1m1 −

∞∑
i=1

(wi~uhi+2mi+2 + wi+2~uhi mi )

]
~Nu

3 = . . . .
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Projection of governing equations

Finally, the projected horizontal momentum equation is written as
as sum over modes

~M0 +
∞∑

n=1

~Mn cos(mnz) = 0,

where the coefficients of each mode sum to zero,

~M0 =
∂~uh0

∂t + Nu
0 + ~f × ~uh0 +

1
ρ0
~∇hp′0 = 0,

~Mn =
∂~uhn

∂t + Nu
n + ~f × ~uhn +

1
ρ0
~∇hp′n = 0, n = 1, 2, 3, . . .

A similar procedure is used for the density equation,
∞∑

n=1
Dn sin(mnz) = 0, which gives

Dn =
∂ρ′n
∂t + Nρn −

ρ0N2
0

g wn = 0, n = 1, 2, 3, . . .
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Modal budgets

We take the dot product,

(ρ0H)~uh0 · ~M0 = 0

then integrate over an area, employ some algebra, to get

d
dt K0 + W0 + S0 = 0,

where

K0 = ρ0
H
2

∫∫
A

(u2
0 + v2

0 ) dA is total barotropic kinetic energy,

W0 = H
∮
δA

(~uh0 · n̂)p′0 dS is the linear barotropic energy flux, and

S0 = ρ0H
∫∫
A

~uh0 · ~N
u
0 dA is the nonlinear barotropic energy sink.
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Modal budgets

A similar procedure yields the n-th baroclinic mode pseudo-energy budget,
d
dt Pn + Wn + Sn = 0, where

Pn = ρ0
H
4

∫∫
A

(u2
n + v2

n ) dA +
Hg2

4ρ0N2
0

∫∫
A

ρ′2n dA

is the total pseudo energy at mode-n,

Wn =
H
2

∮
δA

(~uhn · n̂)p′n dS,

is the linear baroclinic energy flux at mode-n, and

Sn =
ρ0H
2

∫∫
A

~uhn · ~Nu
n dA +

Hg2

2ρ0N2
0

∫∫
A

ρnNρn dA,

is the nonlinear sink of pseudo-energy at mode-n.
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Energy budget summary

The budgets are

Barotropic kinetic energy: dK0
dt + W0 + S0 = 0

Baroclinic pseudo-energy: dPn
dt + Wn + Sn = 0

Total pseudo-energy: dP
dt + W + Kf + Af = 0

which, as you might expect, sum via

d
dt K0 +

∞∑
n=1

d
dt Pn =

d
dt P,

W0 +
∞∑

n=1
Wn = W ,

S0 +
∞∑

n=1
Sn = Kf + Af
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Energy budget summary

The energy budget is computed inside the dashed circle
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Also we have the tidal average operator,

X̄ (t) =
1
T

t∫
t−T

X (t) dt, t ≥ T ,
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No eddy
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Barotropic eddy
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Barotropic eddy
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Barotropic eddy

0

4

8

12

0 200 400 600 800
0

4

8

12

distance (km)

E
ne

rg
y 

fl
ux

 (
kW

/m
)

Top: Uθ = 45 cm/s, LE = 20, 30, 40, 50 km
Bottom: LE = 30 km, Uθ = 15, 30, 45, 60, 75, 90 cm/s.

Michael Dunphy Focussing and normal mode scattering June 12, 2013 32 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Baroclinic eddy
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Baroclinic eddy
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Baroclinic eddy induced conversion rates

Tidal-averaged terms for low f , LE = 35 km, Uθ = 45 cm/s
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Baroclinic eddy induced conversion rates

Incident power (MW) = 3.66 (kW/m) × L (km)
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Baroclinic eddy induced conversion rates

HH
HHHHLE

Uθ 30 45 60
cm/s cm/s cm/s

15 km X
20 km X X
25 km X X X
30 km X X X
35 km X X X
40 km X X X
45 km X X X
50 km X X X
55 km X X X
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Baroclinic eddy induced conversion rates
S̄
1
a
t
t=

2
5
T

(M
W

)

15
14

13

12

11
10

9
8

7
6

5
4

3

2

1

287 382 478 573 669 764 860 956 1051
0

20

40

60
60 80 100 120 140 160 180 200 220

Eddy diameter, L (km)

S̄
2
a
t
t=

2
5
T

(M
W

)

−10 −9

−8
−7

−6

−5

−4
−3

−2

−1

287 382 478 573 669 764 860 956 1051
−40

−30

−20

−10

0
60 80 100 120 140 160 180 200 220

Incident power (MW) = 4.78 (kW/m) × L (km)

S̄
3
a
t
t=

2
5
T

(M
W

)

−3
−2.5

−2

−1.5

−1
−0.5

287 382 478 573 669 764 860 956 1051
−8

−6

−4

−2

0
60 80 100 120 140 160 180 200 220

 

 

30 cm/s 45 cm/s 60 cm/s

S̄
1
a
t
t=

2
5
T

(M
W

)

15
14

13

12

11
10

9
8

7
6

5
4

3

2

1

287 382 478 573 669 764 860 956 1051
0

20

40

60
60 80 100 120 140 160 180 200 220

Eddy diameter, L (km)

S̄
2
a
t
t=

2
5
T

(M
W

)

−10 −9

−8
−7

−6

−5

−4
−3

−2

−1

287 382 478 573 669 764 860 956 1051
−40

−30

−20

−10

0
60 80 100 120 140 160 180 200 220

Incident power (MW) = 4.78 (kW/m) × L (km)

S̄
3
a
t
t=

2
5
T

(M
W

)

−3
−2.5

−2
−1.5

−1
−0.5

287 382 478 573 669 764 860 956 1051
−8

−6

−4

−2

0
60 80 100 120 140 160 180 200 220

 

 

30 cm/s 45 cm/s 60 cm/s

Low-latitude case

Michael Dunphy Focussing and normal mode scattering June 12, 2013 38 / 46



Introduction Methods Results 1 Energy budgets Results 2 Summary

Baroclinic eddy induced conversion rates
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Baroclinic eddy induced conversion rates

Potential weaknesses:

The mode-one energy budget includes the eddy and the forced
mode-one wave
Energy may be lost from the eddy
However there is no evidence to support this (everything
indicates resonance)
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Summary

Results from this work indicate that barotropic eddies:

strongly affect energy flux patterns by creating hot and cold
spots of energy flux
use the constructive/destructive interference mechanism,
which reduces the coherence of mode-one internal tides
are not efficient at scattering energy between internal tide
modes

Implications for the background field:
Stronger energy cascade in hotspots, weaker in cold spots
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