

A surface-aware projection basis for oceanic flows

$K S S$ mith¹ J Vanneste²

¹ Courant Institute, New York University

²School of Mathematics and Maxwell Institute University of Edinburgh

KORK ERKER ADAM ADA

High-resolution numerical modelling and satellite observations suggest ocean turbulence is in a surface quasi-geostrophic regime near the surface.

(Roullet et al, JPO, 2012) between shown to be important i[n the b](#page-0-0)al[ance](#page-2-0) [of fi](#page-0-0)[lamen](#page-1-0)[ts](#page-2-0) in the balance of filaments in the balance of filaments Baroclinic instability with $b_y \neq 0$ (left) and with $b_y = 0$ (right)

Recall quasi-geostrophic model:

 $\partial_t q + \partial(\psi, q) = 0$, and $\partial_t b + \partial(\psi, b) = 0$ at $z = z^{\pm}$,

with the inversion

$$
\partial_{xx}\psi + \partial_{yy}\psi + \partial_z\left(\frac{f^2}{N^2}\partial_z\psi\right) = q
$$
 and $\partial_z\psi = b/f$ at $z = z^{\pm}$.

KID KA KERKER E VOOR

Three dynamical variables:

- \bullet potential vorticity $q(x, y, z, t)$,
- surface and bottom buoyancy $b(x, y, z^{\pm}, t)$.

Simplified models:

- QG turbulence: $b(x, y, z^{\pm}, t) = \text{const.}$
- • SQG turbulence: $q = 0$.

Recall quasi-geostrophic model:

 $\partial_t q + \partial(\psi, q) = 0$, and $\partial_t b + \partial(\psi, b) = 0$ at $z = z^{\pm}$,

with the inversion

$$
\partial_{xx}\psi + \partial_{yy}\psi + \partial_z\left(\frac{f^2}{N^2}\partial_z\psi\right) = q
$$
 and $\partial_z\psi = b/f$ at $z = z^{\pm}$.

KORKAR KERKER E VOOR

Three dynamical variables:

- \bullet potential vorticity $q(x, y, z, t)$,
- surface and bottom buoyancy $b(x, y, z^{\pm}, t)$.

Simplified models:

- QG turbulence: $b(x, y, z^{\pm}, t) = \text{const.}$
- \bullet SQG turbulence: $q = 0$.

Spectra in primitive equation simulations (K[lei](#page-3-0)[n e](#page-5-0)[t](#page-3-0) [a](#page-4-0)l., [J](#page-0-0)[P](#page-12-0)[O](#page-13-0)[,](#page-0-0) [2](#page-1-0)[0](#page-13-0)0[9](#page-0-0)[\)](#page-22-0) 2990

Interior and surface motion

Observed SSH: SQG $k^{-11/3}$ spectrum in energetic regions.

Le Traon et al (JPO, 2009)

Xu and Fu (JPO, 2011, 2012)

 \rightarrow \equiv \rightarrow

K ロ ト K 伊 ト K ヨ ト

 \equiv 990

Vertical structure of SQG motion:

$$
\hat{q} = 0 \Rightarrow \partial_z \left(\frac{f^2}{N^2} \partial_z \hat{\psi} \right) - \kappa^2 \hat{\psi} = 0 \Rightarrow \hat{\psi} \propto e^{N\kappa z/f}
$$

for Fourier mode (k, l) with $\kappa^2 = k^2 + l^2$.

- Exponential decay from surface,
- non-zero surface buoyancy $b(z^{\pm}) = f \partial_z \hat{\psi}(z^{\pm}) \neq 0$.

A difficulty:

Vertical structure of SQG motion is poorly represented by standard basis of barotropic $+$ baroclinic modes.

KOD KAR KED KED E YORA

Vertical structure of SQG motion:

$$
\hat{q} = 0 \Rightarrow \partial_z \left(\frac{f^2}{N^2} \partial_z \hat{\psi} \right) - \kappa^2 \hat{\psi} = 0 \Rightarrow \hat{\psi} \propto e^{N\kappa z/f}
$$

for Fourier mode (k, l) with $\kappa^2 = k^2 + l^2$.

- Exponential decay from surface,
- non-zero surface buoyancy $b(z^{\pm}) = f \partial_z \hat{\psi}(z^{\pm}) \neq 0$.

A difficulty:

Vertical structure of SQG motion is poorly represented by standard basis of barotropic $+$ baroclinic modes.

KOD KAR KED KED E YORA

Standard basis of baroclinic modes: Eigenfunctions of

$$
\left(\frac{f^2}{N^2}\psi'_n\right)'=-\lambda_n^2\psi_n,\quad\text{with}\quad\psi'_n=0\,\,\text{at}\,\,z=0,\,-H.
$$

For constant *N*: $\psi_n \sim \cos(n\pi z/H)$, $n = 0, 1, \cdots$.

Advantages:

- orthogonal basis, $\int_{-H}^{0} \psi_n \psi_m \,dz \propto \int_{-H}^{0} \nabla \psi_n \cdot \nabla \psi_m \,dz \propto \delta_{mn}$
- diagonalise energy,
- **•** describes (interior) QG dynamics with a few modes,
- mode structure independent of κ .

Heavily used: projection of data, basis for simplified models. . .

 2990

Standard basis of baroclinic modes: Eigenfunctions of

$$
\left(\frac{f^2}{N^2}\psi'_n\right)'=-\lambda_n^2\psi_n,\quad\text{with}\quad\psi'_n=0\,\,\text{at}\,\,z=0,\,-H.
$$

For constant $N: \psi_n \sim \cos(n\pi z/H), n = 0, 1, \cdots$.

Advantages:

- $\int_{-H}^{0} \psi_n \psi_m \, \mathrm{d}z \propto \int_{-H}^{0} \nabla \psi_n \cdot \nabla \psi_m \, \mathrm{d}z \propto \delta_{mn},$
- diagonalise energy,
- **•** describes (interior) QG dynamics with a few modes,
- mode structure independent of κ .

Heavily used: projection of data, basis for simplified models. . .

KORK ERKER ADAM ADA

Difficulty:

• basis unsuitable to describe SQG-like motion since

 $f \psi'_n = b = 0$ at $z = 0, -H$,

- non-uniform convergence for surface modes $e^{N\kappa z/f} = \sum_{n} A_n \cos(n\pi z/H)$,
- many modes needed to represent motion with surface activity.

Need to find an alternative, 'surface-aware' basis.

- Tulloch & Smith (JAS, 2009), Lapeyre (JPO, 2009): add SQG mode $e^{-N\kappa z/f}$ to standard basis.
- Scott & Furnival (JPO, 2012): add barotropic mode to 'Dirichlet basis' satisfying $\psi_n = 0$ at $z = 0$.

KORK ERKER ADE YOUR

But, non-orthogonal, overcomplete bases.

Difficulty:

• basis unsuitable to describe SQG-like motion since

 $f \psi'_n = b = 0$ at $z = 0, -H$,

- non-uniform convergence for surface modes $e^{N\kappa z/f} = \sum_{n} A_n \cos(n\pi z/H)$,
- many modes needed to represent motion with surface activity.

Need to find an alternative, 'surface-aware' basis.

- Tulloch & Smith (JAS, 2009), Lapeyre (JPO, 2009): add SQG mode $e^{-N\kappa z/f}$ to standard basis.
- Scott & Furnival (JPO, 2012): add barotropic mode to 'Dirichlet basis' satisfying $\psi_n = 0$ at $z = 0$.

KORKAR KERKER E VOOR

But, non-orthogonal, overcomplete bases.

Difficulty:

• basis unsuitable to describe SQG-like motion since

 $f \psi'_n = b = 0$ at $z = 0, -H$,

- non-uniform convergence for surface modes $e^{N\kappa z/f} = \sum_{n} A_n \cos(n\pi z/H)$,
- many modes needed to represent motion with surface activity.

Need to find an alternative, 'surface-aware' basis.

Some attempts:

- Tulloch & Smith (JAS, 2009), Lapeyre (JPO, 2009): add SQG mode $e^{-N\kappa z/f}$ to standard basis.
- Scott & Furnival (JPO, 2012): add barotropic mode to 'Dirichlet basis' satisfying $\psi_n = 0$ at $z = 0$.

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

But, non-orthogonal, overcomplete bases.

- Think of $Q = (q, b^+, b^-)$ not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises 2 quadratic forms $x^T A x$ and $x^T B x$ (solve $Ax = \lambda B x$),
- Choose as quadratic form conserved quantities: energy and 'generalised enstrophy',

$$
\int_{-H}^{0} |\nabla \psi|^2 \, \mathrm{d} z \quad \text{and} \int_{-H}^{0} q^2 \, \mathrm{d} z + \alpha_+(b^+)^2 + \alpha_-(b^-)^2.
$$

KORK ERKER ADE YOUR

Ideas:

- Think of $Q = (q, b⁺, b⁻)$ not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises 2 quadratic forms $x^T A x$ and $x^T B x$ (solve $Ax = \lambda B x$),
- Choose as quadratic form conserved quantities: energy and 'generalised enstrophy',

$$
\int_{-H}^{0} |\nabla \psi|^2 \, \mathrm{d} z \quad \text{and} \int_{-H}^{0} q^2 \, \mathrm{d} z + \alpha_+(b^+)^2 + \alpha_-(b^-)^2.
$$

KORK ERKER ADE YOUR

Ideas:

- Think of $Q = (q, b^+, b^-)$ not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises 2 quadratic forms $x^T A x$ and $x^T B x$ (solve $Ax = \lambda B x$),
- Choose as quadratic form conserved quantities: energy and 'generalised enstrophy',

$$
\int_{-H}^{0} |\nabla \psi|^2 \, \mathrm{d} z \quad \text{and} \int_{-H}^{0} q^2 \, \mathrm{d} z + \alpha_+(b^+)^2 + \alpha_-(b^-)^2.
$$

KORK ERKER ADE YOUR

Ideas:

- Think of $Q = (q, b^+, b^-)$ not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises 2 quadratic forms $x^T A x$ and $x^T B x$ (solve $Ax = \lambda B x$),
- Choose as quadratic form conserved quantities: energy and 'generalised enstrophy',

$$
\int_{-H}^{0} |\nabla \psi|^2 dz \text{ and } \int_{-H}^{0} q^2 dz + \alpha_+(b^+)^2 + \alpha_-(b^-)^2.
$$

KORK ERKER ADE YOUR

Ideas:

- Think of $Q = (q, b⁺, b⁻)$ not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises 2 quadratic forms $x^T A x$ and $x^T B x$ (solve $Ax = \lambda B x$),
- Choose as quadratic form conserved quantities: energy and 'generalised enstrophy',

$$
\int_{-H}^{0} |\nabla \psi|^2 dz \text{ and } \int_{-H}^{0} q^2 dz + \alpha_+(b^+)^2 + \alpha_-(b^-)^2.
$$

KORKAR KERKER E VOOR

Basis vectors: eigenfunctions of

$$
\left(\frac{f^2}{N^2}\psi'_n\right)'=-\lambda_n^2\psi_n, \text{ with }\frac{f^2}{N^2H}\psi'_n=\pm\frac{\lambda_n^2+\kappa^2}{\alpha_\pm}\psi_n \text{ at } z=0, -H.
$$

Limiting cases:

 $\alpha_{\pm} \rightarrow \infty$: reduces to standard baroclinic basis for $n = O(1)$, $\alpha_{+} \rightarrow 0$: 'Dirichlet basis' with $\psi_{n} = 0$ at $z = 0$, $-H$ $+ 2$ SQG modes ($q = 0$) and imaginary λ_n .

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{B} + \math$ 2990

Basis vectors: eigenfunctions of

$$
\left(\frac{f^2}{N^2}\psi'_n\right)'=-\lambda_n^2\psi_n, \text{ with }\frac{f^2}{N^2H}\psi'_n=\pm\frac{\lambda_n^2+\kappa^2}{\alpha_\pm}\psi_n \text{ at } z=0, -H.
$$

Limiting cases:

 $\alpha_{\pm} \rightarrow \infty$: reduces to standard baroclinic basis for $n = O(1)$, $\alpha_{\pm} \rightarrow 0$: 'Dirichlet basis' with $\psi_n = 0$ at $z = 0$, $-H$ $+ 2$ SQG modes ($q = 0$) and imaginary λ_n .

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z}) \Rightarrow QQ

 κ

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

- Effects of surface buoyancy gradients cannot be ignored in ocean turbulence,
- Eddies have rich, surface-intensified vertical structure that is not well-represented by standard vertical modes,
- New bases presented can capture most energy in such flows with a small truncation set,
- New bases can be very simple:

 $\psi_0 \propto \cosh \left[N\kappa(z+H)/f \right], \quad \psi_n \propto \sin \left[(n-1/2)\pi z/H \right].$

KORKAR KERKER E VOOR

• New bases depend on κ : coupling of horizontal and vertical structures.