Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0000		00	0000	0

A surface-aware projection basis for oceanic flows

K S Smith¹ J Vanneste²

¹Courant Institute, New York University

²School of Mathematics and Maxwell Institute University of Edinburgh

Introduction •000	Modal expansion	Modal expansion	New bases 0000	Conclusion O
Motivation				

High-resolution numerical modelling and satellite observations suggest ocean turbulence is in a surface quasi-geostrophic regime near the surface.

Baroclinic instability with $b_y \neq 0$ (left) and with $b_y = 0$ (right) (Roullet et al, JPO, 2012)

Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0●00		00	0000	O
Interior and	surface motior	ı		

Recall quasi-geostrophic model:

 $\partial_t q + \partial(\psi, q) = 0$, and $\partial_t b + \partial(\psi, b) = 0$ at $z = z^{\pm}$,

with the inversion

$$\partial_{xx}\psi + \partial_{yy}\psi + \partial_z\left(rac{f^2}{N^2}\partial_z\psi
ight) = q \quad ext{and} \quad \partial_z\psi = b/f \quad ext{at} \quad z = z^{\pm}.$$

Three dynamical variables:

- potential vorticity q(x, y, z, t),
- surface and bottom buoyancy $b(x, y, z^{\pm}, t)$.

Simplified models:

- QG turbulence: $b(x, y, z^{\pm}, t) = \text{const.}$,
- SQG turbulence: q = 0.

Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0●00		00	0000	O
Interior and	surface motior	ı		

Recall quasi-geostrophic model:

 $\partial_t q + \partial(\psi, q) = 0$, and $\partial_t b + \partial(\psi, b) = 0$ at $z = z^{\pm}$,

with the inversion

$$\partial_{xx}\psi + \partial_{yy}\psi + \partial_z\left(rac{f^2}{N^2}\partial_z\psi
ight) = q \quad ext{and} \quad \partial_z\psi = b/f \quad ext{at} \quad z = z^{\pm}.$$

Three dynamical variables:

- potential vorticity q(x, y, z, t),
- surface and bottom buoyancy $b(x, y, z^{\pm}, t)$.

Simplified models:

- QG turbulence: $b(x, y, z^{\pm}, t) = \text{const.}$,
- SQG turbulence: q = 0.

Introduction 0000	Modal expansion	Modal expansion	New bases 0000	Conclusion O
Interior an	nd surface mot	ion		

Spectra in primitive equation simulations (Klein et al, JPO, 2009)

Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0000		00	0000	O
1	c			

Interior and surface motion

Observed SSH: SQG $k^{-11/3}$ spectrum in energetic regions.

Le Traon et al (JPO, 2009)

Xu and Fu (JPO, 2011, 2012)

イロト イポト イヨト イヨト

э.

Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0000		00	0000	O
Interior and	surface motior	ı		

Vertical structure of SQG motion:

$$\hat{q} = 0 \Rightarrow \partial_z \left(\frac{f^2}{N^2} \partial_z \hat{\psi} \right) - \kappa^2 \hat{\psi} = 0 \Rightarrow \hat{\psi} \propto e^{N \kappa z / f}$$

for Fourier mode (k, l) with $\kappa^2 = k^2 + l^2$.

- Exponential decay from surface,
- non-zero surface buoyancy $b(z^{\pm}) = f \partial_z \hat{\psi}(z^{\pm}) \neq 0$.

A difficulty:

Vertical structure of SQG motion is poorly represented by standard basis of barotropic + baroclinic modes.

Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0000		00	0000	O
Interior and	surface motion	ı		

Vertical structure of SQG motion:

$$\hat{q} = 0 \Rightarrow \partial_z \left(\frac{f^2}{N^2} \partial_z \hat{\psi} \right) - \kappa^2 \hat{\psi} = 0 \Rightarrow \hat{\psi} \propto e^{N \kappa z / f}$$

for Fourier mode (k, l) with $\kappa^2 = k^2 + l^2$.

- Exponential decay from surface,
- non-zero surface buoyancy $b(z^{\pm}) = f \partial_z \hat{\psi}(z^{\pm}) \neq 0$.

A difficulty:

Vertical structure of SQG motion is poorly represented by standard basis of barotropic + baroclinic modes.

Introduction 0000	Modal expansion	Modal expansion ●○	New bases	Conclusion O
Modal expa Standard basis	insion			

Standard basis of baroclinic modes: Eigenfunctions of

For constant N: $\psi_n \sim \cos(n\pi z/H)$, $n = 0, 1, \cdots$.

Advantages:

- orthogonal basis, $\int_{-H}^{0} \psi_n \psi_m \, dz \propto \int_{-H}^{0} \nabla \psi_n \cdot \nabla \psi_m \, dz \propto \delta_{mn}$,
- diagonalise energy,
- describes (interior) QG dynamics with a few modes,
- mode structure independent of κ .

Heavily used: projection of data, basis for simplified models...

・ロット (雪) (日) (日) (日)

Introduction 0000	Modal expansion	Modal expansion ●○	New bases	Conclusion O
Modal expansion Standard basis	nsion			

Standard basis of baroclinic modes: Eigenfunctions of

For constant N: $\psi_n \sim \cos(n\pi z/H)$, $n = 0, 1, \cdots$.

Advantages:

- orthogonal basis, $\int_{-H}^{0} \psi_n \psi_m \, dz \propto \int_{-H}^{0} \nabla \psi_n \cdot \nabla \psi_m \, dz \propto \delta_{mn}$,
- diagonalise energy,
- describes (interior) QG dynamics with a few modes,
- mode structure independent of κ .

Heavily used: projection of data, basis for simplified models...

Introduction 0000	Modal expansion	Modal expansion ⊙●	New bases	Conclusion O
Modal expa Standard basis	nsion			

Difficulty:

• basis unsuitable to describe SQG-like motion since

 $f\psi_n'=b=0$ at z=0,-H,

- non-uniform convergence for surface modes $e^{N\kappa z/f} = \sum_n A_n \cos(n\pi z/H)$,
- many modes needed to represent motion with surface activity.

Need to find an alternative, 'surface-aware' basis.

Some attempts:

- Tulloch & Smith (JAS, 2009), Lapeyre (JPO, 2009): add SQG mode ${\rm e}^{-N\kappa z/f}$ to standard basis,
- Scott & Furnival (JPO, 2012): add barotropic mode to 'Dirichlet basis' satisfying $\psi_n = 0$ at z = 0.

But, non-orthogonal, overcomplete bases.

Introduction 0000	Modal expansion	Modal expansion ⊙●	New bases	Conclusion O
Modal expa Standard basis	nsion			

Difficulty:

• basis unsuitable to describe SQG-like motion since

 $f\psi_n'=b=0$ at z=0,-H,

- non-uniform convergence for surface modes $e^{N\kappa z/f} = \sum_n A_n \cos(n\pi z/H)$,
- many modes needed to represent motion with surface activity.

Need to find an alternative, 'surface-aware' basis.

Some attempts:

- Tulloch & Smith (JAS, 2009), Lapeyre (JPO, 2009): add SQG mode e^{-Nκz/f} to standard basis,
- Scott & Furnival (JPO, 2012): add barotropic mode to 'Dirichlet basis' satisfying $\psi_n = 0$ at z = 0.

But, non-orthogonal, overcomplete bases.

Introduction 0000	Modal expansion	Modal expansion ⊙●	New bases	Conclusion O
Modal expa Standard basis	nsion			

Difficulty:

• basis unsuitable to describe SQG-like motion since

 $f\psi_n'=b=0$ at z=0,-H,

- non-uniform convergence for surface modes $e^{N\kappa z/f} = \sum_n A_n \cos(n\pi z/H)$,
- many modes needed to represent motion with surface activity.

Need to find an alternative, 'surface-aware' basis.

Some attempts:

- Tulloch & Smith (JAS, 2009), Lapeyre (JPO, 2009): add SQG mode $e^{-N\kappa z/f}$ to standard basis,
- Scott & Furnival (JPO, 2012): add barotropic mode to 'Dirichlet basis' satisfying $\psi_n = 0$ at z = 0.

But, non-orthogonal, overcomplete bases.

Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0000		00	●000	O
New bases				

Ideas:

- Think of Q = (q, b⁺, b⁻) not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises 2 quadratic forms $x^{T}Ax$ and $x^{T}Bx$ (solve $Ax = \lambda Bx$),
- Choose as quadratic form conserved quantities: energy and 'generalised enstrophy',

$$\int_{-H}^0 |\nabla \psi|^2 \,\mathrm{d} z \quad \text{and} \int_{-H}^0 q^2 \,\mathrm{d} z + \alpha_+ (b^+)^2 + \alpha_- (b^-)^2.$$

Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0000		00	●000	O
New bases				

Ideas:

- Think of $Q = (q, b^+, b^-)$ not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises 2 quadratic forms $x^{T}Ax$ and $x^{T}Bx$ (solve $Ax = \lambda Bx$),
- Choose as quadratic form conserved quantities: energy and 'generalised enstrophy',

$$\int_{-H}^0 |
abla \psi|^2 \,\mathrm{d} z \quad ext{and} \int_{-H}^0 q^2 \,\mathrm{d} z + lpha_+ (b^+)^2 + lpha_- (b^-)^2.$$

Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0000		00	●000	O
New bases				

Ideas:

- Think of $Q = (q, b^+, b^-)$ not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises **2** quadratic forms $x^{T}Ax$ and $x^{T}Bx$ (solve $Ax = \lambda Bx$),
- Choose as quadratic form conserved quantities: energy and 'generalised enstrophy',

$$\int_{-H}^0 |
abla \psi|^2 \,\mathrm{d} z \quad ext{and} \int_{-H}^0 q^2 \,\mathrm{d} z + lpha_+ (b^+)^2 + lpha_- (b^-)^2.$$

Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0000		00	●000	O
New bases				

Ideas:

- Think of Q = (q, b⁺, b⁻) not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises **2** quadratic forms $x^{T}Ax$ and $x^{T}Bx$ (solve $Ax = \lambda Bx$),
- Choose as quadratic form conserved quantities: energy and 'generalised enstrophy',

$$\int_{-H}^0 |
abla \psi|^2 \,\mathrm{d} z \quad ext{and} \int_{-H}^0 q^2 \,\mathrm{d} z + lpha_+ (b^+)^2 + lpha_- (b^-)^2.$$

Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0000		00	●000	O
New bases				

Ideas:

- Think of Q = (q, b⁺, b⁻) not ψ as the dynamical variable to be expanded,
- Recall linear algebra: a unique basis diagonalises **2** quadratic forms $x^{T}Ax$ and $x^{T}Bx$ (solve $Ax = \lambda Bx$),
- Choose as quadratic form conserved quantities: energy and 'generalised enstrophy',

$$\int_{-H}^0 |
abla \psi|^2 \,\mathrm{d} z \quad ext{and} \int_{-H}^0 q^2 \,\mathrm{d} z + lpha_+ (b^+)^2 + lpha_- (b^-)^2.$$

Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0000		00	○●○○	O
New bases				

Basis vectors: eigenfunctions of

$$\left(rac{f^2}{N^2}\psi_n'
ight)'=-\lambda_n^2\psi_n, \ \ {
m with} \ \ rac{f^2}{N^2H}\psi_n'=\pmrac{\lambda_n^2+\kappa^2}{lpha_\pm}\psi_n \ {
m at} \ \ z=0, \ -H.$$

Limiting cases:

 $\alpha_{\pm} \rightarrow \infty$: reduces to standard baroclinic basis for n = O(1), $\alpha_{\pm} \rightarrow 0$: 'Dirichlet basis' with $\psi_n = 0$ at z = 0, -H+ 2 SQG modes (q = 0) and imaginary λ_n .

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0000		00	○●○○	O
New bases				

Basis vectors: eigenfunctions of

$$\left(\frac{f^2}{N^2}\psi_n'\right)' = -\lambda_n^2\psi_n, \text{ with } \frac{f^2}{N^2H}\psi_n' = \pm\frac{\lambda_n^2+\kappa^2}{\alpha_\pm}\psi_n \text{ at } z=0, -H.$$

Limiting cases:

 $\alpha_{\pm} \rightarrow \infty$: reduces to standard baroclinic basis for n = O(1), $\alpha_{\pm} \rightarrow 0$: 'Dirichlet basis' with $\psi_n = 0$ at z = 0, -H+ 2 SQG modes (q = 0) and imaginary λ_n .

Introduction 0000	Modal expansion	Modal expansion	New bases ○○●○	Conclusion O
New bases Application				

10⁻¹⁰

10⁰

10²

к

10⁻¹⁰

10⁰

10²

κ

10⁻¹⁰

10⁰

 10^{2}

κ

Introduction 0000	Modal expansion	Modal expansion 00	New bases	Conclusion O
New bases				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Modal expansion	Modal expansion	New bases	Conclusion
0000		00	0000	●
Conclusion				

- Effects of surface buoyancy gradients cannot be ignored in ocean turbulence,
- Eddies have rich, surface-intensified vertical structure that is not well-represented by standard vertical modes,
- New bases presented can capture most energy in such flows with a small truncation set,
- New bases can be very simple:

 $\psi_0 \propto \cosh\left[N\kappa(z+H)/f
ight], \quad \psi_n \propto \sin\left[(n-1/2)\pi z/H
ight)
ight].$

 New bases depend on κ: coupling of horizontal and vertical structures.