Potential Enstrophy in Stratified Turbulence

Michael Waite

University of Waterloo mwaite@uwaterloo.ca

11 June 2013

Introduction

- Potential enstrophy
 - integrated squared potential vorticity: $V = \frac{1}{2} \langle q^2 \rangle$
 - neglecting forcing & dissipation: Dq/Dt = 0, V is conserved
 - V-conservation important in QG turbulence (enstrophy cascade, inverse energy cascade)
 - what happens at larger Ro atmospheric mesoscale & oceanic sub-mesoscale?

Stratified turbulence

- homogeneous turbulence in stratified fluid with weak or no rotation
- model for geophysical turbulence at small-scale end of atmos meso and ocean sub-meso
- connects large-scale QG turbulence with small-scale isotropic turbulence
- waves, vortical modes, thin shear layers, K-H (reviews: Riley & Lelong 2000; Riley & Lindborg 2013)

Potential vorticity & enstrophy

▶ Ertel PV for Boussinesq fluid: $q = (f\hat{z} + \omega) \cdot (N^2 \hat{z} + \nabla b) = q_0 + q_1 + q_2$, where

$$q_0 = fN^2$$
, $q_1 = N^2\omega_z + f\partial_z b$, $q_2 = \boldsymbol{\omega} \cdot \nabla b$

f = Coriolis, N = Brunt–Väisälä freq, b = buoyancy

- *q* is quadratic in ω and *b*, so $V = V_2 + V_3 + V_4$ is a quartic invariant.
 - no detailed conservation of V by wavenumber triads
 - weird: viscosity & diffusion are not strictly dissipative (Herring, Kerr, Rotunno 1994)

$$\frac{\mathsf{D}q}{\mathsf{D}t} = \left(\mathsf{N}^2\hat{\mathbf{z}} + \nabla b\right) \cdot \left(\nu\nabla^2\omega\right) + \kappa\left(f\hat{\mathbf{z}} + \omega\right) \cdot \nabla\left(\nabla^2b\right)$$

Potential vorticity & enstrophy

- ▶ But under certain conditions, is V approximately quadratic? (i.e. $q \approx$ linear?)
 - yes, for QG turbulence
 - what about for large Ro?
 - Kurien, Smith & Wingate (2006), Aluie & Kurien (2011): V is \approx quadratic for stratified turbulence
 - how generic is this result?

Aluie & Kurien, EPL 96, 44006, 2011

So what?

- Cascade theories:
 - quadratic $V \Rightarrow$ triad-by-triad conservation, like kinetic energy
 - ▶ relationship between energy and p. enstrophy: e.g. for f = 0 have $V(\mathbf{k}) = N^2 k_h^2 E_R(\mathbf{k})$
 - joint conservation constrains cascade as in 2D, QG: inverse cascade? (Lilly 1983)
- Decomposition into waves and vortices:
 - linear decomposition into vortical modes (with q1) and gravity waves (no q1)
 - e.g. stratified turbulence (Lelong & Riley 1991), rotating-stratified turbulence (Bartello 1995)
 - ▶ motivates decomp of KE spectra into horizontally rotational (≈ vortical) and divergent (≈ wave)
 - popular/easy decomposition, but meaningless if higher-order V terms important

Scale analysis of potential vorticity

Usual scaling of terms (Lilly 1983, Riley & Lelong 2000) gives:

$$q_{1} = N^{2}\omega_{z} + f\partial_{z}b \sim N^{2}\frac{U}{L_{h}}\max\left(1, Fr_{v}^{2}/Ro\right) \quad \left(\text{assuming } b \sim U^{2}/L_{v}\right),$$

$$q_{2} = \omega \cdot \nabla b \sim \frac{U^{3}}{L_{h}L_{v}^{2}},$$

$$\Rightarrow q_{2}/q_{1} \sim \min\left(Fr_{v}^{2}, Ro\right), \text{ where}$$

$$Fr_{v} = U/NL_{v}, \quad Ro = U/fL_{h}$$

- For strong rotation, $q_2/q_1 \sim Ro \ll 1$, so $V \approx V_2$ is quadratic
- For weak rotation $q_2/q_1 \sim Fr_v^2$ (W & Bartello 2006). How big is Fr_v ?

Equations of motion

- Incompressible, Boussinesq, constant N
- Non-dimensionalize (e.g. Riley et al. 1981, Lilly 1983):

$$\mathit{Fr}_{h} \equiv rac{U}{\mathit{NL}_{h}}, \quad \mathit{Fr}_{v} \equiv rac{U}{\mathit{NL}_{v}}, \quad \mathit{Re} \equiv rac{\mathit{UL}_{h}}{\nu}, \quad \alpha \equiv rac{\mathit{L}_{v}}{\mathit{L}_{h}} \equiv rac{\mathit{Fr}_{h}}{\mathit{Fr}_{v}}.$$

$$\begin{aligned} \frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} + Fr_v^2 w \frac{\partial \boldsymbol{u}}{\partial z} + \frac{1}{Ro} \hat{\boldsymbol{z}} \times \boldsymbol{u} &= -\boldsymbol{\nabla} \boldsymbol{p} + \frac{1}{Re} \left(\nabla^2 + \frac{1}{\alpha^2} \frac{\partial^2}{\partial z^2} \right) \boldsymbol{u}, \\ Fr_h^2 \left(\frac{\partial w}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} w + Fr_v^2 w \frac{\partial w}{\partial z} \right) &= -\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{z}} + \boldsymbol{b} + \frac{Fr_h^2}{Re} \left(\nabla^2 + \frac{1}{\alpha^2} \frac{\partial^2}{\partial z^2} \right) \boldsymbol{w}, \\ \boldsymbol{\nabla} \cdot \boldsymbol{u} + Fr_v^2 \frac{\partial w}{\partial z} &= \boldsymbol{0}, \\ \frac{\partial \boldsymbol{b}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{b} + Fr_v^2 w \frac{\partial \boldsymbol{b}}{\partial z} + \boldsymbol{w} &= \frac{1}{Re} \left(\nabla^2 + \frac{1}{\alpha^2} \frac{\partial^2}{\partial z^2} \right) \boldsymbol{b}. \end{aligned}$$

- ▶ stratified turbulence means $Fr_h \ll 1$, $Re \gg 1$. What about Fr_v ?
- ▶ $Fr_v \ll 1 \Rightarrow$ quasi-2D, $Fr_v \sim O(1) \Rightarrow$ anisotropic 3D

Image: Image:

- B - - B

Vertical scales in geophysical turbulence

- Size of Fr_v depends on L_v:
 - ▶ in QG turbulence, $L_v/L_h \sim f/N \Rightarrow Fr_v \sim Ro \ll 1$
 - ▶ In stratified turbulence $L_v \sim U/N \Rightarrow Fr_v \sim$ 1 (e.g. Billant & Chomaz 2001)
 - $U/N = L_b$ buoyancy scale, "pancake" thickness (W & Bartello 04) at which $Ri \sim O(1)$.
 - but, need to be careful: assumes large Reynolds number $\textit{Re} = \textit{UL}_{h}/\nu$
- If *Re* not large enough, L_v is set by viscosity:
 - depends on buoyancy Reynolds number $Re_b = ReFr_h^2$ (e.g. Smyth & Moum 2000)
 - turbulence requires large Reb (Riley & de Bruyn Kops 2003, Brethouwer et al 2007)
 - for $Re_b \gg 1$, viscous effects small and $Fr_v \sim 1$
 - for $Re_b \lesssim 1$, viscous effects important and $Fr_v \sim Re_b^{1/2}$
- Suggests that quadratic potential enstrophy may only be realized for Reb << 1</p>

Vertical scales in geophysical turbulence

W & Bartello, J. Fluid Mech. 568, 89-108, 2006

Stratified only: $L_v N/U$ vs Re_b

Brethouwer et al., J. Fluid Mech. 585, 343-368, 2007

Geophysical vs. lab/DNS regimes

- Typical values for atmospheric mesoscale: $Fr_h = 10^{-3} Re = 10^{10}$, $Re_b = 10^4$
- Lab experiments and (most) DNS: $Re_b \lesssim 1$.
- A & O simulations may have smaller effective Reb from eddy or numerical viscosity

Brethouwer et al., J. Fluid Mech. 585, 343-368, 2007

What we do

Direct numerical simulations of stratified turbulence with $Re_b \lesssim 4$

Questions:

- how important are higher-order contributions to potential enstrophy?
- ▶ test hypothesis that potential enstrophy \approx quadratic only for $Re_b \ll 1$
- implications for using idealized experiments/simulations as proxy for a & o?

Approach

Approach

- Numerical model
 - periodic BCs, constant N
 - spectra, FFT, de-aliased
 - DNS: $\Delta x = \Delta z \lesssim$ Kolmogorov scale
- Experimental set-up: lab-scale units
 - domain: $L = 2\pi$
 - force large-scale vortical modes
 - gives $U \approx 0.02$, $L_h \approx 4$, $T \approx 200$
 - run for 2000 time units; average over 1000-2000
 - set κ = ν
- Vary N and ν to get:
 - ▶ $0.0004 \le Fr_h \le 0.02$
 - ▶ 4000 ≤ *Re* ≤ 20000
 - $0.002 \le Re_b \le 4 \leftarrow$ not geophysical, but at least O(1)
 - resolution: 512³, 960³ (SciNet)

글 🕨 🖌 글

Time series of V and V_2 for $Fr_h = 0.01$

- V and V₂ for $Fr_h = 0.01$ with two different Re_b
 - relative size of V₂ depends on Re_b, even at fixed Fr_h.
 - ▶ higher-order terms important for Reb ≈ 1

Relative contributions of V_2 and V_4

- V_2/V and V_4/V vs Fr_h and Re_b
 - no collapse with Fr_h
 - see collapse with Reb for small enough Reb

Relative contributions of V_2 and V_4

- V_2/V and V_4/V vs Fr_h and Re_b
 - no collapse with Fr_h
 - see collapse with Reb for small enough Reb

Potential enstrophy spectra

• Horizontal wavenumber spectra of V, V_2 , and V_4

M. L. Waite (UWaterloo)

Snapshots: $Fr_h = 0.01$, $Re_b = 0.5$

 $\omega_y(x,z) (\approx \partial_z u)$ $q_1(x,y)$ q(x,y)

Results

- Intermittent KH instabilities (as in Laval, McWilliams & Dubrulle 2003, etc.)
 - show up in ω_z field, which contributes to q₁
 - but not (much) in q field
 - larger Reb: more KH, transitions to small-scale 3D turb

Larger $Re_b = 2$

- Intermittent KH instabilities (as in Laval, McWilliams & Dubrulle 2003, etc.)
 - show up in ω_z field, which contributes to q₁
 - but not (much) in q field
 - larger Reb: more KH, transitions to small-scale 3D turb

Smaller $Re_b = 0.1$

$\omega_y(x,z) (\approx \partial_z u)$ $q_1(x,y)$ q(x,y)

Results

- Intermittent KH instabilities (as in Laval, McWilliams & Dubrulle 2003, etc.)
 - show up in ω_z field, which contributes to q₁
 - but not (much) in q field
 - larger Reb: more KH, transitions to small-scale 3D turb

Energy spectra $E(k_h)$

- Bumps due to KH inst (Laval et al 2003)
- Position of bump at $k_h \approx N/U$ (Waite 2011)

Laval, McWilliam & Dubrulle, Phys. Rev. E 68, 03608, 2003

Waite, Phys. Fluids 23, 06602, 2011

Relative contributions of V_2 and V_4 from large scales only

- Compute potential enstrophy from large horizontal scales (filter out KH billows)
 - nice collapse when plotted against Reb
 - for small Re_b , $V \approx V_2$
 - higher-order contributions to V grow with increasing Reb
 - consistent with KH interpretation, since $L_b/L_h \sim \sqrt{Re_b/Re}$

Discussion

Discussion

- Quadratic potential enstrophy is not a good approximation when $Re_b \gtrsim 1$, even for $Fr_h \ll 1$
 - regime of weakly (or marginally) viscous stratified turbulence
 - Iayerwise structure with KH instabilities and small-scale turbulence
 - breakdown of quadratic approximation occurs at small horizontal scales: KH instabilities?
- Quadratic potential enstrophy is a good approximation when Re_b < 0.4</p>
 - regime of viscously coupled layerwise "pancakes"
 - no KH instabilities or transition to small-scale turbulence
 - likely that Aluie & Kurien (2011) is in this regime
- But Reb does not tell the whole story
 - V₂/V does not collapse w.r.t. Re_b unless small scales are filtered

More info: Waite (2013), Potential enstrophy in stratified turbulence, JFM 722, R4.

Discussion

- Implications for atmospheric and ocean:
 - $\blacktriangleright\,$ back-of-the-envelope: atmospheric meso $\textit{Re}_b \sim 10^4$, oceanic sub-meso $\textit{Re}_b \sim 10^2\text{-}10^3$
 - quadratic approx seems doubtful here
- Atmospheric models may have small effective Reb
 - > Brune & Becker (2013) computed mesoscale $U/N \approx 80$ m, not resolved
 - artificially small mesoscale $Fr_v \Rightarrow$ quadratic V?
 - mesoscale cascade in these models probably not stratified turbulence
 - lack of consensus on decomposition of mesoscale spectrum into waves and vortical modes

Discussion

Discussion

Hamilton, Takahashi & Ohfuchi, GRL 113, 2008

Brune & Becker, JAS 70, 2013

Waite & Snyder, JAS 70, 2013

Acknowledgments

- Funding: NSERC
- Computing: SciNet, Compute Canada