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Introduction

Introduction

I Potential enstrophy

I integrated squared potential vorticity: V = 1
2 〈q2〉

I neglecting forcing & dissipation: Dq/Dt = 0 , V is conserved
I V -conservation important in QG turbulence (enstrophy cascade, inverse energy cascade)
I what happens at larger Ro – atmospheric mesoscale & oceanic sub-mesoscale?

I Stratified turbulence

I homogeneous turbulence in stratified fluid with weak or no rotation
I model for geophysical turbulence at small-scale end of atmos meso and ocean sub-meso
I connects large-scale QG turbulence with small-scale isotropic turbulence
I waves, vortical modes, thin shear layers, K-H (reviews: Riley & Lelong 2000; Riley & Lindborg 2013)
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Introduction

Potential vorticity & enstrophy

I Ertel PV for Boussinesq fluid: q = (f ẑ + ω) · (N2ẑ +∇b) = q0 + q1 + q2 , where

q0 = fN2, q1 = N2ωz + f∂zb, q2 = ω · ∇b

I f = Coriolis, N = Brunt–Väisälä freq, b =buoyancy

I q is quadratic in ω and b, so V = V2 + V3 + V4 is a quartic invariant.

I no detailed conservation of V by wavenumber triads
I weird: viscosity & diffusion are not strictly dissipative (Herring, Kerr, Rotunno 1994)

Dq
Dt

=
(

N2ẑ +∇b
)
·
(
ν∇2ω

)
+ κ (f ẑ + ω) · ∇

(
∇2b

)
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Introduction

Potential vorticity & enstrophy

I But under certain conditions, is V approximately quadratic? (i.e. q ≈ linear?)

I yes, for QG turbulence
I what about for large Ro?
I Kurien, Smith & Wingate (2006), Aluie & Kurien (2011): V is ≈ quadratic for stratified turbulence
I how generic is this result?
Downscale fluxes of energy and potential enstrophy in Boussinesq flows

Table 1: Parameters of the Boussinesq simulation data.

Run Resolution f (Ro) N (Fr)
Rs 6403 3000 (0.002) 14 (0.4)
rS 6403 14 (0.4) 3000 (0.002)
RS 6403 3000 (0.002) 3000 (0.002)

vorticity is ω=∇×u. PV may be written in terms of ω
and θ as

q(x) = f∂zθ−Nω · ẑ+ω ·∇θ− fN. (3)

The first two terms are linear and dominate over the
quadratic term, ω ·∇θ, in the limit of large f and/or large
N . The constant part in (3) does not participate in the
dynamics and can, therefore, be neglected [12].
In addition to conservation of PV, the flow is

constrained by the global conservation of poten-
tial enstrophy, Q= 12q

2, such that d
dt 〈Q〉= 0, where

〈. . .〉= 1
V

∫
V d

3x(. . .) is a space average. Another
quadratic invariant of the inviscid dynamics is the total
mean energy, ET =

1
2 〈|u|

2+ |θ|2〉, such that ddtET = 0.

Numerical data. – The Sandia-LANL DNS code was
used to perform pseudo-spectral calculations of the Boussi-
nesq equations (1), (2) on grids of 6403 points in unit
aspect ratio domains. The time stepping is 4th-order
Runge-Kutta and the fastest linear wave frequencies are
resolved with at least five time steps per wave period.
The diffusion of both momentum and density (scalar)
is modeled by hyperviscosity of Laplacian to the 8th
power. The coefficient of the hyperviscous diffusion term
is chosen dynamically such that the energy in the largest
wave number shell (smallest resolved scale) is dissipated
at each time step [12,13]. This choice ensures that one
does not have to guess the coefficient a priori and is
a way to allow the flow itself to determine the magni-
tude of the diffusion. Hyperviscosity is a standard dissipa-
tion model that has long been used in studies of rotating
and/or stratified flows [9–12]. In principle, hyperviscos-
ity can lead to thermalization and isotropy at the small-
est scales [14]; however our results on the inertial-range
cascades are robust and unaffected by the small-scale dissi-
pation model [15]. Stochastic forcing is incompressible and
equipartitioned between the three velocity components
and θ. The forcing spectrum is peaked at kf = 4± 1, for
large-scale forcing. We use the two-thirds dealiasing rule.
These data were reported in [7,8], where further compu-
tational details may be found.
We analyze three sets of simulations corresponding to

three extreme flow regimes summarized in table 1. The
first, Rs, is a flow under strong rotation and moderate
stratification, f/N % 1. The second, rS, is a flow under
moderate rotation but strong stratification, f/N & 1. The
third, RS, is a flow under strong rotation and strong
stratification such that f =N . Figure 1 shows that in
all three cases, 〈Q〉 is well approximated by (one-half)
the square of the corresponding linear PV to within 3%

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

9

time t

 

 

RS

Rs

rS

Fig. 1: (Colour on-line) Time series of mean potential enstrophy

〈Q〉 (solid line), and its quadratic part 〈Q̃〉 (crosses). In run RS
〈Q̃〉= 〈[f∂zθ−Nω · ẑ]2〉/2; in run rS 〈Q̃〉= 〈[Nω · ẑ]2〉/2; and
in run Rs 〈Q̃〉= 〈[f∂zθ]2〉/2. The plots show that 〈Q〉 reaches a
steady state and that 〈Q〉 $ 〈Q̃〉 in all three regimes considered.

or better (see [6,8]). Figure 1 gives evidence that our
simulations are in regimes of strong rotation and/or strong
stratification. We analyze snapshots of the flow at late
times when 〈Q〉 along with small-scale energy spectra (at
wave numbers k! 6) have reached a statistically steady
state. The total energy, however, continues to grow due to
an accumulation at the largest scales.

Analyzing the cascades by coarse-graining. –
Following [16–19], we use a simple filtering technique
common in the large eddy simulation (LES) literature
to resolve turbulent fields simultaneously in scale and in
space. Other decompositions, such as wavelet analysis, also
allow for the simultaneous space-scale resolution and may
be used to analyze non-linear scale interactions as well.
We define a coarse-grained or (low-pass) filtered field in
d dimensions as

a!(x) =

∫
ddr G!(r)a(x+ r), (4)

where G(r) is a normalized convolution kernel,∫
ddrG(r) = 1. An example of such a kernel is the

Gaussian function, G(r) = 1√
2π
e−r

2/2. Its dilation

G!(r)≡ #−dG(r/#) in d dimensions has its main support
in a ball of radius #. Operation (4) may be interpreted as
a local space average. In the rest of our letter, we shall
omit subscript # whenever there is no ambiguity.
Applying the filtering operation (4) to the dynamics

(1), (2) yields coarse-grained equations that describe the
evolution of u!(x) and θ!(x) at every point x in space and
at any instant of time:

∂tu+(u ·∇)u = −∇p− f ẑ×u−Nθẑ
−∇ · τ(u,u)+ ν∇2u+Fu, (5)

∂tθ+(u ·∇)θ = N uz −∇ · τ(u, θ)
+κ∇2θ+Fθ, (6)

44006-p3

Aluie & Kurien, EPL 96, 44006, 2011
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Introduction

So what?

I Cascade theories:

I quadratic V ⇒ triad-by-triad conservation, like kinetic energy
I relationship between energy and p. enstrophy: e.g. for f = 0 have V (k) = N2k2

h ER(k)

I joint conservation constrains cascade as in 2D, QG: inverse cascade? (Lilly 1983)

I Decomposition into waves and vortices:

I linear decomposition into vortical modes (with q1) and gravity waves (no q1)
I e.g. stratified turbulence (Lelong & Riley 1991), rotating-stratified turbulence (Bartello 1995)
I motivates decomp of KE spectra into horizontally rotational (≈ vortical) and divergent (≈ wave)
I popular/easy decomposition, but meaningless if higher-order V terms important
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Introduction

Scale analysis of potential vorticity

I Usual scaling of terms (Lilly 1983, Riley & Lelong 2000) gives:

q1 = N2ωz + f∂zb ∼ N2 U
Lh

max
(

1,Fr2
v /Ro

) (
assuming b ∼ U2/Lv

)
,

q2 = ω ·∇b ∼
U3

LhL2
v
,

⇒ q2/q1 ∼ min
(

Fr2
v ,Ro

)
, where

Frv = U/NLv , Ro = U/fLh

I For strong rotation, q2/q1 ∼ Ro � 1, so V ≈ V2 is quadratic

I For weak rotation q2/q1 ∼ Fr2
v (W & Bartello 2006). How big is Frv ?
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Introduction

Equations of motion

I Incompressible, Boussinesq, constant N

I Non-dimensionalize (e.g. Riley et al. 1981, Lilly 1983):

Frh ≡
U

NLh
, Frv ≡

U
NLv

, Re ≡
ULh

ν
, α ≡

Lv

Lh
≡

Frh

Frv
.

∂u
∂t

+ u · ∇u + Fr2
v w

∂u
∂z

+
1

Ro
ẑ × u = −∇p +

1
Re

(
∇2 +

1
α2

∂2

∂z2

)
u,

Fr2
h

(
∂w
∂t

+ u · ∇w + Fr2
v w

∂w
∂z

)
= −

∂p
∂z

+ b +
Fr2

h
Re

(
∇2 +

1
α2

∂2

∂z2

)
w ,

∇ · u + Fr2
v
∂w
∂z

= 0,

∂b
∂t

+ u · ∇b + Fr2
v w

∂b
∂z

+ w =
1

Re

(
∇2 +

1
α2

∂2

∂z2

)
b.

I stratified turbulence means Frh � 1, Re � 1. What about Frv ?
I Frv � 1⇒ quasi-2D, Frv ∼ O(1)⇒ anisotropic 3D
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Introduction

Vertical scales in geophysical turbulence

I Size of Frv depends on Lv :

I in QG turbulence, Lv/Lh ∼ f/N ⇒ Frv ∼ Ro � 1
I In stratified turbulence Lv ∼ U/N ⇒ Frv ∼ 1 (e.g. Billant & Chomaz 2001)
I U/N = Lb buoyancy scale, “pancake” thickness (W & Bartello 04) at which Ri ∼ O(1).
I but, need to be careful: assumes large Reynolds number Re = ULh/ν

I If Re not large enough, Lv is set by viscosity:

I depends on buoyancy Reynolds number Reb = ReFr2
h (e.g. Smyth & Moum 2000)

I turbulence requires large Reb (Riley & de Bruyn Kops 2003, Brethouwer et al 2007)
I for Reb � 1, viscous effects small and Frv ∼ 1

I for Reb . 1, viscous effects important and Frv ∼ Re1/2
b

I Suggests that quadratic potential enstrophy may only be realized for Reb � 1

M. L. Waite (UWaterloo) Fields Sub-Meso 2013 11 June 2013 8 / 25



Introduction

Vertical scales in geophysical turbulence

Rotating–Stratified: Lv N/U vs Ro Stratified only: Lv N/U vs Reb

Rotation

H is a function of U , N , f :

H =
U

N
G(Ro,N/f)

Stratified turbulence (Ro → ∞):

H ∼ U/N G(Ro,N/f) ∼ 1

QG turbulence (Ro → 0):

H ∼ (f/N)L G(Ro,N/f) ∼ Ro−1

H
N

U
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W & Bartello, J. Fluid Mech. 568, 89-108, 2006
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Figure 11. The scaled vertical length scale (a) lvRe1/2/lh and (b) lvN/U as a function of R.
Circles, runs A; triangles, runs B; diamond, run C; squares, runs D.

figure 10 because S ! 1 for R < 1. Praud et al. (2005) observed as well the predominant
dissipation by vertical shearing for R < 1. Although the forward cascade of energy
is very weak for R < 1 as we will show later, the significant dissipation of energy
by vertical shearing of the large-scale motions makes a statistically stationary state
possible.

When R > 1, a Kolmogorov-like turbulence range develops for horizontal scales
smaller than lO as explained in § 2.3, with weak effects of stratification suggesting
dissipation of energy by small, approximately isotropic scales. In agreement with this,
figure 10 shows that the dissipation becomes more isotropic because S decreases and
approaches the value for isotropic turbulence S = 0.267 when R increases. The same
dependence of the anisotropy of dissipation on Fh and Re individually have been
observed by Riley & deBruynKops (2003) and Waite & Bartello (2004) respectively,
but no relation has been established between dissipation characteristics and R. Our
results are also consistent with the DNS of stratified mixing layer by Smyth & Moum
(2000). They found that the anisotropy of the velocity gradients was determined by
the buoyancy Reynolds number ε/(νN2) when the flow was no longer influenced by
the initial conditions. Their simulations showed a large contribution of the vertical
shearing of the streamwise velocity component for ε/(νN2) < 1, an approach to
isotropy for ε/(νN2) > 1 and a clear transition from the highly anisotropic state
to the more isotropic state around ε/(νN2) ! 1. These observations have been also
qualitatively confirmed by Hebert & de Bruyn Kops (2006).

4.3. Scales

The length scales need to be computed to validate the scaling analysis presented in § 2.
The horizontal length scale lh, calculated using Taylor’s estimate, is mainly determined
by the large-scale forcing and is approximately equal to the domain size Lh in all
simulations as shown in table 1. The vertical length scale lv is computed as explained
in Appendix B and is much smaller than lh, as shown in table 1, revealing the strong
anisotropy of the large scales and legitimating the use of a stretched domain in our
computations. Still, in all simulations, lv is smaller than the computational domain
height Lv so that it contains several layers, as seen for example in figure 6. Since
Waite & Bartello (2004) showed that no vertical scales larger than lv are present in
a stratified fluid, it can be claimed that the vertical scales are not confined by the
computational domain.

Brethouwer et al., J. Fluid Mech. 585, 343-368, 2007

Lv ∼ U/N

Lv ∼ f/NLh
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Introduction

Geophysical vs. lab/DNS regimes

I Typical values for atmospheric mesoscale: Frh = 10−3 Re = 1010 , Reb = 104

I Lab experiments and (most) DNS: Reb . 1.

I A & O simulations may have smaller effective Reb from eddy or numerical viscosity

364 G. Brethouwer, P. Billant, E. Lindborg and J.-M. Chomaz
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Figure 18. Regimes in stably stratified flows. The conditions under which our and other DNS
and experiments are carried out are represented by symbols. Red squares (labelled DNS):
present DNS; blue square (R&dBK): DNS run F4R64 by Riley & deBruynKops (2003);
green square (S&G): DNS run A by Staquet & Godeferd (1998); red triangles (L&VA):
experiment of decaying stratified turbulence by Lienhard & Van Atta (1990) listed in their
table 1; red and blue lines (P,F&S): experiments bc and be of decaying stratified turbulence
by Praud et al. (2005). Conditions typically found in the middle atmosphere (Lindborg 2006)
and the upper ocean (Moum 1996) are shown by the blue and red circle respectively, but these
conditions can vary considerably. Values of Re and Fh are estimated using (2.12).

Many observations in other studies on stratified flows are in accordance with our
observations at either R < 1 or R > 1. The smooth, elongated horizontal and nearly
undisturbed layers with strong viscous shearing between them and the very steep
horizontal spectra we found when R < 1 correspond to the observations by Laval
et al. (2003), Waite & Bartello (2004) and Praud et al. (2005), whereas the Kelvin–
Helmholtz-type instabilities, small-scale turbulent-like motions and the spectra with
an approximate k

−5/3
h -power-law range we found when R > 1 correspond to the

observations by Riley & deBruynKops (2003) and Lindborg (2006). The significance
of the present study is mainly the series of DNS of stratified turbulence covering a
relatively wide range Re and Fh. These simulations strongly support the hypothesis
that the two different types of dynamics observed in our and previous studies can be
explained by differences only in the parameter R.

We can conclude from these observations that only when R = ReF 2
h > 1 does a clear

and significant transfer of kinetic and potential energy from large to small (horizontal)
scales exist and an inertial range emerges with a k

−5/3
h -power-law behaviour. The

scaling analysis was carried out for R → ∞ but the results from the simulations
show that R ! 1 is already sufficient to observe the features of strongly stratified
turbulence. However, we have argued that R $ 1 is required to have a clear stratified
turbulence inertial range. When R < 1, the dynamics (energy transfer, buoyancy flux
and dissipation) is predominantly confined to the scales near or at which the energy
is injected.

To conclude, figure 18 presents a diagram with the different regimes that are found
in stably stratified flows depending on the value of Re and Fh as suggested by
this study. The strongly stratified turbulence regime is bounded by the thresholds
R = ReF 2

h > 1 and Fh < 0.02, but it should be emphasized that the latter condition

Brethouwer et al., J. Fluid Mech. 585, 343-368, 2007
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Introduction

What we do

I Direct numerical simulations of stratified turbulence with Reb . 4

I Questions:

I how important are higher-order contributions to potential enstrophy?
I test hypothesis that potential enstrophy ≈ quadratic only for Reb � 1
I implications for using idealized experiments/simulations as proxy for a & o?
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Approach

Approach

I Numerical model

I periodic BCs, constant N
I spectra, FFT, de-aliased
I DNS: ∆x = ∆z . Kolmogorov scale

I Experimental set-up: lab-scale units

I domain: L = 2π
I force large-scale vortical modes
I gives U ≈ 0.02, Lh ≈ 4, T ≈ 200
I run for 2000 time units; average over 1000-2000
I set κ = ν

I Vary N and ν to get:

I 0.0004 ≤ Frh ≤ 0.02
I 4000 ≤ Re ≤ 20000
I 0.002 ≤ Reb ≤ 4← not geophysical, but at least O(1)

I resolution: 5123, 9603 (SciNet)
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Results

Time series of V and V2 for Frh = 0.01

I V and V2 for Frh = 0.01 with two different Reb

I relative size of V2 depends on Reb , even at fixed Frh.
I higher-order terms important for Reb ≈ 1
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Results

Relative contributions of V2 and V4

I V2/V and V4/V vs Frh and Reb

I no collapse with Frh

I see collapse with Reb for small enough Reb
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Results

Relative contributions of V2 and V4

I V2/V and V4/V vs Frh and Reb

I no collapse with Frh

I see collapse with Reb for small enough Reb

M. L. Waite (UWaterloo) Fields Sub-Meso 2013 11 June 2013 15 / 25



Results

Potential enstrophy spectra

I Horizontal wavenumber spectra of V , V2, and V4
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Results

Snapshots: Frh = 0.01, Reb = 0.5

ωy (x , z) (≈ ∂zu) q1(x , y) q(x , y)

I Intermittent KH instabilities (as in Laval, McWilliams & Dubrulle 2003, etc.)

I show up in ωz field, which contributes to q1

I but not (much) in q field
I larger Reb : more KH, transitions to small-scale 3D turb
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Results

Larger Reb = 2

ωy (x , z) (≈ ∂zu) q1(x , y) q(x , y)

I Intermittent KH instabilities (as in Laval, McWilliams & Dubrulle 2003, etc.)

I show up in ωz field, which contributes to q1

I but not (much) in q field
I larger Reb : more KH, transitions to small-scale 3D turb
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Results

Smaller Reb = 0.1

ωy (x , z) (≈ ∂zu) q1(x , y) q(x , y)

I Intermittent KH instabilities (as in Laval, McWilliams & Dubrulle 2003, etc.)

I show up in ωz field, which contributes to q1

I but not (much) in q field
I larger Reb : more KH, transitions to small-scale 3D turb
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Results

Energy spectra E(kh)

I Bumps due to KH inst (Laval et al 2003)

I Position of bump at kh ≈ N/U (Waite 2011)

FIG. 8. Vertical slice !same than in Fig. 7" of vertical velocity at #!741 (R$!900) !upper graph" and a zoom of the region of intense
vertical velocity with the projection of velocity vectors !lower graph".

FIG. 9. Energy spectra with respect to horizontal and vertical
wave numbers at #!521 (R$!700) !upper graph" and #!741
(R$!900) !lower graph" for the primary simulation. The local en-
ergy peaks at #!741 for 40"kh"60 are an indication of one or
several overturning events (min%Ri&#0).

FIG. 10. Comparison of vortical !upper graph" and wave !lower
graph" energy spectra with respect to horizontal and vertical wave
numbers for four different Reynolds number. Each spectrum is an
average over more than 200 times for each R$ . The horizontal
spectra are very similar at large horizontal scales but they differ at
small scales (kh#10). The situation is different in the vertical spec-
tra, where the typical scale decreases with R$ .

FORCED STRATIFIED TURBULENCE: SUCCESSIVE . . . PHYSICAL REVIEW E 68, 036308 !2003"

036308-7

Laval, McWilliam & Dubrulle, Phys. Rev. E 68, 03608, 2003

decreasing Dz is negligible, indicating that the transition at
kb is not an artifact of insufficient vertical resolution.

Figure 6 shows the decomposition of the total energy
spectra into kinetic, potential, vortex, and wave energy for
the highest-resolution simulation with Fr¼ 0.02. Vortex and
wave energies are computed using the linear normal mode ba-
sis,46 in which vortex energy is the horizontally rotational ki-
netic energy, while wave energy is the sum of the divergent
kinetic energy and potential energy. Kinetic and potential
energy have the same mesoscale spectral slope, with the am-
plitude of the kinetic energy spectrum is equal to twice that of
the potential. In the microscale range, the ratio of kinetic to
potential energy is somewhat higher. The contribution to the
kinetic energy from vertical motion (also plotted in Fig. 6(a))
is negligible at all scales. Interestingly, the vertical kinetic
energy spectrum is approximately flat in the mesoscale range
and has a local minimum at kb. Apart from the largest scales,
the total energy spectrum is dominated by wave energy. The
mesoscale spectrum of vortex energy is significantly steeper
than the wave spectrum, with a spectral slope of around –2.5.

Lindborg’s4 model kinetic energy spectrum EKðkhÞ
¼ 0:5!2=3

K k$5=3
h , where !K is the kinetic energy dissipation rate,

is plotted for reference in Fig. 6(a). The amplitude of this spec-
trum is in good agreement with our findings in the mesoscale
range, though, as noted above, our spectrum is somewhat
steeper. In the microscale range, by contrast, the Lindborg spec-
trum significantly underestimates the amount of kinetic energy.

B. Vertical spectra

Vertical wavenumber spectra of total energy are plotted
in Fig. 7. These spectra are computed by summing over all
kx and ky at each kzj j, i.e., for kinetic energy

EKðkzÞ %
X

kz$Dkz=2&jk0zj<kzþDkz=2

1

2
jûðk0Þj2: (12)

All of the vertical spectra are characterized by a transition
near kb, in good agreement with the prediction that Lb is the

dominant vertical scale in stratified turbulence.3,7 As found
by Waite and Bartello,3 the spectrum is relatively flat upscale
of kb and falls off rapidly downscale. There is an approxi-
mate power law range downscale of kb, the slope of which
converges as the horizontal resolution increases. As more
microscale turbulence is represented in the horizontal, the
full range of kz is affected; this dependence is to be expected
since most of the kz spectrum lies in the microscale. The
highest resolution simulations have kz spectral slopes of
–2.5, –2.6, and –2.7 for Fr¼ 0.05, 0.02, and 0.01. These
spectra are all shallower than k$3

z , though they may be
approaching this form as Fr decreases.

Figure 8 shows the vertical wavenumber spectra of ki-
netic, potential, vortex, and wave energy, again for the high-
est resolution simulation with Fr¼ 0.02. Downscale of kb, the
energy spectrum is dominated by kinetic over potential and
wave over vortex energy. As was the case for the horizontal
spectra, the amplitude of the kinetic energy spectrum is twice
that of the potential energy, while their slopes are approxi-
mately equal. The kinetic energy spectrum is shallower and
lower-amplitude than the predicted N2k$3

z , which is included
for reference in Fig. 8.

FIG. 6. (Color online) Horizontal wavenumber spectra of (a) kinetic, verti-
cal kinetic, and potential energy, and (b) vortex and wave energy, for the
highest-resolution simulation with Fr¼ 0.02 (run B5 in Table I). The Lind-
borg4 kinetic energy spectrum is also shown, along with a reference line
with a slope of –2.

FIG. 5. (Color online) Horizontal wavenumber spectra of total energy for
Fr¼ 0.02 with Dx=Lb¼ 0.2 and 0.1. Two vertical resolutions are shown: the
standard value m¼ 128 (runs B3 and B4 in Table I; solid) and double resolu-
tion m¼ 256 (runs B3v and B4v in Table I; dashed).

066602-6 Michael L. Waite Phys. Fluids 23, 066602 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

Waite, Phys. Fluids 23, 06602, 2011
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Results

Relative contributions of V2 and V4 from large scales only

I Compute potential enstrophy from large horizontal scales (filter out KH billows)

I nice collapse when plotted against Reb

I for small Reb , V ≈ V2

I higher-order contributions to V grow with increasing Reb

I consistent with KH interpretation, since Lb/Lh ∼
√

Reb/Re
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Discussion

I Quadratic potential enstrophy is not a good approximation when Reb & 1, even for Frh � 1

I regime of weakly (or marginally) viscous stratified turbulence
I layerwise structure with KH instabilities and small-scale turbulence
I breakdown of quadratic approximation occurs at small horizontal scales: KH instabilities?

I Quadratic potential enstrophy is a good approximation when Reb < 0.4

I regime of viscously coupled layerwise “pancakes”
I no KH instabilities or transition to small-scale turbulence
I likely that Aluie & Kurien (2011) is in this regime

I But Reb does not tell the whole story

I V2/V does not collapse w.r.t. Reb unless small scales are filtered

More info: Waite (2013), Potential enstrophy in stratified turbulence, JFM 722, R4.
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I Implications for atmospheric and ocean:

I back-of-the-envelope: atmospheric meso Reb ∼ 104 , oceanic sub-meso Reb ∼ 102-103

I quadratic approx seems doubtful here

I Atmospheric models may have small effective Reb

I Brune & Becker (2013) computed mesoscale U/N ≈ 80 m, not resolved
I artificially small mesoscale Frv ⇒ quadratic V?
I mesoscale cascade in these models probably not stratified turbulence
I lack of consensus on decomposition of mesoscale spectrum into waves and vortical modes
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divided into so many components. However, the pattern is
quite clear. For total wave number greater than about 100
(corresponding to horizontal wavelengths less than about
400 km) the spectrum appears to be a strong function of n,
but almost independent of m. This is what would be
expected if the statistical properties of the flow at this scale
were horizontally isotropic and geographically homoge-
neous [Boer, 1983]. For n < 10 there is very strong
dependence on both n and m, indicating large deviations
from isotropy and homogeneity. This is expected, of course,
since the large-scale features in the circulation (jets,
planetary waves, etc.) clearly are shaped by processes that
are strongly anisotropic. It is interesting that the region
between about n = 10 and n = 100 is characterized by near
independence of En,m on m except for a narrow range where
m becomes close to n, which has lower KE content. Boer
and Shepherd [1983] computed a similar KE spectrum from
global observational analyses (though only out to n = 32).
For n > 10 in their results they noted without explanation
the same near independence of En,m on m, except for the
drop when m ! n. KH computed a KE spectrum for the
upper troposphere/lower stratosphere from their SKYHI
control simulation (in this case out to n = 450). KH’s results
(see their Figure 3) are quite similar to those seen in the
present Figure 2, and also display the low values for m ! n
in the n ! 10–100 range. The m ! n spherical harmonics
are those with very smooth structures in the meridional
direction but with many oscillations in the zonal direction. It
is not clear why such flow structures should have
particularly small energy content, but the fact that this
behavior has now been seen in global analyses and two
different GCMs suggests that there is a real phenomenon
awaiting an explanation. One potential source of anisotropy

in the eddy field is the strong meridional shear of the zonal
wind in the large-scale jets. Eddies with m ! n would have
phase lines oriented almost nearly north-south and so might
possibly be particularly subject to tilting by the strong
meridional shear (a process which in 2D spectral space
would appear as an energy transfer from m ! n to other
components).

3.3. Total Wave Number Spectrum, Convergence of
Results, and Subgrid-Scale Dissipation

[17] The analysis in the remainder of the paper will focus
on the KE spectrum as a function of total wave number, En,
which is computed by summing the En,m over all m (less
than or equal to n) for each n. The solid curves in Figure 3
show the 200-hPa KE spectrum computed in this way from
100 snapshots for AFES integrations conducted at T319 and
T639 spectral resolution and with 24 model levels. The
horizontal hyperdiffusion coefficient, Kh, in each run has
been adjusted by trial-and-error to produce power law
spectra that agree with observations and converge reason-
ably well with resolution, as described in THO. THO found
by their trial-and-error procedure results in Kh values that
scale roughly as nT

"3.22, where nT is the truncation wave
number. Table 1 shows the diffusion coefficient Kh deter-
mined by THO to be appropriate for T79, T159, T319 and
T639 resolutions. Also given are the timescales for dissipa-
tion of energy at the truncation wave number defined as

a4

Kh nT nT þ 1ð Þð Þ2
: ð2Þ

Also shown in Table 1 is the calculated total dissipation rate
of KE per unit mass at 200 hPa by the horizontal

Figure 3. Solid lines show the total wave number kinetic energy spectrum at the 200-hPa level
computed from control runs with T639L24 and T319L24 versions of the AFES model. The dotted lines
show the same spectrum computed for the divergent component of the wind. The lines in the upper right
corner are plotted for reference and have slopes of "5/3 and "3.
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where _K
HA

n is the spectral tendency due to horizontal
advection (HA); it is obtained by setting F 5 v 3 (f 1
j)ez and B 5 v2/2 in (8). Likewise, _K

VA

n is the spectral
KE tendency due to vertical advection (VA), com-
puted by setting F52 _h›hv and B 5 0 in (8). The
corresponding tendencies due to adiabatic conversion
(AC) and momentum diffusion (MD) are denoted as
_K
AC

n and _K
MD

n , respectively. They are calculated by using
F52(RT/p)$p andB5F in the case of AC, and F5R
andB5 0 in the case ofMD. The four terms on the rhs of
(9) should add up to zero in the climatological mean.
The analysis can be extended by retaining only the

vorticity coefficients jnm in (1) to compute the rotational
horizontal wind vrot. The spectral tendency due to the
quasi-2D horizontal advection _K

HA2

n is then obtained by
setting F5 vrot3 (f1 j)ez andB5 (vrot)2/2 in (8). These
definitions can be applied also to (5) in order to compute
the corresponding spectral enstrophy tendency _Z

HA2

n .
The spectral fluxes due to the particular processes are

calculated by summing up the corresponding spectral
tendencies, starting from the wavenumber n in question
and ending at the truncation wavenumber. We will thus
refer to

FKHA2
n 5 !

N

i5n

_K
HA2
i and FZHA2

n 5 !
N

i5n

_Z
HA2
i (10)

as the forward quasi-2D spectral fluxes at wavenumber n
of kinetic energy and enstrophy, respectively. The cor-
responding sums over all n vanish by definition, indi-
cating that the quasi-2D spectral fluxes do not involve
any vertical exchange. This is different for the spectral
fluxes associatedwith the other tendencies defined above.
We may nevertheless formally define the forward spec-
tral fluxes due to horizontal advection, vertical advection,
adiabatic conversion, and momentum diffusion as

FKHA
n 5 !

N

i5n

_K
HA
i , FKVA

n 5 !
N

i5n

_K
VA
i ,

FKAC
n 5 !

N

i5n

_K
AC
i , and FKMD

n 5 !
N

i5n

_K
MD
i . (11)

4. Results and discussion

a. Energy spectra

Figure 1 shows the KE spectra for two heights rep-
resentative of the midtroposphere (518 hPa or ;5 km,

FIG. 1. Tropospheric KE spectra for the (a),(c) L100 and (b),(d) L30 runs at representative model layers around
(a),(b) 220 hPa (;11 km) and (c),(d) 520 hPa (;5 km). The solid gray curves show the total KE; the black dashed
and dashed–dotted curves are the spectra due to the rotational and nonrotational flow, respectively. The thin solid
black lines indicate the 23 and 25/3 slopes.
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