Instabilities of coupled density fronts and their nonlinear evolution in the two-layer rotating shallow water model. Influence of the lower layer and of the topography.

B. Ribstein and V. Zeitlin

Laboratory of Dynamical Meteorology, Univ. P.et M. Curie, Paris, France

Sub-mesoscale Ocean Processes, Toronto 2013

イロト イポト イヨト イヨト

Plan

- Introduction
- The model and the background flow
 - The model
 - Scalings and background flow
- 3 Linear stability problem
 - Boundary conditions
 - Numerical settings
 - Expectations
 - Selected results
 - Nonlinear evolution of the instabilities
 - Motivation and general setting of the DNS
 - Saturation of competing FF and RF instabilities
 - Saturation of instabilities in the presence of topography

Conclusions

Density fronts reminder

Density fronts:

- ubiquitous in nature and easy to reproduce in the lab
- characteristically unstable
- following classics (Griffiths, Killworth & Stern, 1982), the instabilities of DF are traditionnally studied in the framework of 1- or 2-layer rotating shallow water (RSW) models ; result from phase-locking and resonance of characteristic frontal waves
- recent progress: detailed numerical linear stability analysis and high-resolution DNS of nonlinear saturation (Gula, Zeitlin & Bouchut, 2010).

くロト (過) (目) (日)

э

Motivation

Not well- understood:

- the role of the bottom layer
- the role of topography
- details nonlinear saturation

Main motivation:

To investigate how the classical instability of the double density fronts, resulting from a resonance between two frontal waves propagating along the respective fronts, interacts with other long-wave instabilities appearing due to the active lower layer and topography and, respectively, Rossby and topographic waves which are activated in the system.

We want:

- to give a complete classification of the instabilities of double density fronts in the presence of an active lower layer and shelf-like topography
- to intercompare them and to identify the dominant one and possible instability swaps in the parameter space
- to identify and intercompare different saturation patterns

Program realized in:

Ribstein & Zeitlin, 2013, J. Fluid Mech., 716, 528 - 565.

ヘロト ヘ戸ト ヘヨト ヘヨト

Methodology and tools

We follow previous work (Scherer & Zeitlin 2008; Gula & Zeitlin 2010; Gula, Zeitlin & Bouchut 2010) and add combined effects of baroclinicity and bottom topography:

- Density fronts: 2-layer RSW with outcropping interface.
- Topography: escarpment beneath the upper-layer current.
 Steep topography: horizontal scale ≤ width of the current.
- Straight fronts with velocity in geostrophic balance: exact solutions. Linear stability: collocation method. Unstable modes: resonances between eigenmodes.
- Unstable modes → initialization of numerical simulations with new-generation well-balanced high resolution finite-volume scheme (Bouchut & Zeitlin 2010).

ヘロト 人間 ト ヘヨト ヘヨト

The model Scalings and background flow

Coupled density fronts with nontrivial bathymetry

 R_d : deformation radius, L and a: non-dimensional widths of the balanced current and of the escarpment. r: depth ratio, α_0 : non-dimensional amplitude of the bathymetry.

The model Scalings and background flow

Equations of the model

$$\begin{array}{l} (\partial_t + u_i \partial_x + v_i \partial_y) u_i - f v_i + \partial_x \Pi_i = 0 \\ (\partial_t + u_i \partial_x + v_i \partial_y) v_i + f u_i + \partial_y \Pi_i = 0 \end{array},$$
(1)

$$\partial_t h_i + \partial_x ((h_i - b \delta_{i2}) u_i) + \partial_y ((h_i - b \delta_{i2} v_i)) = 0$$

 u_i , v_i (i = 1, 2) - x- and y- components of the velocity in the layers (layer 1 on top of the layer 2); h_1 , $h_2 - b$ - thicknesses of the layers, δ_{ij} -Kronecker delta; $\rho = \frac{\rho_1}{\rho_2} \le 1$ - density ratio, f = const - Coriolis parameter, g - gravity. Geopotentials of the layers (1,2):

$$\Pi_1 = g(h_1 + h_2)$$
, $\Pi_2 = g(\rho h_1 + h_2).$ (2)

ヘロン 人間 とくほ とくほ とう

The model Scalings and background flow

Intrinsic scales:

- Length: radius of deformation $R_d = \sqrt{gH(1-\rho)}/f$,
- Time: 1/*f*.
- dimensionless wavenumber $\epsilon = 2\pi R_d/\lambda$

Scalings:

- cross-stream coordinate y ~ R_d,
- downstream coordinate $x \sim \lambda/2\pi = R_d/\epsilon$
- time $t \sim 1/\epsilon f$.
- width of the current: $2R_dL$, L = O(1).
- bathymetry variations: R_da
- cross-stream velocities $\sim \epsilon \sqrt{gH(1-\rho)}$, and downstream velocities $\sim \sqrt{gH(1-\rho)} \Rightarrow Ro = \frac{1}{2L}$.

The model Scalings and background flow

Non-dimensional equations of the model

$$(\partial_t + u_i \partial_x + v_i \partial_y) u_i - v_i + \partial_x \Pi_i = 0 ,$$

$$\epsilon^2 (\partial_t + u_i \partial_x + v_i \partial_y) v_i + u_i + \partial_y \Pi_i = 0 ,$$

$$\partial_t h_i + \partial_x ((h_i - \frac{\alpha_0}{r} b \, \delta_{i2}) u_i) + \partial_y ((h_i - \frac{\alpha_0}{r} b \, \delta_{i2}) v_i) = 0 , \quad (3)$$

$$\Pi_1 = \frac{h_1 + rh_2}{1 - \rho} \quad , \quad \Pi_2 = \frac{\rho h_1 + rh_2}{1 - \rho}$$

.

ъ

ヘロン ヘアン ヘビン ヘビン

The model Scalings and background flow

Backround flow

Background flow $(\bar{u}_i, \bar{v}_i, \bar{h}_i)$ is a geostrophically balanced, parallel to the *x*-axis density current terminating at $\pm L$, with no mean flow in the lower layer:

$$\bar{u}_1 = \bar{u} = -\partial_y \bar{h}$$
 , $\bar{\Pi}_1 = \bar{h}$, $\bar{\Pi}_2 = 0$, $\bar{u}_2 = \bar{v}_2 = \bar{v}_1 = 0$
(4)

 $\bar{h}_1 = \bar{h}$ is the background thickness of the upper layer, $\bar{h}(\pm L) = 0$, otherwise $\bar{h}(y)$ is arbitrary There is no variation of bathymetry beyond the outcroppings a < L:

$$b = 1$$
 , $y < -a$,
 $b = 0$, $y > a$. (5)

イロト イポト イヨト イヨト

The model Scalings and background flow

Constant-PV currents

If potential vorticity is constant Q in the upper layer, $\partial_{yy}\bar{h} - Q\bar{h} + 1 = 0$, and

$$Q < 1: \quad \bar{h} = \frac{1}{Q} \left(1 - \frac{\cosh(y\sqrt{Q})}{\cosh(L\sqrt{Q})} \right) \quad , \quad L = \frac{1}{\sqrt{Q}} \ln \left(\frac{1 + \sqrt{Q(2 - Q)}}{1 - Q} \right)$$
$$Q < 0: \quad \bar{h} = \frac{1}{Q} \left(1 - \frac{\cos(y\sqrt{|Q|})}{\cos(L\sqrt{|Q|})} \right) \quad , \quad L = \frac{1}{\sqrt{|Q|}} \cos^{-1} \left(\frac{1}{1 + |Q|} \right)$$
$$Q = 0: \quad \bar{h} = 1 - (y/L)^{2} \qquad , \quad L = \sqrt{2}$$
(6)

For Q = 0.5 - a configuration to be used below for illustrations, $L \simeq 1.86$ and $Ro \simeq 0.27$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The model Scalings and background flow

Cross-section of the background flow

Background flow for constant PV Q = 0.5 in the upper layer. Density ratio $\rho = 0.5$. Depth ratio r = 10. Topography: $\alpha_0 = 5$ and a = 0.5L. Upper panel: interface (dashed), free surface (solid) and topography (thick). Lower panel: downstream velocities of the layers 2 (dashed) and 1 (solid).

Boundary conditions Numerical settings Expectations Selected results

Boundary conditions

Linear stability: small perturbation (u'_i, v'_i, h'_i) .

Boundary conditions:

$$\bar{h} + h'_1 = 0$$
 and $\frac{\mathrm{d}L_{\pm}}{\mathrm{d}t} = v'_1$ at $y = \pm L + \lambda_{\pm}$, (7)

 $\pm L$ - locations of the free streamlines of the balanced flow, $\lambda_{\pm}(x, t)$ - perturbations of the free streamlines. Another boundary condition: for the lower layer, the continuity of the solution at $\pm L$.

Beyond the outcropping: exponential decay of the pressure perturbation on both sides of the double front \Rightarrow boundary conditions at the outcroppings \Rightarrow entire linear eigenproblem solely at the interval $y \in [-L, L]$.

Boundary conditions Numerical settings Expectations Selected results

Comment on boundary conditions

Spectrum of the linearized problem in the cross-flow direction: discrete + continuous. First: free inertia-gravity waves. Second: trapped waves exponentially decaying out of the density fronts. By imposing the decay boundary condition we filter out free inertia-gravity waves and concentrate uniquely on the trapped modes - consistent with our interest in long-wave instabilities. Only the instabilities resulting from the resonances between the trapped modes will be captured, radiative instabilities due to the resonances with free inertia-gravity waves are excluded. A priori justification: condition of efficient emission of inertia-gravity waves by a PV anomaly is $Ro \ge 1$, while we work with *Ro* < 1. *A posteriori* justification: no radiative instabilities observed in DNS.

くロト (過) (目) (日)

Boundary conditions Numerical settings Expectations Selected results

Numerical linear stability analysis

- Method: pseudospectral collocation (Trefethen 2000) → matrix eigenproblem for the phase speed *c* of the perturbation, MATLAB routine "eig",
- Boundary conditions: continuity of all variables at y = ±L, continuity of the lower-layer pressure at y = ±L and exponential decay out of the front,
- Discretization: Chebyshev collocation points $\{y_i = L \cos(j\pi/N), j = 0, 1, ..., N\}$. Numerical convergence typically for N=50, systematic checks with double resolution. Chebyshev differentiation matrix for discrete differentiation,
- Topography: escarpment with a linear slope,
- Treatment of spurious soloutions (singular modes): filtering based on slope limiters + increase of resolution.

Boundary conditions Numerical settings Expectations Selected results

Wave species of the flow

Flow with constant *Q* in the upper layer and bottom escarpment:

- Poincaré (inertia-gravity) modes in both layers,
- Rossby modes in the lower layer (no PV gradients in the upper layer),
- Frontal modes, trapped in the vicinity of the free streamlines in the upper layer,
- Topographic waves in the lower layer, trapped by the varying bathymetry.

Instabilities: resonances between the eigenmodes of the linearized problem. Resonances ↔ crossings of dispersion curves (Cairns 1979).

Boundary conditions Numerical settings Expectations Selected results

Expectations

Expect following resonances and related instabilities :

- the barotropic resonances of the upper-layer modes between :
 - two frontal waves (FF);
 - a Poincaré and a frontal wave (P1F);
 - two Poincaré waves (P1P1).
- the baroclinic resonances of the modes of different layers between:
 - a frontal upper wave and a lower Rossby wave (RF);
 - a frontal upper wave and a lower topographic wave (TF);
 - an upper Poincaré wave and a lower Rossby wave (P1R);
 - an upper Poincaré wave and a lower topographic wave (P1T);
 - a frontal upper wave and a lower Poincaré wave (P2F);
 - upper and lower Poincaré waves (P1P2).

Boundary conditions Numerical settings Expectations Selected results

Stability diagram: very deep lower layer with Q = 0.5

Density ratio $\rho = 0.5$. Depth ratio r = 100. Topography: a = 0.5L, $\alpha_0 = 50$. *Gray:* unstable. *Black:* stable. *Waves:* I - inertial; F - frontal; R - Rossby, T - topographic. *Bottom:* zoom.

Boundary conditions Numerical settings Expectations Selected results

Most unstable mode: FF resonance

2D structure of the most unstable mode ($\epsilon = 0.59$): resonance between two frontal waves in the upper layer. *Left:* Isobars (contour interval 0.05) and velocity field of the perturbation in the upper layer. *Right:* Isobars (contour interval 0.001, starting from ±0.001) and velocity field of the perturbation in the lower layer. Positive (negative) pressure anomalies: black (gray) lines. $\|\mathbf{v_2}\|_{max} \simeq 0.003 \|\mathbf{v_1}\|_{max}$.

< < >> < </>

Boundary conditions Numerical settings Expectations Selected results

Stability diagram: moderately deep lower layer

Same background flow with the depth ratio r = 10 and the topography parameter $\alpha_0 = 5$. *Bottom:* zoom in the stability diagram.

э

Boundary conditions Numerical settings Expectations Selected results

Second unstable mode: RF resonance

2D structure of the unstable mode with $\epsilon = 0.77$. Resonance between a frontal wave (*upper layer*) and a Rossby wave (*lower layer*). Perturbation with Re(c) < 0. $\|\mathbf{v}_2\|_{max} \simeq 0.035 \|\mathbf{v}_1\|_{max}$.

A D b 4 A b

Boundary conditions Numerical settings Expectations Selected results

Next unstable mode: TF resonance

2D structure of the unstable mode with $\epsilon = 1.105$. Resonance between a frontal wave (*upper layer*) and the first topographic mode (*lower layer*). Isobars of the perturbation in the lower layer (contour interval 0.005, starting from ± 0.005). $\|\mathbf{v}_2\|_{max} \simeq 0.05 \|\mathbf{v}_1\|_{max}$.

Boundary conditions Numerical settings Expectations Selected results

Unstable mode corresponding to TF resonance with second topographic mode

2D structure of the unstable mode with $\epsilon = 0.842$. Resonance between a frontal wave (*upper layer*) and the second topographic mode (*lower layer*). $\|\mathbf{v}_2\|_{max} \simeq 0.035 \|\mathbf{v}_1\|_{max}$.

Boundary conditions Numerical settings Expectations Selected results

Unstable mode corresponding to P1R resonance

2D structure of the unstable mode with $\epsilon = 3.577$. Resonance between a Poincaré mode in the upper layer and a Rossby wave in the lower layer. Perturbation Re(c) < 0. Isobars of the perturbation in the lower layer (contour interval 0.0005, starting from ± 0.0005). $\|\mathbf{v}_2\|_{max} \simeq 0.0055 \|\mathbf{v}_1\|_{max}$.

A D b 4 A b

Boundary conditions Numerical settings Expectations Selected results

Stability diagram: shallow lower layer

Stability diagram for the same background flow with the depth ratio r = 2 and the topography parameter $\alpha_0 = 1.4$.

3

Boundary conditions Numerical settings Expectations Selected results

Unstable mode corresponding to P2F resonance

2D structure of the unstable mode with $\epsilon = 3.885$. Resonance between a Poincaré mode in the lower layer and a frontal wave in the upper layer. Perturbation with Re(c) < 0. Isobars of the perturbation in the lower layer (contour interval 0.01, starting from ± 0.01). $\|\mathbf{v}_2\|_{max} \simeq 0.27 \|\mathbf{v}_1\|_{max}$.

A D b 4 A b

Boundary conditions Numerical settings Expectations Selected results

Example of competing instabilities

Stability diagram for the flat-bottom background flow with Q = 0.6, $\rho = 0.5$, and depth ratio r = 2. *Bottom:* zoom in the stability diagram.

Motivation and general setting of the DNS Saturation of competing *FF* and *RF* instabilities Saturation of instabilities in the presence of topography

イロト イポト イヨト イヨ

Motivations/questions

- how the active lower layer influences the nonlinear evolution of the coupled density fronts established in the framework of equivalent 1-layer model (Scherer & Zeitlin 2008)?
- what are the differences in saturation of (*FF*) instability and of its rival, the (*RF*) instability?
- how the presence of the second density front/absence of the boundary (coast) influences the saturation of the (*RF*) instability observed in the case of the coastal current with similar settings (Gula, Zeitlin & Bouchut2010)?
- how the presence of escarpment beneath the fronts changes the scenarii of saturation?

Motivation and general setting of the DNS Saturation of competing *FF* and *RF* instabilities Saturation of instabilities in the presence of topography

Numerical settings

Numerical scheme:

Finite-volume, well balanced, shock-capturing for 2-layer RSW with free upper surface (Bouchut & Zeitlin 2010).

Initialization/resolution:

- Initialization: basic flow + perturbation of the amplitude \approx 1% of the max thickness of the unperturbed upper layer. Perturbation: an unstable mode.
- Boundary conditions: sponges cross-stream, periodicity downstream.
- Resolution: typically 0.067 R_d, control simulations with double resolution

Motivation and general setting of the DNS Saturation of competing *FF* and *RF* instabilities Saturation of instabilities in the presence of topography

ヘロト ヘ戸ト ヘヨト ヘヨト

Caveats of 2-layer model:

- Strong vertical shears ⇒ loss of hyperbolicity (physically: KH instabilities). Numerical scheme copes well with them: strong gradients trigger enhanced numerical dissipation and the scheme cures itself, the non-hyperbolic zones remaining localized and eventually disappearing.
- Rankine-Hugoniot conditions for the model are not complete, extra *ad hoc* hypotheses are needed to determine weak solutions (shocks). Our scheme: layerwise momentumn conservation

Motivation and general setting of the DNS Saturation of competing *FF* and *RF* instabilities Saturation of instabilities in the presence of topography

Benchmark: comparison with the results of the linear stability analysis

Comparison of the growth rate of the *FF* instability at the initial stages of the direct numerical simulation initialized with the most unstable mode with the predictions of the linear stability analysis: logarithm of the norm of the cross-stream velocity in the upper layer vs time normalized by the linear growth rate.

Conclusions

Motivation and general setting of the DNS Saturation of competing *FF* and *RF* instabilities Saturation of instabilities in the presence of topography

Nonlinear evolution of the FF instability

t=0/t	t=84/t	t=100/t	t=160/f
4.5 3 -1.5 -3-1.5 0 -4.5 -3-1.5 0 1.5 3	4.5 -6 -1.5 -4.5 -6 -3-1.5 0 1.5 3	4.5 1.5 -4.5 -6-3-1.5 0 1.5 3	4.5 1.5 5 0 -1.5 4.5 -0 -1.5 0 -1.5 0 -0 -1.5 0 -0 -1.5 0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
t=230/f	t=258/f	t=292/f	t=338/f
6	6	C.	0

Thickness h_1 of the upper layer (*black*). Contour interval 0.2, starting at 0.2. Pressure Π_2 (*gray*) of the lower layer. Contour interval 0.05, starting at $rH \pm 0.05$ (+/- *anomaly: solid/dashed*).

Motivation and general setting of the DNS Saturation of competing *FF* and *RF* instabilities Saturation of instabilities in the presence of topography

Energy balance of saturating FF instability

Left: Normalized deviation of the total *(solid)*, kinetic *(black dashed)* and potential *(gray dashed)* energy from initial values. *Right:* Normalized deviations of the kinetic $\rho_i h_i / 2\mathbf{v_i}^2$ *(solid)* and potential $\rho_i gh_i^2/2$ *(dashed)* of layers 1 *(black)* and 2 *(gray)*. Exchange $\rho_1 gh_1 h_2$ *(solid dotted)* and total *(dark gray)* energies.

n / f

Conclusions

00/4

Motivation and general setting of the DNS Saturation of competing *FF* and *RF* instabilities Saturation of instabilities in the presence of topography

0011

11011

Nonlinear evolution of the RF instability

l=0/1	l=80/1	l = 1 10/1	l=160/1
6 4.6 -0 -1.6 -4.6 -0 -1.5 <u>0</u> 1.6	$ \begin{array}{c} 4.5 \\ 3 \\ -1.6 \\ -3 \\ -6 \\ -1.5 \\ x $	$ \begin{array}{c} 6 \\ 4.5 \\ -1.6 \\ -4.5 \\ -6 \\ -1.6 \\ \chi \\ 1.5 \\ 1.5 1.5 $	4.5 1.5 -1.5 -4.5 -6 -1.6 × 1.5
t=180/f	t=210/f	<i>t=242/f</i>	t=320/f
4.5 		4.5 3.5 1.5 -1.5 -1.6 -1.6 -4.6	6 4.5 3 1.5 0 -1.5 -3 -4.5

Thickness h_1 of the upper layer (*black*). Contour interval 0.2, starting at ± 0.2 . Pressure Π_2 (*gray*) of the lower layer. Contour interval 0.05, starting at $rH \pm 0.05$ (+/- *anomaly: solid/dashed*).

Saturation of competing FF and RF instabilities

Energy balance of saturating *RF* instability

Left: Normalized deviation of the total energies from their initial values.

Right: Evolution of different energy components.

- ∢ ⊒ →

Motivation and general setting of the DNS Saturation of competing *FF* and *RF* instabilities Saturation of instabilities in the presence of topography

Saturation of FF instability over escarpment

t=0/ft=100/f t=150/f t=200/f 4 1.3 -1-4.5 -4.5 -1.5 0 ò 1.5 -1.5 Ô 1.5 -1.5 1.5 -1.5 t=250/f t=300/f t=400/f t=500/f -4

Thickness h_1 of the upper layer (*black*). Contour interval 0.2, starting at ± 0.2 . Pressure Π_2 (*gray*) of the lower layer. Contour interval 0.015, starting at $rH \pm 0.015$ (+/-: *solid/dashed*).

Conclusions

Motivation and general setting of the DNS Saturation of competing *FF* and *RF* instabilities Saturation of instabilities in the presence of topography

Saturation of RF instability with topography

Nonlinear evolution of the *RF* instability over escarpment. Thickness h_1 of the upper layer (*black*). Contour interval 0.2, starting from 0.2. Pressure Π_2 (*gray*) of the lower layer. Contour interval 0.01, starting at $rH \pm 0.01$ (positive/negative pressure anomaly: *solid/dashed*).

Conclusions

Motivation and general setting of the DNS Saturation of competing *FF* and *RF* instabilities Saturation of instabilities in the presence of topography

Nonlinear development of the TF instability

Thickness h_1 of the upper layer (*black*). Contour interval 0.2, starting at 0.2. Pressure Π_2 (*gray*) of the lower layer. Contour interval 0.005, starting at $rH = \pm 0.005$ (+/- : *solid/dashed*).

Motivation and general setting of the DNS Saturation of competing *FF* and *RF* instabilities Saturation of instabilities in the presence of topography

Energy balance of TF instability

Energy balance of the developing *TF* instability: extremely small dissipation.

→ E → < E →</p>

э

Linear stability analysis:

- Leading long-wave barotropic *FF* instability dominant for deep lower layers, may be overcome by the baroclinic *RF* instability when the depth of the lower layer decreases, including asymmetric decrease in depth due to topography. Topography renders the *FF* instability propagative.
- Specific long-wave topographic *TF* instability arises. In the configuration with centered escarpment it is never dominant.
- For shallow (partially shallow due to topography) lower layers short-wave Kelvin-Helmholtz type instabilities become dominant.

イロト イポト イヨト イヨト

Nonlinear saturation of long-wave instabilities:

- *FF* instability over the flat bottom saturates by reorganizing the flow in a system of co-rotating ellipsoidal quasi-barotropic vortices, the rodons.
- *FF* instability over escarpment saturates by reorganizing the flow into two rows of quasi-circular quasi-barotropic vortices on both sides of the escarpment.
- *RF* instability saturates by forming transient upper-layer monopolar and lower-layer dipolar vortices which, after a stage of a sideward motion reorganize themselves in a secondary mean current, shifted with respect to the initial one and experiencing subsequent secondary instabilities.
- *TF* instability saturates forming a steady finite-amplitude nonlinear hybrid fronto-topographic wave