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Density fronts reminder

Density fronts:
ubiquitous in nature and easy to reproduce in the lab
characteristically unstable
following classics (Griffiths, Killworth & Stern, 1982), the
instabilities of DF are traditionnally studied in the
framework of 1- or 2-layer rotating shallow water (RSW)
models ; result from phase-locking and resonance of
characteristic frontal waves
recent progress: detailed numerical linear stability analysis
and high-resolution DNS of nonlinear saturation (Gula,
Zeitlin & Bouchut, 2010).
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Motivation

Not well- understood:
the role of the bottom layer
the role of topography
details nonlinear saturation

Main motivation:
To investigate how the classical instability of the double density
fronts, resulting from a resonance between two frontal waves
propagating along the respective fronts, interacts with other
long-wave instabilities appearing due to the active lower layer
and topography and, respectively, Rossby and topographic
waves which are activated in the system.
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Goals

We want:
to give a complete classification of the instabilities of
double density fronts in the presence of an active lower
layer and shelf-like topography
to intercompare them and to identify the dominant one and
possible instability swaps in the parameter space
to identify and intercompare different saturation patterns

Program realized in:
Ribstein & Zeitlin, 2013, J. Fluid Mech., 716, 528 - 565.
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Methodology and tools

We follow previous work (Scherer & Zeitlin 2008; Gula & Zeitlin
2010; Gula, Zeitlin & Bouchut 2010) and add combined effects
of baroclinicity and bottom topography:

Density fronts: 2-layer RSW with outcropping interface.
Topography: escarpment beneath the upper-layer current.
Steep topography: horizontal scale ≤ width of the current.
Straight fronts with velocity in geostrophic balance: exact
solutions. Linear stability: collocation method. Unstable
modes: resonances between eigenmodes.
Unstable modes→ initialization of numerical simulations
with new-generation well-balanced high resolution
finite-volume scheme (Bouchut & Zeitlin 2010).
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The model
Scalings and background flow

Coupled density fronts with nontrivial bathymetry
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Rd : deformation radius, L and a: nondimensional widths of the
balanced current and of the escarpment. r : depth ratio, α0:
non-dimensional amplitude of the bathymetry.
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The model
Scalings and background flow

Equations of the model

(∂t + ui∂x + vi∂y )ui − fvi + ∂x Πi = 0 ,
(∂t + ui∂x + vi∂y )vi + fui + ∂y Πi = 0 ,

∂thi + ∂x ((hi − b δi2)ui) + ∂y ((hi − b δi2vi) = 0 .
(1)

ui , vi (i = 1,2) - x- and y - components of the velocity in the
layers (layer 1 on top of the layer 2); h1, h2 − b - thicknesses of
the layers, δij -Kronecker delta; ρ = ρ1

ρ2
≤ 1 - density ratio,

f = const - Coriolis parameter, g - gravity. Geopotentials of the
layers (1,2):

Π1 = g(h1 + h2) , Π2 = g(ρh1 + h2). (2)
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The model
Scalings and background flow

Intrinsic scales:

Length: radius of deformation Rd =
√

gH(1− ρ)/f ,
Time: 1/f .
dimensionless wavenumber ε = 2πRd/λ

Scalings:
cross-stream coordinate y ∼ Rd ,
downstream coordinate x ∼ λ/2π = Rd/ε

time t ∼ 1/εf .
width of the current: 2RdL, L = O(1).
bathymetry variations: Rda
cross-stream velocities ∼ ε

√
gH(1− ρ), and downstream

velocities ∼
√

gH(1− ρ)⇒ Ro = 1
2L .
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Scalings and background flow

Non-dimensional equations of the model

(∂t + ui∂x + vi∂y )ui − vi + ∂x Πi = 0 ,

ε2(∂t + ui∂x + vi∂y )vi + ui + ∂y Πi = 0 ,
∂thi + ∂x ((hi − α0

r b δi2)ui) + ∂y ((hi − α0
r b δi2)vi) = 0 ,

Π1 = h1+rh2
1−ρ , Π2 = ρh1+rh2

1−ρ .

(3)

Ribstein & Zeitlin Instabilities of coupled density fronts



Introduction
The model and the background flow

Linear stability problem
Nonlinear evolution of the instabilities

Conclusions

The model
Scalings and background flow

Backround flow

Background flow (ūi , v̄i , h̄i) is a geostrophically balanced,
parallel to the x−axis density current terminating at ±L, with no
mean flow in the lower layer:

ū1 = ū = −∂y h̄ , Π̄1 = h̄ , Π̄2 = 0 , ū2 = v̄2 = v̄1 = 0 .
(4)

h̄1 = h̄ is the background thickness of the upper layer,
h̄(±L) = 0, otherwise h̄(y) is arbitrary There is no variation of
bathymetry beyond the outcroppings a < L:

b = 1 , y < −a ,
b = 0 , y > a .

(5)
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Scalings and background flow

Constant-PV currents

If potential vorticity is constant Q in the upper layer,
∂yy h̄ −Qh̄ + 1 = 0, and

Q < 1 : h̄ =
1
Q

(
1− cosh(y

√
Q)

cosh(L
√

Q)

)
, L =

1√
Q

ln

(
1 +

√
Q(2−Q)

1−Q

)
,

Q < 0 : h̄ =
1
Q

(
1−

cos(y
√
|Q|)

cos(L
√
|Q|)

)
, L =

1√
|Q|

cos−1
(

1
1 + |Q|

)
,

Q = 0 : h̄ = 1− (y/L)2 , L =
√

2 .
(6)

For Q = 0.5 - a configuration to be used below for illustrations,
L ' 1.86 and Ro ' 0.27.
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Cross-section of the background flow
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Background flow for constant PV Q = 0.5 in the upper layer.
Density ratio ρ = 0.5. Depth ratio r = 10. Topography: α0 = 5
and a = 0.5L. Upper panel: interface (dashed), free surface
(solid) and topography (thick). Lower panel: downstream
velocities of the layers 2 (dashed) and 1 (solid).
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Boundary conditions

Linear stability: small perturbation (u′i , v
′
i ,h
′
i ).

Boundary conditions:

h̄ + h′1 = 0 and
dL±
dt

= v ′1 at y = ±L + λ± , (7)

±L - locations of the free streamlines of the balanced flow,
λ±(x , t) - perturbations of the free streamlines. Another
boundary condition: for the lower layer, the continuity of the
solution at ±L.
Beyond the outcropping: exponential decay of the pressure
perturbation on both sides of the double front⇒ boundary
conditions at the outcroppings⇒ entire linear eigenproblem
solely at the interval y ∈ [−L,L].
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Comment on boundary conditions

Spectrum of the linearized problem in the cross-flow direction:
discrete + continuous. First: free inertia-gravity waves. Second:
trapped waves exponentially decaying out of the density fronts.
By imposing the decay boundary condition we filter out free
inertia-gravity waves and concentrate uniquely on the trapped
modes - consistent with our interest in long-wave instabilities.
Only the instabilities resulting from the resonances between the
trapped modes will be captured, radiative instabilities due to the
resonances with free inertia-gravity waves are excluded. A
priori justification: condition of efficient emission of
inertia-gravity waves by a PV anomaly is Ro ≥ 1, while we work
with Ro < 1. A posteriori justification: no radiative instabilities
observed in DNS.
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Numerical linear stability analysis

Method: pseudospectral collocation (Trefethen 2000)→
matrix eigenproblem for the phase speed c of the
perturbation, MATLAB routine "eig",
Boundary conditions: continuity of all variables at y = ±L,
continuity of the lower-layer pressure at y = ±L and
exponential decay out of the front,
Discretization: Chebyshev collocation points
{yi = L cos(jπ/N), j = 0,1, ..,N}. Numerical convergence
typically for N=50, systematic checks with double
resolution. Chebyshev differentiation matrix for discrete
differentiation,
Topography: escarpment with a linear slope,
Treatment of spurious soloutions (singular modes): filtering
based on slope limiters + increase of resolution.
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Wave species of the flow

Flow with constant Q in the upper layer and bottom
escarpment:

Poincaré (inertia-gravity) modes in both layers,
Rossby modes in the lower layer (no PV gradients in the
upper layer),
Frontal modes, trapped in the vicinity of the free
streamlines in the upper layer,
Topographic waves in the lower layer, trapped by the
varying bathymetry.

Instabilities: resonances between the eigenmodes of the
linearized problem. Resonances↔ crossings of dispersion
curves (Cairns 1979).
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Expectations

Expect following resonances and related instabilities :
1 the barotropic resonances of the upper-layer modes

between :
two frontal waves (FF);
a Poincaré and a frontal wave (P1F);
two Poincaré waves (P1P1).

2 the baroclinic resonances of the modes of different layers
between:

a frontal upper wave and a lower Rossby wave (RF);
a frontal upper wave and a lower topographic wave (TF);
an upper Poincaré wave and a lower Rossby wave (P1R);
an upper Poincaré wave and a lower topographic wave
(P1T);
a frontal upper wave and a lower Poincaré wave (P2F);
upper and lower Poincaré waves (P1P2).
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Stability diagram: very deep lower layer with Q = 0.5
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Density ratio ρ = 0.5. Depth ratio r = 100. Topography:
a = 0.5L, α0 = 50. Gray: unstable. Black: stable. Waves: I -
inertial; F - frontal; R - Rossby, T - topographic. Bottom: zoom.
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Most unstable mode: FF resonance
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2D structure of the most unstable mode (ε = 0.59): resonance
between two frontal waves in the upper layer. Left: Isobars
(contour interval 0.05) and velocity field of the perturbation in
the upper layer. Right: Isobars (contour interval 0.001, starting
from ±0.001) and velocity field of the perturbation in the lower
layer. Positive (negative) pressure anomalies: black (gray)
lines. ‖v2‖max ' 0.003‖v1‖max .
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Stability diagram: moderately deep lower layer
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topography parameter α0 = 5. Bottom: zoom in the stability
diagram.
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Second unstable mode: RF resonance
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2D structure of the unstable mode with ε = 0.77. Resonance
between a frontal wave (upper layer) and a Rossby wave (lower
layer). Perturbation with Re(c) < 0. ‖v2‖max ' 0.035‖v1‖max .
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Next unstable mode: TF resonance
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2D structure of the unstable mode with ε = 1.105. Resonance
between a frontal wave (upper layer) and the first topographic
mode (lower layer). Isobars of the perturbation in the lower
layer (contour interval 0.005, starting from ±0.005).
‖v2‖max ' 0.05‖v1‖max .
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Unstable mode corresponding to TF resonance with
second topographic mode
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2D structure of the unstable mode with ε = 0.842 . Resonance
between a frontal wave (upper layer) and the second
topographic mode (lower layer). ‖v2‖max ' 0.035‖v1‖max .
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Unstable mode corresponding to P1R resonance
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2D structure of the unstable mode with ε = 3.577. Resonance
between a Poincaré mode in the upper layer and a Rossby
wave in the lower layer. Perturbation Re(c) < 0. Isobars of the
perturbation in the lower layer (contour interval 0.0005, starting
from ±0.0005). ‖v2‖max ' 0.0055‖v1‖max .
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Stability diagram: shallow lower layer
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Stability diagram for the same background flow with the depth
ratio r = 2 and the topography parameter α0 = 1.4.
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Unstable mode corresponding to P2F resonance
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2D structure of the unstable mode with ε = 3.885. Resonance
between a Poincaré mode in the lower layer and a frontal wave
in the upper layer. Perturbation with Re(c) < 0. Isobars of the
perturbation in the lower layer (contour interval 0.01, starting
from ±0.01). ‖v2‖max ' 0.27‖v1‖max .
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Example of competing instabilities
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Stability diagram for the flat-bottom background flow with
Q = 0.6, ρ = 0.5, and depth ratio r = 2. Bottom: zoom in the
stability diagram.
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Motivations/questions

how the active lower layer influences the nonlinear
evolution of the coupled density fronts established in the
framework of equivalent 1-layer model (Scherer & Zeitlin
2008)?
what are the differences in saturation of (FF ) instability
and of its rival, the (RF ) instability?
how the presence of the second density front/absence of
the boundary (coast) influences the saturation of the (RF )
instability observed in the case of the coastal current with
similar settings (Gula, Zeitlin & Bouchut2010)?
how the presence of escarpment beneath the fronts
changes the scenarii of saturation?
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Numerical settings

Numerical scheme:
Finite-volume, well balanced, shock-capturing for 2-layer RSW
with free upper surface (Bouchut & Zeitlin 2010).

Initialization/resolution:
Initialization: basic flow + perturbation of the amplitude
≈ 1% of the max thickness of the unperturbed upper layer.
Perturbation: an unstable mode.
Boundary conditions: sponges cross-stream, periodicity
downstream.
Resolution: typically 0.067 Rd , control simulations with
double resolution

Ribstein & Zeitlin Instabilities of coupled density fronts



Introduction
The model and the background flow

Linear stability problem
Nonlinear evolution of the instabilities

Conclusions

Motivation and general setting of the DNS
Saturation of competing FF and RF instabilities
Saturation of instabilities in the presence of topography

Caveats of 2-layer model:

Strong vertical shears⇒ loss of hyperbolicity (physically:
KH instabilities). Numerical scheme copes well with them:
strong gradients trigger enhanced numerical dissipation
and the scheme cures itself, the non-hyperbolic zones
remaining localized and eventually disappearing.
Rankine-Hugoniot conditions for the model are not
complete, extra ad hoc hypotheses are needed to
determine weak solutions (shocks). Our scheme:
layerwise momentumn conservation
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Benchmark: comparison with the results of the linear
stability analysis
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Comparison of the growth rate of the FF instability at the initial
stages of the direct numerical simulation initialized with the
most unstable mode with the predictions of the linear stability
analysis: logarithm of the norm of the cross-stream velocity in
the upper layer vs time normalized by the linear growth rate.
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Nonlinear evolution of the FF instability
t=0/f t=84/f t=100/f t=160/f
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Thickness h1 of the upper layer (black). Contour interval 0.2,
starting at 0.2. Pressure Π2 (gray) of the lower layer. Contour
interval 0.05, starting at rH ± 0.05 (+/- anomaly: solid/dashed).
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Energy balance of saturating FF instability
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Left: Normalized deviation of the total (solid), kinetic (black
dashed) and potential (gray dashed) energy from initial values.
Right: Normalized deviations of the kinetic ρihi/2vi

2 (solid) and
potential ρigh2

i /2 (dashed) of layers 1 (black) and 2 (gray).
Exchange ρ1gh1h2 (solid dotted) and total (dark gray) energies.
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Nonlinear evolution of the RF instability
t=0/f t=80/f t=110/f t=160/f

 x 

 y 

−1.5 0 1.5
−6

−4.5

−3

−1.5

0

1.5

3

4.5

6

 x 

 y 

−1.5 0 1.5
−6

−4.5

−3

−1.5

0

1.5

3

4.5

6

 x 

 y 

−1.5 0 1.5
−6

−4.5

−3

−1.5

0

1.5

3

4.5

6

 x 

 y 

−1.5 0 1.5
−6

−4.5

−3

−1.5

0

1.5

3

4.5

6

t=180/f t=210/f t=242/f t=320/f

 x 

 y 

−1.5 0 1.5
−6

−4.5

−3

−1.5

0

1.5

3

4.5

6

 x 

 y 

−1.5 0 1.5
−6

−4.5

−3

−1.5

0

1.5

3

4.5

6

 x 

 y 

−1.5 0 1.5
−6

−4.5

−3

−1.5

0

1.5

3

4.5

6

 x 

 y 

−1.5 0 1.5
−6

−4.5

−3

−1.5

0

1.5

3

4.5

6

Thickness h1 of the upper layer (black). Contour interval 0.2,
starting at ±0.2. Pressure Π2 (gray) of the lower layer. Contour
interval 0.05, starting at rH ± 0.05 (+/- anomaly: solid/dashed).
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Energy balance of saturating RF instability
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Left: Normalized deviation of the total energies from their initial
values.
Right: Evolution of different energy components.
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Saturation of FF instability over escarpment
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Thickness h1 of the upper layer (black). Contour interval 0.2,
starting at ±0.2. Pressure Π2 (gray) of the lower layer. Contour
interval 0.015, starting at rH ± 0.015 (+/-: solid/dashed).
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Saturation of RF instability with topography
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Nonlinear evolution of the RF instability over escarpment.
Thickness h1 of the upper layer (black). Contour interval 0.2,
starting from 0.2. Pressure Π2 (gray) of the lower layer. Contour
interval 0.01, starting at rH ± 0.01 (positive/negative pressure
anomaly: solid/dashed).
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Nonlinear development of the TF instability
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Thickness h1 of the upper layer (black). Contour interval 0.2,
starting at 0.2. Pressure Π2 (gray) of the lower layer. Contour
interval 0.005, starting at rH = ±0.005 (+/- : solid/dashed).

Ribstein & Zeitlin Instabilities of coupled density fronts



Introduction
The model and the background flow

Linear stability problem
Nonlinear evolution of the instabilities

Conclusions

Motivation and general setting of the DNS
Saturation of competing FF and RF instabilities
Saturation of instabilities in the presence of topography

Energy balance of TF instability
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Energy balance of the developing TF instability: extremely
small dissipation.
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Linear stability analysis:

Leading long-wave barotropic FF instability dominant for
deep lower layers, may be overcome by the baroclinic RF
instability when the depth of the lower layer decreases,
including asymmetric decrease in depth due to topography.
Topography renders the FF instability propagative.
Specific long-wave topographic TF instability arises. In the
configuration with centered escarpment it is never
dominant.
For shallow (partially shallow due to topography) lower
layers short-wave Kelvin-Helmholtz type instabilities
become dominant.
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Nonlinear saturation of long-wave instabilities:

FF instability over the flat bottom saturates by reorganizing
the flow in a system of co-rotating ellipsoidal
quasi-barotropic vortices, the rodons.
FF instability over escarpment saturates by reorganizing
the flow into two rows of quasi-circular quasi-barotropic
vortices on both sides of the escarpment.
RF instability saturates by forming transient upper-layer
monopolar and lower-layer dipolar vortices which, after a
stage of a sideward motion reorganize themselves in a
secondary mean current, shifted with respect to the initial
one and experiencing subsequent secondary instabilities.
TF instability saturates forming a steady finite-amplitude
nonlinear hybrid fronto-topographic wave
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