Instabilities of coupled density fronts and their nonlinear evolution in the two-layer rotating shallow water model. Influence of the lower layer and of the topography.

B. Ribstein and V. Zeitlin

Laboratory of Dynamical Meteorology, Univ. P.et M. Curie, Paris, France

Sub-mesoscale Ocean Processes, Toronto 2013

 $($ \Box $)$ $($ \Box $)$

- 4 周 8 3 日 8

 Ω

Plan

- **[Introduction](#page-2-0)**
	- [The model and the background flow](#page-6-0)
	- [The model](#page-6-0)
	- [Scalings and background flow](#page-8-0)
- 3 [Linear stability problem](#page-13-0)
	- [Boundary conditions](#page-13-0)
	- [Numerical settings](#page-15-0)
	- **•** [Expectations](#page-16-0)
	- [Selected results](#page-18-0)
	- [Nonlinear evolution of the instabilities](#page-28-0)
		- [Motivation and general setting of the DNS](#page-28-0)
		- [Saturation of competing](#page-31-0) *FF* and *RF* instabilities
		- [Saturation of instabilities in the presence of topography](#page-36-0)

[Conclusions](#page-40-0)

 Ω

[Introduction](#page-2-0) [The model and the background flow](#page-6-0) [Linear stability problem](#page-13-0)

[Nonlinear evolution of the instabilities](#page-28-0) **[Conclusions](#page-40-0)**

Density fronts reminder

Density fronts:

- ubiquitous in nature and easy to reproduce in the lab
- **c** characteristically unstable
- **•** following classics (Griffiths, Killworth & Stern, 1982), the instabilities of DF are traditionnally studied in the framework of 1- or 2-layer rotating shallow water (RSW) models ; result from phase-locking and resonance of characteristic frontal waves
- **•** recent progress: detailed numerical linear stability analysis and high-resolution DNS of nonlinear saturation (Gula, Zeitlin & Bouchut, 2010).

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 290

ă

Motivation

Not well- understood:

- \bullet the role of the bottom layer
- \bullet the role of topography
- **o** details nonlinear saturation

Main motivation:

To investigate how the classical instability of the double density fronts, resulting from a resonance between two frontal waves propagating along the respective fronts, interacts with other long-wave instabilities appearing due to the active lower layer and topography and, respectively, Rossby and topographic waves which are activated in the system.

 Ω

We want:

- **•** to give a complete classification of the instabilities of double density fronts in the presence of an active lower layer and shelf-like topography
- **•** to intercompare them and to identify the dominant one and possible instability swaps in the parameter space
- to identify and intercompare different saturation patterns

Program realized in:

Ribstein & Zeitlin, 2013, J. Fluid Mech., **716**, 528 - 565.

イロメ イ押 メイヨメ イヨメ

Methodology and tools

We follow previous work (Scherer & Zeitlin 2008; Gula & Zeitlin 2010; Gula, Zeitlin & Bouchut 2010) and add combined effects of baroclinicity and bottom topography:

- Density fronts: 2-layer RSW with outcropping interface.
- Topography: escarpment beneath the upper-layer current. Steep topography: horizontal scale \leq width of the current.
- Straight fronts with velocity in geostrophic balance: exact solutions. Linear stability: collocation method. Unstable modes: resonances between eigenmodes.
- \bullet Unstable modes \rightarrow initialization of numerical simulations with new-generation well-balanced high resolution finite-volume scheme (Bouchut & Zeitlin 2010).

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[The model](#page-6-0) [Scalings and background flow](#page-8-0)

Coupled density fronts with nontrivial bathymetry

R^d : deformation radius, *L* and *a*: nondimensional widths of the balanced current and of the escarpment. *r*: depth ratio, α_0 : non-dimensional amplitude of the bathyme[try](#page-5-0).

[The model](#page-6-0) [Scalings and background flow](#page-8-0)

Equations of the model

$$
(\partial_t + u_j \partial_x + v_j \partial_y) u_i - f v_i + \partial_x \Pi_i = 0 ,
$$

\n
$$
(\partial_{t+1} u_i \partial_{t+1} v_i \partial_x) u_i + f u_i + \partial_{t} \Pi_i = 0 ,
$$
 (1)

$$
(\partial_t + u_i \partial_x + v_i \partial_y) v_i + f u_i + \partial_y \Pi_i = 0 \quad , \qquad (1)
$$

$$
\partial_t h_i + \partial_x ((h_i - b \delta_{i2}) u_i) + \partial_y ((h_i - b \delta_{i2} v_i)) = 0 \quad .
$$

 u_i , v_i ($i = 1, 2$) - x - and y - components of the velocity in the layers (layer 1 on top of the layer 2); h_1 , $h_2 - b$ - thicknesses of the layers, δ_{ij} -Kronecker delta; $\rho = \frac{\rho_1}{\rho_2}$ $\frac{\rho_1}{\rho_2} \leq 1$ - density ratio, *f* = *const* - Coriolis parameter, *g* - gravity. Geopotentials of the layers (1, 2):

$$
\Pi_1 = g(h_1 + h_2) \quad , \quad \Pi_2 = g(\rho h_1 + h_2). \tag{2}
$$

イロト イ押 トイヨ トイヨ トー

ă.

[Scalings and background flow](#page-8-0)

Intrinsic scales:

- Length: radius of deformation $R_d = \sqrt{gH(1-\rho)/f},$
- Time: 1/*f*.
- **o** dimensionless wavenumber $\epsilon = 2\pi R_d/\lambda$

Scalings:

- cross-stream coordinate *y* ∼ *R^d* ,
- \bullet downstream coordinate *x* ∼ $\lambda/2\pi = R_d/\epsilon$
- \bullet time *t* ∼ 1/*ef*.
- width of the current: $2R_dL$, $L = \mathcal{O}(1)$.
- \bullet bathymetry variations: R_d *a*
- cross-stream velocities $\sim \epsilon \sqrt{gH(1-\rho)},$ and downstream $\text{velocities} \sim \sqrt{gH(1-\rho)} \Rightarrow \textit{Ro} = \frac{1}{2\rho}$ $\frac{1}{2L}$

[The model](#page-6-0) [Scalings and background flow](#page-8-0)

Non-dimensional equations of the model

$$
(\partial_t + u_i \partial_x + v_i \partial_y)u_i - v_i + \partial_x \Pi_i = 0 ,
$$

\n
$$
\epsilon^2 (\partial_t + u_i \partial_x + v_i \partial_y) v_i + u_i + \partial_y \Pi_i = 0 ,
$$

\n
$$
\partial_t h_i + \partial_x ((h_i - \frac{\alpha_0}{r} b \delta_{i2}) u_i) + \partial_y ((h_i - \frac{\alpha_0}{r} b \delta_{i2}) v_i) = 0 ,
$$
 (3)

$$
\Pi_1 = \frac{h_1 + rh_2}{1 - \rho} \quad , \quad \Pi_2 = \frac{\rho h_1 + rh_2}{1 - \rho}
$$

.

÷.

 2990

イロト イ団 トイヨ トイヨ トー

[Scalings and background flow](#page-8-0)

Backround flow

Background flow $(\bar{\mathit{u}}_i, \bar{\mathit{v}}_i, \bar{\mathit{h}}_i)$ is a geostrophically balanced, parallel to the *x*−axis density current terminating at ±*L*, with no mean flow in the lower layer:

$$
\bar{u}_1 = \bar{u} = -\partial_y \bar{h} \quad , \quad \bar{\Pi}_1 = \bar{h} \quad , \quad \bar{\Pi}_2 = 0 \quad , \quad \bar{u}_2 = \bar{v}_2 = \bar{v}_1 = 0 \quad .
$$
\n(4)

 $\bar{h}_1 = \bar{h}$ is the background thickness of the upper layer, $\bar{h}(\pm L) = 0$, otherwise $\bar{h}(y)$ is arbitrary There is no variation of bathymetry beyond the outcroppings *a* < *L*:

$$
b=1
$$
, $y<-a$,
\n $b=0$, $y>a$. (5)

 $($ \Box $)$ $($ \Box $)$

医电子 化重子

 Ω

[Scalings and background flow](#page-8-0)

Constant-PV currents

If potential vorticity is constant *Q* in the upper layer, $\partial_{vv} \bar{h} - Q \bar{h} + 1 = 0$, and

$$
Q < 1: \quad \bar{h} = \frac{1}{Q} \left(1 - \frac{\cosh(y\sqrt{Q})}{\cosh(L\sqrt{Q})} \right) \quad , \quad L = \frac{1}{\sqrt{Q}} \ln \left(\frac{1 + \sqrt{Q(2 - Q)}}{1 - Q} \right)
$$
\n
$$
Q < 0: \quad \bar{h} = \frac{1}{Q} \left(1 - \frac{\cos(y\sqrt{|Q|})}{\cos(L\sqrt{|Q|})} \right) \quad , \quad L = \frac{1}{\sqrt{|Q|}} \cos^{-1} \left(\frac{1}{1 + |Q|} \right)
$$
\n
$$
Q = 0: \quad \bar{h} = 1 - (y/L)^2 \qquad , \quad L = \sqrt{2} \tag{6}
$$

For $Q = 0.5$ - a configuration to be used below for illustrations, $L \approx 1.86$ and $Ro \simeq 0.27$.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

G.

[Scalings and background flow](#page-8-0)

Cross-section of the background flow

Background flow for constant PV $Q = 0.5$ in the upper layer. Density ratio $\rho = 0.5$. Depth ratio $r = 10$. Topography: $\alpha_0 = 5$ and *a* = 0.5*L*. *Upper panel:* interface (dashed), free surface (solid) and topography (thick). *Lower panel:* downstream velocities of the layers 2 (dashed) and 1 (s[oli](#page-11-0)[d\).](#page-13-0)

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) [Selected results](#page-18-0)

Boundary conditions

Linear stability: small perturbation (u'_i, v'_i, h'_i) .

Boundary conditions:

$$
\bar{h} + h_1' = 0 \quad \text{and} \quad \frac{dL_{\pm}}{dt} = v_1' \quad \text{at} \quad y = \pm L + \lambda_{\pm} \quad , \qquad (7)
$$

±*L* - locations of the free streamlines of the balanced flow, $\lambda_+(x,t)$ - perturbations of the free streamlines. Another boundary condition: for the lower layer, the continuity of the solution at $+L$.

Beyond the outcropping: exponential decay of the pressure perturbation on both sides of the double front \Rightarrow boundary conditions at the outcroppings \Rightarrow entire linear eigenproblem solely at the interval $y \in [-L, L]$.

 Ω

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) [Selected results](#page-18-0)

Comment on boundary conditions

Spectrum of the linearized problem in the cross-flow direction: discrete + continuous. First: free inertia-gravity waves. Second: trapped waves exponentially decaying out of the density fronts. By imposing the decay boundary condition we filter out free inertia-gravity waves and concentrate uniquely on the trapped modes - consistent with our interest in long-wave instabilities. Only the instabilities resulting from the resonances between the trapped modes will be captured, radiative instabilities due to the resonances with free inertia-gravity waves are excluded. *A priori* justification: condition of efficient emission of inertia-gravity waves by a PV anomaly is *Ro* ≥ 1, while we work with *Ro* < 1. *A posteriori* justification: no radiative instabilities observed in DNS.

イロメ イ押 メイヨメ イヨメ

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) [Selected results](#page-18-0)

Numerical linear stability analysis

- Method: pseudospectral collocation (Trefethen 2000) \rightarrow matrix eigenproblem for the phase speed *c* of the perturbation, MATLAB routine "eig",
- Boundary conditions: continuity of all variables at $y = \pm L$, continuity of the lower-layer pressure at $y = \pm L$ and exponential decay out of the front,
- **•** Discretization: Chebyshev collocation points ${y_i = L \cos(i\pi/N), i = 0, 1, ..., N}$. Numerical convergence typically for N=50, systematic checks with double resolution. Chebyshev differentiation matrix for discrete differentiation,
- Topography: escarpment with a linear slope,
- **•** Treatment of spurious soloutions (singular modes): filtering based on slope limiters + increase of [res](#page-14-0)[ol](#page-16-0)[u](#page-14-0)[tio](#page-15-0)[n](#page-16-0)[.](#page-14-0)

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) **[Expectations](#page-16-0)** [Selected results](#page-18-0)

Wave species of the flow

Flow with constant *Q* in the upper layer and bottom escarpment:

- Poincaré (inertia-gravity) modes in both layers,
- Rossby modes in the lower layer (no PV gradients in the upper layer),
- Frontal modes, trapped in the vicinity of the free streamlines in the upper layer,
- Topographic waves in the lower layer, trapped by the varying bathymetry.

Instabilities: resonances between the eigenmodes of the linearized problem. Resonances \leftrightarrow crossings of dispersion curves (Cairns 1979). **K ロ ト K 何 ト K ヨ ト K ヨ ト**

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) **[Expectations](#page-16-0)** [Selected results](#page-18-0)

Expectations

Expect following resonances and related instabilities :

- ¹ the barotropic resonances of the upper-layer modes between :
	- \bullet two frontal waves (FF);
	- a Poincaré and a frontal wave (P1F);
	- two Poincaré waves (P1P1).
- **2** the baroclinic resonances of the modes of different layers between:
	- a frontal upper wave and a lower Rossby wave (RF);
	- a frontal upper wave and a lower topographic wave (TF);
	- an upper Poincaré wave and a lower Rossby wave (P1R);
	- an upper Poincaré wave and a lower topographic wave (P1T);
	- a frontal upper wave and a lower Poincaré wave (P2F);
	- upper and lower Poincaré waves (P1[P2](#page-16-0)[\).](#page-18-0)

 QQ

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) **[Expectations](#page-16-0)** [Selected results](#page-18-0)

Stability diagram: very deep lower layer with $Q = 0.5$

Density ratio $\rho = 0.5$. Depth ratio $r = 100$. Topography: $a = 0.5L$, $\alpha_0 = 50$. *Gray:* unstable. *Black:* stable. *Waves:* I inertial; F - frontal; R - Rossby, T - topogra[ph](#page-17-0)i[c.](#page-19-0) *[Bo](#page-18-0)[tt](#page-19-0)[o](#page-17-0)[m](#page-27-0)[:](#page-28-0)* [z](#page-13-0)[o](#page-27-0)[o](#page-28-0)[m](#page-0-0)[.](#page-41-0)

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) [Selected results](#page-18-0)

Most unstable mode: FF resonance

2D structure of the most unstable mode ($\epsilon = 0.59$): resonance between two frontal waves in the upper layer. *Left:* Isobars (contour interval 0.05) and velocity field of the perturbation in the upper layer. *Right:* Isobars (contour interval 0.001, starting from ± 0.001) and velocity field of the perturbation in the lower layer. Positive (negative) pressure anomalies: black (gray) lines. $\|\mathbf{v}_2\|_{max} \simeq 0.003 \|\mathbf{v}_1\|_{max}$.

→ 唐 > → 唐 >

∢ □ ▶ к 何 ▶

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) **[Expectations](#page-16-0)** [Selected results](#page-18-0)

Stability diagram: moderately deep lower layer

Same background flow with the depth ratio $r = 10$ and the topography parameter $\alpha_0 = 5$. *Bottom:* zoom in the stability diagram. (ロ) (伊) $\mathcal{A} \xrightarrow{\sim} \mathcal{B} \xrightarrow{\sim} \mathcal{A} \xrightarrow{\sim} \mathcal{B} \xrightarrow{\sim}$

ă

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) **[Expectations](#page-16-0)** [Selected results](#page-18-0)

Second unstable mode: RF resonance

2D structure of the unstable mode with $\epsilon = 0.77$. Resonance between a frontal wave (*upper layer*) and a Rossby wave (*lower layer*). Perturbation with $Re(c) < 0$. $\|\mathbf{v}_2\|_{max} \approx 0.035 \|\mathbf{v}_1\|_{max}$.

4 0 8 \leftarrow → 重→

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) [Selected results](#page-18-0)

Next unstable mode: TF resonance

2D structure of the unstable mode with $\epsilon = 1.105$. Resonance between a frontal wave (*upper layer*) and the first topographic mode (*lower layer*). Isobars of the perturbation in the lower layer (contour interval 0.005, starting from \pm 0.005). $||\mathbf{v}_2||_{max} \simeq 0.05||\mathbf{v}_1||_{max}$.

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) [Selected results](#page-18-0)

Unstable mode corresponding to TF resonance with second topographic mode

2D structure of the unstable mode with $\epsilon = 0.842$. Resonance between a frontal wave (*upper layer*) and the second topographic mode (*lower layer*). $\|\mathbf{v}_2\|_{max} \approx 0.035 \|\mathbf{v}_1\|_{max}$.

4 0 8 \leftarrow

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) [Selected results](#page-18-0)

Unstable mode corresponding to P1R resonance

2D structure of the unstable mode with $\epsilon = 3.577$. Resonance between a Poincaré mode in the upper layer and a Rossby wave in the lower layer. Perturbation *Re*(*c*) < 0. Isobars of the perturbation in the lower layer (contour interval 0.0005, starting from ± 0.0005 . $\|\mathbf{v}_2\|_{max} \approx 0.0055\|\mathbf{v}_1\|_{max}$.

ぼう メモト

4 D E 4 HP

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) **[Expectations](#page-16-0)** [Selected results](#page-18-0)

Stability diagram: shallow lower layer

Stability diagram for the same background flow with the depth ratio $r = 2$ and the topography parameter $\alpha_0 = 1.4$.

4 0 8 4 @ 290

重き ă

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) [Selected results](#page-18-0)

Unstable mode corresponding to P2F resonance

2D structure of the unstable mode with $\epsilon = 3.885$. Resonance between a Poincaré mode in the lower layer and a frontal wave in the upper layer. Perturbation with $Re(c) < 0$. Isobars of the perturbation in the lower layer (contour interval 0.01, starting from ± 0.01 . $\|\mathbf{v}_2\|_{max} \approx 0.27 \|\mathbf{v}_1\|_{max}$.

4 0 8 \leftarrow ミト メモト

[Boundary conditions](#page-13-0) [Numerical settings](#page-15-0) **[Expectations](#page-16-0)** [Selected results](#page-18-0)

Example of competing instabilities

Stability diagram for the flat-bottom background flow with $Q = 0.6$, $\rho = 0.5$, and depth ratio $r = 2$. *Bottom:* zoom in the stability diagram. (ロ) (伊) ミメス ミメ E

[Motivation and general setting of the DNS](#page-28-0) [Saturation of competing](#page-31-0) *FF* and *RF* instabilities [Saturation of instabilities in the presence of topography](#page-36-0)

→ 唐 > → 唐 >

∢ □ ▶ к 何 ▶

 $2Q$

Motivations/questions

- how the active lower layer influences the nonlinear evolution of the coupled density fronts established in the framework of equivalent 1-layer model (Scherer & Zeitlin 2008)?
- what are the differences in saturation of (*FF*) instability and of its rival, the (*RF*) instability?
- how the presence of the second density front/absence of the boundary (coast) influences the saturation of the (*RF*) instability observed in the case of the coastal current with similar settings (Gula, Zeitlin & Bouchut2010)?
- how the presence of escarpment beneath the fronts changes the scenarii of saturation?

[Motivation and general setting of the DNS](#page-28-0) [Saturation of competing](#page-31-0) *FF* and *RF* instabilities [Saturation of instabilities in the presence of topography](#page-36-0)

 Ω

Numerical settings

Numerical scheme:

Finite-volume, well balanced, shock-capturing for 2-layer RSW with free upper surface (Bouchut & Zeitlin 2010).

Initialization/resolution:

- \bullet Initialization: basic flow $+$ perturbation of the amplitude \approx 1% of the max thickness of the unperturbed upper layer. Perturbation: an unstable mode.
- Boundary conditions: sponges cross-stream, periodicity downstream.
- Resolution: typically 0.067 R_d , control simulations with double resolution

[Motivation and general setting of the DNS](#page-28-0) [Saturation of competing](#page-31-0) *FF* and *RF* instabilities [Saturation of instabilities in the presence of topography](#page-36-0)

イロメ イ押 メイヨメ イヨメ

 Ω

Caveats of 2-layer model:

- \bullet Strong vertical shears \Rightarrow loss of hyperbolicity (physically: KH instabilities). Numerical scheme copes well with them: strong gradients trigger enhanced numerical dissipation and the scheme cures itself, the non-hyperbolic zones remaining localized and eventually disappearing.
- Rankine-Hugoniot conditions for the model are not complete, extra *ad hoc* hypotheses are needed to determine weak solutions (shocks). Our scheme: layerwise momentumn conservation

[Motivation and general setting of the DNS](#page-28-0) [Saturation of competing](#page-31-0) *FF* and *RF* instabilities [Saturation of instabilities in the presence of topography](#page-36-0)

 Ω

Benchmark: comparison with the results of the linear stability analysis

Comparison of the growth rate of the *FF* instability at the initial stages of the direct numerical simulation initialized with the most unstable mode with the predictions of the linear stability analysis: logarithm of the norm of the cross-stream velocity in the upper layer vs time normalized by the l[ine](#page-30-0)[ar](#page-32-0)[gr](#page-31-0)[o](#page-32-0)[w](#page-30-0)[t](#page-31-0)[h](#page-35-0) [r](#page-36-0)[a](#page-27-0)[t](#page-28-0)[e](#page-39-0)[.](#page-40-0)

[Motivation and general setting of the DNS](#page-28-0) [Saturation of competing](#page-31-0) *FF* and *RF* instabilities [Saturation of instabilities in the presence of topography](#page-36-0)

 2980

Nonlinear evolution of the *FF* instability

Thickness h_1 of the upper layer (*black*). Contour interval 0.2, starting at 0.2. Pressure Π² *(gray)* of the lower layer. Contour interval 0.05, starting at *rH* ± 0.05 (*+/- ano[m](#page-31-0)[aly](#page-33-0)[:](#page-31-0) [s](#page-32-0)[ol](#page-33-0)[i](#page-30-0)[d/](#page-31-0)[d](#page-35-0)[a](#page-36-0)[s](#page-28-0)[h](#page-39-0)[e](#page-40-0)[d](#page-0-0)*[\).](#page-41-0)

[Motivation and general setting of the DNS](#page-28-0) [Saturation of competing](#page-31-0) *FF* and *RF* instabilities [Saturation of instabilities in the presence of topography](#page-36-0)

 290

Energy balance of saturating *FF* instability

Left: Normalized deviation of the total *(solid)*, kinetic *(black dashed)* and potential *(gray dashed)* energy from initial values. *Right:* Normalized deviations of the kinetic ρ*ihi*/2**vⁱ** 2 *(solid)* and potential ρ*igh*² *i* /2 *(dashed)* of layers 1 *(black)* and 2 *(gray)*. Exchange $\rho_1 g h_1 h_2$ $\rho_1 g h_1 h_2$ $\rho_1 g h_1 h_2$ *(solid dotted[\)](#page-31-0)* [a](#page-34-0)[n](#page-36-0)d total *[\(d](#page-32-0)[ark](#page-34-0) [gr](#page-33-0)a[y](#page-30-0))* [e](#page-35-0)n[er](#page-28-0)g[i](#page-40-0)[es](#page-0-0)[.](#page-41-0)

[Motivation and general setting of the DNS](#page-28-0) [Saturation of competing](#page-31-0) *FF* and *RF* instabilities [Saturation of instabilities in the presence of topography](#page-36-0)

 290

Nonlinear evolution of the *RF* instability

Thickness h_1 of the upper layer (*black*). Contour interval 0.2, starting at ±0.2. Pressure Π² *(gray)* of the lower layer. Contour interval 0.05, starting at *rH* ± 0.05 (*+/- ano[m](#page-33-0)[aly](#page-35-0)[:](#page-33-0) [s](#page-34-0)[ol](#page-35-0)[i](#page-30-0)[d/](#page-31-0)[d](#page-35-0)[a](#page-36-0)[s](#page-28-0)[h](#page-39-0)[e](#page-40-0)[d](#page-0-0)*[\).](#page-41-0)

[Motivation and general setting of the DNS](#page-28-0) [Saturation of competing](#page-31-0) *FF* and *RF* instabilities [Saturation of instabilities in the presence of topography](#page-36-0)

 290

ă

Energy balance of saturating *RF* instability

Left: Normalized deviation of the total energies from their initial values.

Right: Evolution of different energy components.

(ロ) (伊)

メミメメ ヨメ

[Motivation and general setting of the DNS](#page-28-0) [Saturation of competing](#page-31-0) *FF* and *RF* instabilities [Saturation of instabilities in the presence of topography](#page-36-0)

 290

Saturation of FF instability over escarpment

Thickness h_1 of the upper layer (*black*). Contour interval 0.2, starting at ±0.2. Pressure Π² *(gray)* of the lower layer. Contour interv[a](#page-36-0)l 0.015, [s](#page-37-0)tarting at $rH \pm 0.015$ ($+/-$: *[so](#page-35-0)li[d/](#page-37-0)[d](#page-39-0)as[h](#page-35-0)[e](#page-36-0)d*[\).](#page-40-0)

[Motivation and general setting of the DNS](#page-28-0) [Saturation of competing](#page-31-0) *FF* and *RF* instabilities [Saturation of instabilities in the presence of topography](#page-36-0)

 290

Saturation of *RF* instability with topography

Nonlinear evolution of the *RF* instability over escarpment. Thickness h_1 of the upper layer (*black*). Contour interval 0.2, starting from 0.2. Pressure Π² *(gray)* of the lower layer. Contour interval 0.01, starting at $rH \pm 0.01$ (positive/negative pressure anomaly: *solid/dashed*). K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

[Motivation and general setting of the DNS](#page-28-0) [Saturation of competing](#page-31-0) *FF* and *RF* instabilities [Saturation of instabilities in the presence of topography](#page-36-0)

 290

Nonlinear development of the *TF* instability

Thickness h_1 of the upper layer (*black*). Contour interval 0.2, starting at 0.2. Pressure Π² *(gray)* of the lower layer. Contour interv[a](#page-35-0)l 0.005, [s](#page-36-0)tarting at $rH = \pm 0.005$ $rH = \pm 0.005$ $rH = \pm 0.005$ ($\pm/-$ [:](#page-37-0) [so](#page-39-0)[li](#page-37-0)[d/](#page-38-0)[d](#page-27-0)as[h](#page-39-0)[e](#page-40-0)d[\)](#page-28-0).

[Motivation and general setting of the DNS](#page-28-0) [Saturation of competing](#page-31-0) *FF* and *RF* instabilities [Saturation of instabilities in the presence of topography](#page-36-0)

 $A\cong \mathbb{R} \rightarrow A \cong \mathbb{R}$

(ロ) (伊)

 290

ă

Energy balance of *TF* instability

Energy balance of the developing *TF* instability: extremely small dissipation.

Linear stability analysis:

- Leading long-wave barotropic *FF* instability dominant for deep lower layers, may be overcome by the baroclinic *RF* instability when the depth of the lower layer decreases, including asymmetric decrease in depth due to topography. Topography renders the *FF* instability propagative.
- Specific long-wave topographic *TF* instability arises. In the configuration with centered escarpment it is never dominant.
- For shallow (partially shallow due to topography) lower layers short-wave Kelvin-Helmholtz type instabilities become dominant.

イロメ イ押 メイヨメ イヨメ

Nonlinear saturation of long-wave instabilities:

- *FF* instability over the flat bottom saturates by reorganizing the flow in a system of co-rotating ellipsoidal quasi-barotropic vortices, the rodons.
- *FF* instability over escarpment saturates by reorganizing the flow into two rows of quasi-circular quasi-barotropic vortices on both sides of the escarpment.
- *RF* instability saturates by forming transient upper-layer monopolar and lower-layer dipolar vortices which, after a stage of a sideward motion reorganize themselves in a secondary mean current, shifted with respect to the initial one and experiencing subsequent secondary instabilities.
- *TF* instability saturates forming a steady finite-amplitude nonlinear hybrid fronto-topographic w[ave](#page-40-0)

 Ω