Feedback of zonal flows on Rossby-wave turbulence driven by small scale instability

Colm Connaughton

Mathematics Institute and Centre for Complexity Science University of Warwick, UK

Collaborators: B. Nadiga (LANL), S. Nazarenko (Warwick), B. Quinn (Warwick/University College Dublin).

Workshop on Wave Interactions and Turbulence Fields Institute 23 May 2013

NARWICK

イロト イポト イヨト イヨト

Coexistence of large scale coherent structures and small scale turbulence in geophysical flows

Zonal turbulence on Jupiter (NASA)

Eddy-resolving simulation of Earths oceans (Earth Simulator Center/JAMSTEC).

WARWICK

Colm Connaughton: http://www.slideshare.net/connaughtonc

EPL 96, 25001 (2011)

Zonal Flows and turbulence in magnetised plasmas

ITER

Plasma turbulence (L. Villard)

イロト イポト イヨト イヨ

NARWICK

Colm Connaughton: http://www.slideshare.net/connaughtonc

EPL 96, 25001 (2011)

Introduction: Rossby wave turbulence

2 Generation of large scales by modulational instability

Feedback of large scales on small scales

2 Generation of large scales by modulational instability

Feedback of large scales on small scales

Charney-Hasegawa-Mima equation driven by small scale "instability"

$$(\partial_t - \mathcal{L}) \left(\Delta \psi - F \psi \right) + \beta \, \partial_x \psi + J[\psi, \Delta \psi] = \mathbf{0}.$$

Operator \mathcal{L} has Fourier-space representation

$$\mathcal{L}_{\mathbf{k}} = \gamma_{\mathbf{k}} - \nu k^{2m}$$

which mimics a small scale instability (and hyperviscosity).

- $\gamma_{\mathbf{k}}$ peaked around $(k_f, 0)$.
- Choose $k_f^2 \sim F$.
- Forcing excites meridionally propagating Rossby waves with wavelength comparable to deformation radius.

Large scale – small scale feedback loop

Initialise vorticity field with white noise of very low amplitude. What are the dynamics? The following scenario was proposed by Zakharov and coworkers (1990's):

- Waves having $\gamma_{\mathbf{k}} > 0$ initially grow exponentially.
- When amplitudes get large enough, nonlinearity initiates cascades.
- Inverse cascade transfers energy to large scales leading to zonal jets.

イロト イポト イヨト イヨト

 Jets shear small scale waves generating negative feedback. "Switches off" the forcing.

This talk: is this what really happens?

Weak and strong turbulence regimes

Nonlinearity measured by dimensionless amplitude:

$$M = \frac{\Psi_0 k^3}{\beta}$$

where k typical scale, Ψ_0 is typical amplitude. Two limits:

- $M \gg 1$: Euler limit.
- $M \ll 1$: Wave turbulence limit.

Wave turbulence limit is analytically tractable:

- Evolution of turbulence spectrum described by a closed kinetic equation.
- Kinetic equation has exact stationary solutions describing cascades.

< 口 > < 同 > < 臣 > < 臣 >

Wave turbulence kinetic equation

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = 4\pi \int \left| V_{\mathbf{q}\,\mathbf{r}}^{\mathbf{k}} \right|^{2} \delta(\mathbf{k} - \mathbf{q} - \mathbf{r}) \delta(\omega_{\mathbf{k}} - \omega_{\mathbf{q}} - \omega_{\mathbf{r}}) \times [n_{\mathbf{q}}n_{\mathbf{r}} - n_{\mathbf{k}}n_{\mathbf{q}}\operatorname{sgn}(\omega_{\mathbf{k}}\omega_{\mathbf{r}}) - n_{\mathbf{k}}n_{\mathbf{r}}\operatorname{sgn}(\omega_{\mathbf{k}}\omega_{\mathbf{q}})] d\mathbf{q}d\mathbf{r} + \gamma_{\mathbf{k}}n_{\mathbf{k}}.$$

where

$$\omega_{\mathbf{k}} = -\frac{\beta \, k_x}{k^2 + F}$$
$$V_{\mathbf{q}\,\mathbf{r}}^{\mathbf{k}} = \frac{i}{2} \sqrt{\beta \, |k_x q_x r_x|} \left(\frac{q_y}{q^2 + F} + \frac{r_y}{r^2 + F} - \frac{k_y}{k^2 + F} \right).$$

WARWICK

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Problem: stationary Kolmogorov solution describing the inverse cascade is non-local.

2 Generation of large scales by modulational instability

Feedback of large scales on small scales

Modulational instability of Rossby waves

Small scale Rossby waves are unstable to large scale modulations (Lorenz 1972, Gill 1973)

 In wave turbulence limit, *M* ≪ 1, unstable perturbations concentrate on resonant manifold:

> $\mathbf{p} = \mathbf{q} + \mathbf{r}$ $\omega(\mathbf{p}) = \omega(\mathbf{q}) + \omega(\mathbf{p}_{-}).$

• Perturbations with fastest growth rate become close to zonal for $M \ll 1$.

Linear stage of modulational instability

Zonal velocity profile:

Growth of $|\psi_{\mathbf{q}}|^2$ compared to predictions of linear stability.

$$U_Z(y) = \frac{1}{2\pi} \int_0^{2\pi} v_x(x, y) \, dx$$

→ E → < E →</p>

EPL 96, 25001 (2011)

Generation of jets by modulational instability

t=12

t=18

Colm Connaughton: http://www.slideshare.net/connaughtonc

EPL 96, 25001 (2011)

Outline

2 Generation of large scales by modulational instability

Feedback of large scales on small scales

Distortion of small scales by large scales in weakly nonlinear regime

Modulational instability generates large scales directly from small scale waves (non-locality).

Subsequent evolution of the small scales can be described by a nonlocal turbulence theory:

- Assume major main contribution to collision integral for small scales comes from modes **q** having *q* ≪ *k* (scale separation).
- Taylor expand in **q**. Leading order equation for small scales is an anisotropic diffusion equation in **k**-space:

$$\frac{\partial n_{\mathbf{k}}}{\partial t} = \frac{\partial}{\partial k_i} S_{ij}(k_1, k_2) \frac{\partial n_{\mathbf{k}}}{\partial k_j}.$$

 Diffusion tensor, S_{ij}, depends on structure of the large scales: more intense zonal flows give faster diffusion.

More on the spectral diffusion approximation

- Diffusion tensor, *S_{ij}* turns out to be *degenerate*
- A change of variables shows that diffusion is along 1-d curves:

$$\Omega = \frac{\beta \, k^2 \, k_x}{k^2 + F} = const$$

- *Wave-action*, *n*_k, of a small scale wavepackets is conserved by this motion.
- Energy, ω_k n_k, of small scale wavepackets is not conserved.

Numerical view of spectral transport

Wave-action diffuses along the Ω curves from the forcing region until it is dissipated at large wave-numbers.

Mechanism for saturation of the large scales

- Energy lost by the small scales is transferred to the large scale zonal flows which grow more intense.
- More intense large scales results in a larger diffusion coefficient.
- Increases the rate of dissipation of the small scale wave-action → negative feedback.

Prediction:

Growth of the large scales should suppress the small scale instability which turns off the energy source for the large scales leading to a saturation of the large scales *without large scale dissipation*.

WARWICK

イロト イポト イヨト イヨト

Numerical observations of feedback loop

- Feedback loop is very evident in weakly nonlinear regime.
- Scaling arguments allow one to predict the saturation level of the large scales in terms of the small scale growth rate:

 $[U(\nabla U)]_{\rm LS} \sim \gamma \beta \quad M \ll 1$

 $[U(\nabla U)]_{\rm LS} \sim \gamma U \quad M \gg 1$

イロト イ理ト イヨト イヨト

ARWICK

These estimates are reasonably supported by numerics especially the cross-over from the weak to strong turbulence regimes (see inset).

Conclusions

- The CHM equation driven by "instability" forcing behaves differently than one might expect.
- There is no inverse cascade but rather direct generation of large scales by modulational instability (this could change with broadband forcing).
- Evolution of subsequent turbulence is non-local in scale and partially tractable analytically in the wave turbulence limit.
- A negative feedback loop is set up whereby the growth of the small scales is suppressed by the large scales leading to a saturation of the large scales without any large scale dissipation mechanism.

RWICK

<ロト <問 > < 臣 > < 臣 >

References

- S. Nazarenko and B. Quinn, *Triple Cascade Behavior in Quasigeostrophic and Drift Turbulence and Generation of Zonal Jets*, Phys. Rev. Lett. 103, 118501 (2009)
- C. Connaughton, B. Nadiga, S. Nazarenko and B. Quinn, Modulational instability of Rossby and drift waves and generation of zonal jets, J. Fluid Mech. 654, 207-231 (2010)
- C. Connaughton, S. Nazarenko and B. Quinn, *The life-cycle of drift-wave turbulence driven by small scale instability*, EPL 96, 25001 (2011)
- C. Connaughton, S. Nazarenko and B. Quinn, Nonlocal wave turbulence in the Charney-Hasegawa-Mima equation: a short review, arXiv:nlin.CD:1012.2714 (2010)

< □ > < 同 > < 三 > <