Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

ummary

Modeling Large-Scale Atmospheric and Oceanic Flows 1

V. Zeitlin

¹Laboratoire de Météorologie Dynamique, Univ. P. and M. Curie, Paris

Mathematics of the Oceans, Fields Institute, Toronto, 2013

Plan Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging Summary

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

GFD seen from space

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models Vertical averaging of PE

ot PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Hydrodynamics in all its complexity plus :

- Rotating frame
- Thermal effects, stratification
- Spherical geometry (large and medium scales)
- Complex domains (coasts, topography/bathymetry)
- Multi-phase fluid (water vapor, ice)

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Scales :

- Large : planetary 10⁴ km
- Medium : atmosphere synoptic, 10³ km; ocean meso-scle 10 - 10² km
- Small : atmosphere meso-scale 1 10 km; ocean sub-mesoscale 1 km
- Very small : meters

Our interest : modeling medium and large scales.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Dynamical actors : vortices, atmosphere

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

veraged models Vertical averaging

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Atmospheric vortices for real

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Dynamical actors : vortices, ocean

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Dynamical actors : waves, atmosphere

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Dynamical actors : waves, ocean

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Work plan

We will :

- Remind the fundamentals
- Construct an hierarchy of models of decreasing complexity by
 - 1. vertically averaging and geting Rotating Shallow Water models
 - 2. filtering fast wave motions and geting Quasi-Geostrophic models
- Review their basic properties

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Governing equations for fluid envelopes of the Earth :

- Mechanical system \Rightarrow local conservation of momentum
- ► Continuous media ⇒ local conservation of mass
- ► Thermodynamical system ⇒ equation of state

Main difficulty - nonlinearity

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid

Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Example of essentially nonlinear process : wave-breaking

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid

Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Governing equations :

Eulerian description of the perfect fluid in terms of velocity, density and pressure fields : $\vec{v}(\vec{x}, t)$, $\rho(\vec{x}, t)$, $P(\vec{x}, t)$.

Equations of motion

Newton's second law :

$$\rho\left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v}\right) = -\vec{\nabla}P + \vec{F},$$

F - external forces.

Continuity equation :

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0.$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid

Molecular dissipation

Primitive equations

(1)

(2)

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Closure

Equation of state

• General equation of state (1-phase system) :

 $P = P(\rho, s),$

- s mass density of entropy.
- Barotropic fluid :

$$P = P(\rho) \leftrightarrow s = \text{const},$$

Baroclinic fluid : :

$$P = P(\rho, s), \Rightarrow$$

equation for s neccessary. Perfect fluid :

$$rac{\partial s}{\partial t} + ec{v} \cdot ec{
abla} s = 0.$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

(3)

(4)

(5)

(6)

Crash course in fluid dynamics

Reminder : perfect fluid

Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Euler - Lagrange duality

Duality : $\vec{x} \leftrightarrow \vec{X}$, $\vec{X}(\vec{x}, t)$ - positions of fluid parcels. Lagrangian derivative :

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v}$$

Newton's equations :

$$ho(ec{X},t)rac{d^2ec{X}}{dt^2}=-ec{
abla} P(ec{X},t)+ec{F}.$$

Continuity equation :

$$\rho_i(x)d^3\vec{x} = \rho(\vec{X},t)d^3\vec{X}, \leftrightarrow \rho_i(x) = \rho(\vec{X},t)\mathcal{J}$$
(9)

where ρ_i - initial distribution of density, $\mathcal{J} = \frac{\partial(X,Y,Z)}{\partial(x,y,z)}$ Jacobi determinant (Jacobian). Fluid velocity : $\vec{v}(\vec{X},t) = \frac{d\vec{X}}{dt} \equiv \dot{\vec{X}}$.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid

(7)

(8)

Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models Vertical averaging

of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Particular case of barotropic fluid - incompressible fluid :

Volume conservation :

$$\mathcal{J} = \mathbf{1} \leftrightarrow \vec{\nabla} \cdot \vec{\mathbf{v}} = \mathbf{0} \Rightarrow .$$

pressure no more independent variable.

1. If, in addition, $\rho = const$:

$$ec{
abla} \cdot \left(ec{
ell} \cdot ec{
abla} ec{
ell}
ight) = -rac{1}{
ho} ec{
abla}^2 extsf{P}.$$

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \vec{v} \cdot \vec{\nabla}\rho = 0.$$

 \sim

and

$$\vec{\nabla} \cdot \left(\vec{v} \cdot \vec{\nabla} \vec{v} \right) = -\vec{\nabla} \cdot \left(\frac{\vec{\nabla} P}{\rho} \right).$$
(13)

Large-Scale Flows 1. Models.

Introduction

Review Workflow

(10)

(11)

(12)

Crash course in fluid dynamics

Reminder : perfect fluid

Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Energy and thermodynamics 1st principle, one-phase system

$$\delta \epsilon = T \delta s - P \delta v,$$

 ϵ - internal energy , $\textit{v}=\frac{1}{\rho}$ Enthalpy per unit mass $\textit{h}=\epsilon+\textit{Pv}$:

$$\delta h = T \delta s + v \delta P$$

Energy density of the fluid :

$$e = \frac{\rho \vec{v}^2}{2} + \rho \epsilon.$$

Local conservation of energy :

$$\frac{\partial e}{\partial t} + \vec{\nabla} \cdot \left[\rho \vec{v} \left(\frac{\vec{v}^2}{2} + h \right) \right] = 0.$$
 (17)

Large-Scale Flows 1. Models.

Introduction

Review Workflow

(14)

(15)

(16)

Crash course in fluid dynamics

Reminder : perfect fluid

Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Verticall

averaged models Vertical averaging

vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Dissipation : molecular fluxes

Dissipation : correction of macroscopic fluxes of

- momentum
- mass
- internal energy (heat)

with corresponding molecular fluxes calculated from relations flux - gradient :

$$\vec{f}_A = -k_A \vec{\nabla} A, \tag{19}$$

A - a thermodynamical variable, \vec{f}_A - corresponding molecular flux .

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid

Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models Vertical averaging of PE Vortices and

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

"Corrected" equations

Viscosity, incompressible case (Navier -Stokes equation

$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v} = -\frac{\vec{\nabla} P}{\rho} + \nu \vec{\nabla}^2 \vec{v}, \ \vec{\nabla} \cdot \vec{v} = 0.$$
(20)

Diffusivity : continuity equation

$$rac{\partial
ho}{\partial t} + ec
abla \cdot (
ho ec v) = D ec
abla^2
ho.$$

Thermoconductivity : heat/temperature equation

$$\frac{\partial T}{\partial t} + \vec{v} \cdot \vec{\nabla} T = \chi \vec{\nabla}^2 T.$$
(22)

Non-dimensional numbers Reynolds : $Re = UL/\nu$, U, L - scales of the flow. Peclet : $\nu \rightarrow D$ or χ .

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid

Molecular dissipation

Primitive equations

(21)

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models Vertical averaging

of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Euler equations in the rotating frame + gravity :

Coriolis force :

$$rac{\partial ec{v}}{\partial t} + ec{v} \cdot ec{
abla} ec{v} + 2ec{\Omega} \wedge ec{v} - ec{g}^* = -rac{ec{
abla} P}{
ho}$$

Effective gravity :

$$ec{g}^* = ec{g} + mec{\Omega} \wedge \left(ec{\Omega} \wedge ec{r}
ight)$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

(23)

(24)

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive"

equations (PE)

Vertically averaged models Vertical averaging of PE Vortices and

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

ummary

_

Spherical coordinates

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive"

equations (PE)

Vertically averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

ummary

.

Euler and continuity equations

$$\frac{dv_r}{dt} - \frac{v_\lambda^2 + v_\phi^2}{r} - 2\Omega \cos \phi v_\lambda + g^* = -\frac{1}{\rho} \partial_r P,$$

$$\frac{dv_\lambda}{dt} + \frac{v_r v_\lambda - v_\phi v_\lambda \tan \phi}{r} + 2\Omega \left(-\sin \phi v_\phi + \cos \phi v_r \right)$$

$$= -\frac{1}{\rho r} \partial_\lambda P,$$

$$\frac{dv_\phi}{dt} + \frac{v_r v_\phi + v_\lambda^2 \tan \phi}{r} + 2\Omega \sin \phi v_\lambda = -\frac{1}{\rho r \sin \theta} \partial_\phi P,$$

$$\frac{d\rho}{dt} + \rho \left[\frac{1}{r^2} \frac{\partial (r^2 v_r)}{\partial r} + \frac{1}{r \cos \phi} \left(\frac{\partial (\cos \phi v_\phi)}{\partial \phi} + \frac{\partial v_\lambda}{\partial \lambda} \right) \right],$$

$$\frac{d}{dt} = \frac{\partial}{\partial t} + v_r \partial_r + \frac{v_\theta}{r} \partial_\theta + \frac{v_\phi}{r \sin \theta} \partial_\phi$$
Fraditional approxuments of each part is ρ .

Iraditional approx. : green + red \rightarrow out, $r \rightarrow \kappa =$ const Non-traditional approx : green \rightarrow out.

Large-Scale Flows 1. Models.

Review Workflow

Reminder : perfect fluid Molecular dissipation

•

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive"

equations (PE)

Vertical averaging of PE Vortices and

waves

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Tangent plane approximation

$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v} + f\hat{z} \wedge \vec{v} + \vec{g} = -\frac{\vec{\nabla}P}{\rho}$$

f - plane : *f* = const ; β - plane : *f* = *f* + β *y* ; *f* - Coriolis parameter : *f* = 2 Ω sin ϕ

_ _ _ _

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive"

equations (PE)

Vertically averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Ocean : observations

Typical density profile :

$$\rho(\vec{x},t) = \rho_0 + \rho_s(z) + \sigma(x,y,z;t), \quad \rho_0 \gg \rho_s \gg \sigma.$$

Mesoscale motions close to hydrostatics :

$$g\rho + \partial_z P = 0, \Rightarrow P = P_0 + P_s(z) + \pi(x, y, z; t),$$

• Water \approx incompressible

$$\vec{\nabla} \cdot \vec{v} = 0$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane

"Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

ummary

Equations of motion :

$$\frac{\partial \vec{v}_h}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v}_h + f \hat{z} \wedge \vec{v}_h = -\vec{\nabla}_h \phi,$$

 $\vec{v} = \vec{v}_h + \hat{z}w$, $\phi = \frac{\pi}{
ho_0}$ - geopotential.

$$\partial_t \rho + \vec{v} \cdot \vec{\nabla} \rho = 0, \quad \vec{\nabla} \cdot \vec{v} = 0.$$

Boundary conditions (no dissipation) : Rigid lid/flat bottom :

$$w|_{z=0} = w|_{z=H} = 0$$
 (27)

Non-trivial bathymetry : $w|_{z=b} = \frac{db}{dt}$ Forcing/dissipation : external forces, viscosity - in (25); mass sources/sinks, diffusivity - in (26)

Large-Scale Flows 1. Models.

Introduction

Review Workflow

(25)

(26)

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane

"Primitive" equations (PE)

/ertically

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Atmosphere : Observations

- Mean pressure monotonic with height,
- Synoptic motions close to hydrostatics,
- Vertical velocities small
- Potential temperature θ = e^s mostly advected (dry situation)

Pressure as vertical coordinate + hydrostatics \Rightarrow

- ► r.h.s. of the horizontal momentum eqns → gradient of geopotential
- velocity incompressible $\vec{\nabla} \cdot \vec{v} = 0$

Additional change of vert. coord. ("pseudo-height") + smallness of the vertical velocity \rightarrow hydrostatic relation standard, up to a sign.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane

"Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Equations of motion

In the absence of forcing/dissipation :

~ -

$$\frac{\partial \vec{v}_h}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v}_h + f \hat{z} \wedge \vec{v}_h = -\vec{\nabla}_h \phi, \qquad (28)$$

$$-g\frac{\theta}{\theta_0} + \frac{\partial\phi}{\partial\bar{z}} = 0, \qquad (29)$$

$$\frac{\partial \theta}{\partial t} + \vec{v} \cdot \vec{\nabla} \theta = 0; \quad \vec{\nabla} \cdot \vec{v} = 0.$$
 (30)

Identical to oceanic primitive equations with $\sigma \rightarrow -\theta$. Forcing/dissipation : external forces + viscosity in (28), thermal sources + thermoconductivity in (30)

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane

"Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Conservative form and verical averaging Equations of horizontal motion

$$\partial_{t}(\rho u) + \partial_{x}(\rho u^{2}) + \partial_{y}(\rho v u) + \partial_{z}(\rho w u) - f\rho v = -\partial_{x}p, \quad (31)$$
$$\partial_{t}(\rho v) + \partial_{x}(\rho u v) + \partial_{y}(\rho v^{2}) + \partial_{z}(\rho w v) + f\rho u = -\partial_{y}p, \quad (32)$$

Integration between two material surfaces $z_{1,2}$. By definition :

$$w|_{z_i} = \frac{dz_i}{dt} = \partial_t z_i + u \partial_x z_i + v \partial_y z_i, \quad i = 1, 2.$$
(33)

Leibnitz formula :

.

$$\int_{z_1}^{z_2} dz \partial_x F = \partial_x \int_{z_1}^{z_2} dz F - \partial_x z_2 F|_{z_2} + \partial_x z_1 F|_{z_1} \quad (34)$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged model

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Motion of material surfaces

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Integrated momentum equations

Using (33), (34) we get :

$$\partial_t \int_{z_1}^{z_2} dz \rho u + \partial_x \int_{z_1}^{z_2} dz \rho u^2 + \partial_y \int_{z_1}^{z_2} dz \rho u v$$

-
$$f \int_{z_1}^{z_2} dz \rho v = -\partial_x \int_{z_1}^{z_2} dz \rho - \partial_x z_1 \rho|_{z_1} + \partial_x z_2 \rho|_{z_2}.$$

$$\partial_t \int_{z_1}^{z_2} dz \rho v + \partial_x \int_{z_1}^{z_2} dz \rho u v + \partial_y \int_{z_1}^{z_2} dz \rho v^2$$

+
$$f \int_{z_1}^{z_2} dz \rho u = -\partial_y \int_{z_1}^{z_2} dz \rho - \partial_y z_1 \rho|_{z_1} + \partial_y z_2 \rho|_{z_2}.$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

ummary

Integrated continuity equation :

$$\partial_t \int_{z_1}^{z_2} dz \rho + \partial_x \int_{z_1}^{z_2} dz \rho u + \partial_y \int_{z_1}^{z_2} dz \rho v = 0.$$
 (35)

Integrated density + hydrostatics :

$$\mu = \int_{z_1}^{z_2} dz \rho = -\frac{1}{g} \left(\left. p \right|_{z_2} - \left. p \right|_{z_1} \right), \tag{36}$$

Introducing density-weighted vertical average :

$$\langle F \rangle = \frac{1}{\mu} \int_{z_1}^{z_2} dz \rho F.$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Summary

(37

Equations for the averages :

$$\partial_{t} (\mu \langle u \rangle) + \partial_{x} (\mu \langle u^{2} \rangle) + \partial_{y} (\mu \langle uv \rangle) - f \mu \langle v \rangle = - \partial_{x} \int_{z_{1}}^{z_{2}} dzp - \partial_{x} z_{1} p|_{z_{1}} + \partial_{x} z_{2} p|_{z_{2}}, (38)$$

$$\partial_{t} (\mu \langle \mathbf{v} \rangle) + \partial_{x} (\mu \langle \mathbf{u} \mathbf{v} \rangle) + \partial_{y} (\mu \langle \mathbf{v}^{2} \rangle) + f \mu \langle \mathbf{u} \rangle = - \partial_{y} \int_{z_{1}}^{z_{2}} dz p - \partial_{y} z_{1} p|_{z_{1}} + \partial_{y} z_{2} p|_{z_{2}},$$
(39)

$$\partial_t \mu + \partial_x \left(\mu \langle u \rangle \right) + \partial_y \left(\mu \langle v \rangle \right) = 0.$$
 (40)

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged model

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

ummary

Pressure and mean-field approximation

Expression for pressure

Pressure inside the layer (z_1, z_2) in terms of pressure at the lower surface and position :

$$p(x, y, z, t) = -g \int_{z_1}^{z} dz' \rho(x, y, z', t) + \left. \rho \right|_{z_1}.$$
 (41)

Closure hypothesis :

Weak variations in the vertical (columnar motion), correlations decoupled :

$$\langle uv \rangle \approx \langle u \rangle \langle v \rangle, \ \langle u^2 \rangle \approx \langle u \rangle \langle u \rangle, \ \langle v^2 \rangle \approx \langle v \rangle \langle v \rangle.$$
 (42)

Remark : corrections may be intruduced via turbulent viscosity/diffusivity.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Mean density and pressure

Mean density

$$\bar{\rho} = \frac{1}{(z_2 - z_1)} \int_{z_1}^{z_2} dz \rho, \quad \mu = \bar{\rho}(z_2 - z_1).$$
 (43)

Pressure in terms of $\bar{\rho}$:

$$p(x, y, z, t) \approx -g \bar{\rho}(z - z_1) + p|_{z_1}.$$
 (44)

Hypothesis : $\bar{\rho} = const \ (\bar{\rho}(x, y, t) \text{ also possible} \rightarrow \text{Ripa's equations}).$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

ummary

Master equations

For any pair of material surfaces : Momentum :

$$\bar{\rho}(z_2 - z_1)(\partial_t \langle \mathbf{v}_h \rangle + \langle \mathbf{v}_h \rangle \cdot \nabla_h \langle \mathbf{v}_h \rangle + f \hat{\mathbf{z}} \wedge \langle \mathbf{v}_h \rangle) = - \nabla_h \left(-g \bar{\rho} \frac{(z_2 - z_1)^2}{2} + (z_2 - z_1) \rho|_{z_1} \right) - \nabla_h z_1 \rho|_{z_1} + \nabla_h z_2 \rho|_{z_2}.$$

$$(45)$$

Mass :

$$(z_2-z_1)_t+
abla_h\cdot ((z_2-z_1)\langle \mathbf{v}_h
angle)=0.$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged model

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

ummary

(46)
Multi-layer Rotating Shallow Water models Workflow

- Choose N material surfaces $z_1, z_2, ..., z_N$
- ► Write down the master equations for each layer (z_{i+1}, z_i), i = 1, 2, N 1
- Apply appropriate boundary conditions at $z_{1,N}$
- Require continuity of pressure across each interface

Generalizations

- ► Non-constant $\bar{\rho} = \bar{\rho}(x, y, t) \Rightarrow$ advection of $\bar{\rho}$ + additional term in the pressure gradient
- Deviations from the mean-field and/or molecular dissipation/diffusion \Rightarrow terms $\propto \nabla_h^2 \mathbf{v}_h$, $\nabla_h^2 (z_{i+1} z_i)$ in the momentum and mass equations
- Additional fluxes across the interfaces (convection, exchanges with boundary layers) : to be added while expressing w_i in terms of dz_i/dt.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Example : rotating shallow water (RSW), 2 layers

Configuration 2 layers, rigid lid

Application of equations (45) to the fluid between the flat bottom $z_1 = 0$ and the lid $z_3 = H$. Choose a material surface $z = z_2(x, y, t) \equiv h(x, y, t)$ inside the fluid, $\vec{\nabla}_h \rightarrow \vec{\nabla}, \ \vec{v}_h \rightarrow \mathbf{v}$. Vertical boundaries - material surfaces . Generalization to non-trivial topography : $z_1 \rightarrow b(x, y)$.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Equations of motion

 $\mathbf{v}_{1(2)},\bar{\rho}_{1(2)}$ - velosity and density in the lower (upper) layer.

$$\partial_t \mathbf{v}_2 + \mathbf{v}_2 \cdot \nabla \mathbf{v}_2 + f \hat{\mathbf{z}} \wedge \mathbf{v}_2 = -\frac{1}{\bar{\rho}_2} \nabla \left. \boldsymbol{\rho} \right|_H$$
 (47)

$$\partial_{t} \mathbf{v}_{1} + \mathbf{v}_{1} \cdot \nabla \mathbf{v}_{1} + f \hat{\mathbf{z}} \wedge \mathbf{v}_{1} = -\frac{1}{\bar{\rho}_{1}} \nabla \left. \boldsymbol{\rho} \right|_{H} - g \frac{\bar{\rho}_{1} - \bar{\rho}_{2}}{\bar{\rho}_{1}} \nabla h,$$
(48)
$$\partial_{t} h + \nabla \cdot \left(\mathbf{v}_{1} h \right) = 0,$$
(49)

$$\partial_t (H-h) + \nabla \cdot (\mathbf{v}_2 (H-h)) = 0,$$
 (50)

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

ummary

Classical one-layer RSW model 2-layer RSW in the limit $\bar{\rho}_2 \rightarrow 0 \Rightarrow$

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + f \hat{\mathbf{z}} \wedge \mathbf{v} + g \nabla h = 0, \qquad (51)$$
$$\partial_t h + \nabla \cdot (\mathbf{v}h) = 0 \Rightarrow \qquad (52)$$

Motion of fluid columns :

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Conservation laws - RSW model

Energy

By construction, equations (51), (52) express the local momentum and mass conservation. Energy density :

$$\mathsf{e} = h rac{\mathbf{v}^2}{2} + g rac{h^2}{2}$$

obeys the conservation law :

$$\partial_t e + \nabla \cdot \left(\mathbf{v} h \left(\frac{\mathbf{v}^2}{2} + g h \right) \right) = 0,$$
 (54)

and total energy, $E = \int dx dy e$, is constant for isolated system.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

(53)

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

ummary

Potential vorticity - RSW model

Specific Lagrangian conservation law : of potential vorticity q (PV), which is built from relative vorticity $\zeta = v_x - u_y$, Coriolis parameter f, and the fluid depth h.

$$q = \frac{\zeta + f}{h}.$$
 (55)

Here $\zeta + f$ -absolute vorticity, f - planetary vorticity.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Lagrangian conservation :

$$rac{dq}{dt} \equiv (\partial_t + \mathbf{v} \cdot
abla) \, q = 0,$$

is obtained by combining equations of vorticity :

.

$$\frac{d(\zeta+f)}{dt}+(\zeta+f)\nabla\cdot\mathbf{v}=0,$$

and continuity

$$\frac{dh}{dt} + h\nabla \cdot \mathbf{v} = 0 : \qquad (58)$$

$$\frac{d}{dt}\frac{\zeta+f}{h} = \frac{1}{h}\frac{d}{dt}(\zeta+f) - \frac{\zeta+f}{h^2}\frac{d}{dt}h = 0,$$
 (59)

Large-Scale Flows 1. Models.

Introduction

Review Workflow

(56)

(57)

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

ummary

Eulerian expression

Conservation of PV is expressed as time - independence of any integral :

$$\int dx dy \ h \mathcal{F}(q), \tag{60}$$

over the domain of the flow, shere \mathcal{F} is arbitrary function.

Qualitative view of the RSW dynamics :

Two-dimensional motion of fluid columns of variable depth, each preserving its potential vorticity.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Spectrum of small perturbations - RSW model

Linearised equations :

Perturbations about the state of rest $\mathbf{v}=\mathbf{0},\ h=H_0=const$ on the f-plane :

$$u_{t} - fv + g\eta_{x} = 0,$$

$$v_{t} + fu + g\eta_{y} = 0,$$

$$\eta_{t} + H_{0}(u_{x} + v_{y}) = 0,$$

Fourier-transform

Solutions - harmonic waves :

$$(u, v, \eta) = (u_0, v_0, \eta_0) e^{i(\omega t - \mathbf{k} \cdot \mathbf{x})}, \qquad (62)$$

with ω , **k** - frequency and wavenumber, respectively. \Rightarrow algebraic system for (u_0, v_0, η_0) .

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

(61)

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Dispersion relation

${\small Solvability\ condition\ :}$

$$\det \begin{pmatrix} i\omega & -f & -igk_{x} \\ f & i\omega & -igk_{y} \\ -iH_{0}k_{x} & -iH_{0}k_{y} & i\omega \end{pmatrix} = 0, \Rightarrow \quad (63)$$
$$\omega \left(\omega^{2} - gH_{0}\mathbf{k}^{2} - f^{2}\right) = 0. \quad (64)$$

Three roots :

- Stationary solutions $\omega = 0$
- Propagative waves with dispersion relation, Inertia-gravity waves :

$$\omega = \sqrt{gH_0\mathbf{k}^2 + f^2} \ge f.$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

ummary

(65)

Preliminary conclusions.

- Two dynamical actors : vortices and waves
- Vortex motions : slow, related to Lagrangian conservation of PV; zero frequency in lineair approximation .
- Wave motions : fast
- Frequencies of waves and vortices are separated by the spectral gap.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models

Vertical averaging of PE

Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

General equations of horizontal motion

$$\frac{\partial \vec{v}_h}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v}_h + f \hat{z} \wedge \vec{v}_h = -\vec{\nabla}_h \Phi.$$
(66)
$$f = f_0 (1 + \beta y), \quad \Phi = \Phi_0 + \phi = g(H_0 + h)$$
(67)

h - geopotential height.

Scaling for vortex motions

- ▶ Velocity $\vec{v}_h = (u, v), \ u, v \sim U, \ w \sim W << U$
- Unique horizontal scaleL,
- Vertical scale $H \ll L$,
- Time-scale : turnover time $T \sim L/U$.

Geostrophic equilibrium :

Equilibrium between the Coriolis and pressure forces :

$$f \hat{\mathsf{z}} \wedge \mathsf{v}_g = -
abla_h \Phi$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

ummary

(68)

Characteristic parameters of horizontal motions

Intrinsic scale : deformation (Rossby) radius :

$$R_d = \frac{\sqrt{gH_0}}{f_0}$$

Non-dimensional parameters :

- Rossby number : $Ro = \frac{U}{f_0 L}$,
- Burger number : $Bu = \frac{R_d^2}{L^2}$,
- Characteristc nonlinearity : λ = ΔH/H₀, where ΔH is a typical value of h,
- Non-dimensional gradient of $f : \tilde{\beta} \sim \beta L$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

(69)

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Non-dimensional RSW quations

$$Ro\left(\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v}\right) + (1 + \tilde{\beta} \mathbf{y}) \hat{\mathbf{z}} \wedge \mathbf{v} = -\frac{\lambda B u}{Ro} \nabla \eta, \qquad (70)$$

$$\lambda \partial_t \eta + \nabla \cdot (\mathbf{v}(1 + \lambda \eta)) = 0.$$
(71)

Examples of dynamical regimes close to geostrophy : $\textit{Ro} \equiv \epsilon \ll 1$

Quasi-geostrophic(QG) : small nonlinearity :

$$\lambda \sim Ro, \Rightarrow Bu \sim 1, \Rightarrow L \sim R_d, \ \tilde{\beta} \sim Ro$$
 (72)

Frontal geostrophic (FG) : strong nonlinearity :

$$\lambda \sim 1, \Rightarrow Bu \sim Ro, \Rightarrow L \gg R_d, \ \tilde{eta} \sim Ro$$
 (73)

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW

2-layer QG model QG dynamics by time averaging

Dearivation of 1-layer QG equations

$$\epsilon \left(\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v}\right) + (1 + \epsilon y) \hat{\mathbf{z}} \wedge \mathbf{v} = -\nabla \eta, \qquad (74)$$

$$\epsilon \partial_t \eta + \nabla \cdot (\mathbf{v}(1 + \epsilon \eta)) = 0. \qquad (75)$$

Asymptotic expansions in Ro :

$$\mathbf{v} = \mathbf{v}^{(0)} + \epsilon \mathbf{v}^{(1)} + \epsilon^2 \mathbf{v}^{(2)} + \dots$$

Order ϵ^0 - geostrophy :

$$u^{(0)} = -\partial_{y}\eta, \quad v^{(0)} = \partial_{x}\eta \quad \Rightarrow \quad \partial_{x}u^{(0)} + \partial_{y}v^{(0)} = 0, \quad (77)$$

$$\frac{d^{(0)}}{dt} \cdots = \partial_{t} \dots + u^{(0)}\partial_{x} \dots + v^{(0)}\partial_{y} \dots \equiv \partial_{t} \dots + \mathcal{J}(\eta, \dots).$$

$$(78)$$

$$\mathcal{J}(A, B) \equiv \partial_{x}A\partial_{y}B - \partial_{y}A\partial_{x}B. \quad (79)$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

(76)

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW

2-layer QG model QG dynamics by time averaging

Order ϵ^1 - quasi-geostrophy :

$$u^{(1)} = -\frac{d^{(0)}}{dt}v^{(0)} - yu^{(0)}, \quad v^{(1)} = \frac{d^{(0)}}{dt}u^{(0)} - yv^{(0)}, \Rightarrow (80)$$

$$\partial_x u^{(1)} + \partial_y v^{(1)} = -\frac{d^{(0)}}{dt} \vec{\nabla}^2 \eta - v^{(0)}, \Rightarrow \qquad (81)$$

$$\frac{d^{(0)}}{dt}\left(\eta - \vec{\nabla}^2 \eta\right) - \partial_x \eta = 0 \leftrightarrow \frac{d^{(0)}}{dt}\left(\eta - \vec{\nabla}^2 \eta - y\right) = 0.$$
(82)

Restituted dimensions

$$rac{d^{(0)}}{dt}\left(rac{f_0^2}{gH_0}\left(rac{gh}{f_0}
ight)-ec
abla^2\left(rac{gh}{f_0}
ight)-f_0(1+eta y)
ight)=0.$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW

2-layer QG model QG dynamics by time averaging

QG equation on the β - and f -planes : β - plane

$$\partial_t \eta - \partial_t \vec{\nabla}^2 \eta - \mathcal{J}(\eta, \vec{\nabla}^2 \eta) - \partial_x \eta = 0.$$
 (83)

Physical meaning : conservation of PV in QG approximation. Formal linearisation :

$$\partial_t \eta - \partial_t \vec{\nabla}^2 \eta - \partial_x \eta = 0, \Rightarrow \tag{84}$$

Waves :
$$\eta \propto \exp^{i(kx+ly-\omega t)} \rightarrow \text{dispersion} : \omega = -\frac{k}{k^2+l^2+1} \rightarrow \text{Rossby waves}.$$

f-plane

$$\partial_t \eta - \vec{\nabla}^2 \partial_t \eta - \mathcal{J}(\eta, \vec{\nabla}^2 \eta) = 0.$$
(85)

 \Leftrightarrow 2D Euler equations for incompressible fluid with streamfunction η and modified streamfunction - vorticity relation : $\zeta = -\eta + \vec{\nabla}^2 \eta$. $R_d \to \infty$ - standard 2D Euler.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW

2-layer QG model QG dynamics by time averaging

Adding dissipation and forcing

Molecular viscosity

Non-dimensional Navier-Stokes : Euler + $\frac{1}{Re}\nabla^2 \vec{v} \Rightarrow$ Vorticity equation : Euler + $\frac{1}{Re}\nabla^2 \zeta$.

Interaction of free QG flow with boundary layer Viscosity \Rightarrow boundary layer. Rotating fluid : Ekman layer. Small Rossby numbers \Leftrightarrow QG regime : vertical velocity on top of the boundary layer : $w(x, y, t) \propto \zeta \Rightarrow$ term $-r\zeta$, r = const in the r.h.s. of the vorticity equation.

Forced-dissipative QG equation :

$$\frac{d_{QG}\zeta}{dt} = -r\zeta + \frac{1}{Re}\nabla^2\zeta + F,$$
(86)

where $\frac{d_{QG\zeta}}{dt} \cdots = \partial_t \cdots + \mathcal{J}(\eta, \dots)$ - QG advection, $\zeta = -\frac{1}{R_d^2} \eta + \vec{\nabla}^2 \eta + \beta y$ in dimensionful terms.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW

2-layer QG model QG dynamics by time averaging

Parameters and scales of the 2-layer RSW

Parameters :

- Rossby number : $Ro = \frac{U}{f_0L}$
- \blacktriangleright Non-dimensional typical deviation of the interface : λ
- Non-dimensional gradient of Coriolis parameter : $\tilde{\beta}$
- Aspect ratio : $d = \frac{H_1}{H_2} = \frac{D_1}{D_2}$, $D_{1,2} = \frac{H_{1,2}}{H}$
- Stratification parameter : $N = 2 \frac{\rho_2 \rho_1}{\rho_2 + \rho_1}$

• Burger number :
$$Bu = \frac{R_d^2}{L^2}$$
, $R_d^2 = \frac{N_g H}{f_0^2}$

Characteristic scales :

Baroclinic deformation radius : $R_d^2 = \frac{g'H}{f_0}$, g' - reduced gravity g' = gN; Prssures in the layers : $P_i \sim \rho_i ULf_0$.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW

2-layer QG model

QG dynamics by time averaging

Non-dimensional equations

$$\epsilon rac{d_i}{dt} \mathbf{v}_i + (1 + \tilde{eta} y) \hat{z} \wedge \mathbf{v}_i = - \vec{
abla} \pi_i, \ i = 1, 2.$$
 (87)

$$-\lambda \frac{d_1}{dt} \eta + (D_1 - \lambda \eta) \vec{\nabla} \cdot \mathbf{v}_1 = 0$$

$$\lambda \frac{d_2}{dt} \eta + (D_2 + \lambda \eta) \vec{\nabla} \cdot \mathbf{v}_2 = 0$$

$$\pi_2 - \pi_1 + \frac{N}{2}(\pi_2 + \pi_1) = \frac{\lambda B u}{2\epsilon} \eta.$$
$$\frac{d_i}{dt} = \partial_t + \mathbf{v}_i \cdot \nabla$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

(88)

(89)

(90)

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

/ertically

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW

2-layer QG model

QG dynamics by time averaging

QG regime

$$\lambda \sim \tilde{\beta} \sim \epsilon \ll 1, \quad \Rightarrow \quad L \sim R_d$$

Asymptotic expansion in $\epsilon \Rightarrow$

$$u_{i} = u_{i}^{(0)} - \epsilon \left[\partial_{t} v_{i}^{(0)} + \mathcal{J}(\pi_{i}, v_{i}^{(0)}) + y u_{i}^{(0)} \right] + \dots$$

$$v_{i} = v_{i}^{(0)} + \epsilon \left[\partial_{t} u_{i}^{(0)} + \mathcal{J}(\pi_{i}, u_{i}^{(0)}) - y v_{i}^{(0)} \right] + \dots$$
(92)

Large-Scale Flows 1. Models.

Introduction

Review Workflow

(91)

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW

2-layer QG model

QG dynamics by time averaging

ummary

Geostrophy :

$$u_i^{(0)} = -\partial_y \pi_i, \quad v_i^{(0)} = \partial_x \pi_i.$$

Divergence :

$$\partial_{x} u_{i}^{(1)} + \partial_{y} v_{i}^{(1)} = -\left[\partial_{t} \vec{\nabla}^{2} \pi_{i} + \mathcal{J}(\pi_{i}, \vec{\nabla}^{2} \pi_{i}) + \partial_{x} \pi\right] \quad (94)$$

Equations for η :

$$\partial_t \eta + \mathcal{J}(\pi_i, \eta) - (-1)^i D_i \left[\partial_t \vec{\nabla}^2 \pi_i + \mathcal{J}(\pi_i, \vec{\nabla}^2 \pi_i) + \partial_x \pi \right] = 0, \quad i =$$
(95)

Large-Scale Flows 1. Models.

Introduction

Review Workflow

(93)

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE

Vortices and

=1,2. Vortex dynamics

> Vortex dynamics in 1-layer RSW

2-layer QG model QG dynamics by time averaging

2-layer QG equations

Equations for the pressure layerwise :

$$\frac{d_i^{(0)}}{dt} \left[\nabla^2 \pi_i - (-1)^i D_i^{-1} \eta + y \right] = 0, \ i = 1, 2.$$
 (96)

where

$$\frac{d_i^{(0)}}{dt}(...) := \partial_t(...) + J(\pi_i,...), \ i = 1,2$$
(97)

Standard limit : weak stratification $\rightarrow \rho_2 \rightarrow \rho_1 \Rightarrow$ $\eta = \pi_2 - \pi_1$

Remarks : 1) on the f - plane - coupled 2D Euler equations with modified streamfunction - vorticity relation; 2) forcing and dissipation are introduced as in 1-layer case.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW

2-layer QG model QG dynamics by time averaging

RSW equations at small Ro and 2 temporal scales

Hypotheses :

- ► *f* plane, open domain,
- unique spatial scale L,
- small Rossby number ϵ , regime QG : $\lambda \sim \epsilon$,
- rapide $t \sim f_0^{-1}$ and slow $t_1 \sim (\epsilon f_0)^{-1}$ time-scales

Non-dimensional equations :

$$(\partial_t + \epsilon \partial_{t_1}) \mathbf{v} + \epsilon (\mathbf{v} \cdot \nabla \mathbf{v}) + \hat{\mathbf{z}} \wedge \mathbf{v} + \nabla h = 0, \qquad (98)$$

$$(\partial_t + \epsilon \partial_{t_1})h + (1 + \epsilon h)\nabla \cdot \mathbf{v} + \epsilon \mathbf{v} \cdot \nabla h = 0, \qquad (99)$$

$$\partial_t Q + \epsilon \mathbf{v} \cdot \nabla Q = 0$$
, $Q = \epsilon \frac{\zeta - h}{1 + \epsilon h} - \mathsf{PV}$ anomaly. (100)

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

Geostrophic adjustement Cauchy problem with localised i.c.

$$|u|_{t=0} = |u|_{I}, |v|_{t=0} = |v|_{I}, |h|_{t=0} = h_{I}.$$
 (101)

Multi-scale asymptotic expansions

$$\mathbf{v} = \mathbf{v}_0(x, y; t, t_1, ...) + \epsilon \mathbf{v}_1(x, y; t, t_1, ...) + ... (102)$$

$$h = h_0(x, y; t, t_1, ...) + \epsilon h_1(x, y; t, t_1, ...) + ...,$$

Slow-fast decomposition order by order in ϵ :

$$h_i = \bar{h}_i(x, y; t_1, ...) + \tilde{h}_i(x, y; t, t_1, ...), \ i = 0, 1, 2, ...$$
 (103)

$$\bar{h}_i(x,y;t_1,...) = \lim_{T \to \infty} \frac{1}{T} \int_0^T h_i(x,y,t,t_1,...) dt, \quad (104)$$

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

Approximation ϵ^0

$$\partial_t \mathbf{v}_0 + \hat{\mathbf{z}} \wedge \mathbf{v}_0 = -\nabla h_0, \qquad (105)$$

$$\partial_t (\zeta_0 - h_0) = 0, \qquad (106)$$

where $\zeta_0=\hat{\bm{z}}\cdot\nabla\wedge\bm{v}_0$ - relative vorticity, and PV equation is used. I.c. :

$$|u_0|_{t=0} = |u_I|, |v_0|_{t=0} = |v_I|, |h_0|_{t=0} = |h_I|.$$
 (107)

Re-writing (105) in terms of relative vorticity ζ and divergence $D = \nabla \cdot \mathbf{v}_0$:

 $\partial_t \zeta_0 + D_0 = 0,$ (108) $\partial_t D_0 - \zeta_0 = -\nabla^2 h_0.$ (109)

Integration of (106) in fast time t:

$$\zeta_0 - h_0 = \Pi_0 \,, \tag{110}$$

where Π_0 is yet unknown function of x, y, t_1 (integration "constant").

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

Approximation ϵ^0 - *contd*

Elimination of ζ_0 et D_0 - linear inhomogeneous equation for h_0 :

$$-\frac{\partial^2 h_0}{\partial t^2} - h_0 + \nabla^2 h_0 = \Pi_0(x, y; t_1, t_2, ...).$$
(111)

Solution - fast + slow :

$$h_0 = \tilde{h}_0(x, y; t, ...) + \bar{h}_0(x, y; t_1, ...)$$
(112)

$$-\frac{\partial^2 \tilde{h}_0}{\partial t^2} - \tilde{h}_0 + \nabla^2 \tilde{h}_0 = 0; \qquad (113)$$

$$-\bar{h}_0 + \nabla^2 \bar{h}_0 = \Pi_0 \tag{114}$$

Klein - Gordon (KG) and Helmholtz equations. Π_0 : geostrophic PV constructed with the help of slow component \overline{h}_0 .

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

Initialisation problem :

How to separate i.c. in slow/fast?

Response (unique at $\epsilon \rightarrow 0$)

By definition :

$$\Pi_0(x,y;0) = \partial_x v_I - \partial_y u_I - h_I \equiv \Pi_I(x,y)$$
(115)

• Determination of initial value \bar{h}_{01} de \bar{h}_0 by inversion :

$$-\bar{h}_{0I} + \nabla^2 \bar{h}_{0I} = \Pi_I, \Rightarrow \bar{h}_{0I} = -(\nabla^2 - 1)^{-1} \Pi_I.$$
 (116)

• Determination of initial value \tilde{h}_{0I} de \tilde{h}_0 :

$$\tilde{h}_{0I} = h_I - \bar{h}_{0I}. \tag{117}$$

• Second i.c.for \tilde{h}_0 (PV and ζ - D eqns) :

$$\partial_t \tilde{h}_0 \Big|_{t=0} = -D_I \equiv \partial_x u_I + \partial_y v_I.$$
 (118)

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

Approximation ϵ^0 - contd

Decomposition for \boldsymbol{v} :

$$\mathbf{v}_{0} = \tilde{\mathbf{v}}_{0}(x, y; t, ...) + \bar{\mathbf{v}}_{0}(x, y; t_{1}, ...), \qquad (119)$$

slow components verify geostrophic relation :

 $ar{\mathbf{v}}_0 = \hat{\mathbf{z}} \wedge
abla ar{h}_0$

and slow ones obey the equations :

$$\partial_t \tilde{\mathbf{v}}_0 + \hat{\mathbf{z}} \wedge \tilde{\mathbf{v}}_0 = -\nabla \tilde{h}_0$$
 (121)

with i.c. :

$$\tilde{u}_{I}^{(0)} = u_{I} - \bar{u}_{0I}; \quad \tilde{v}_{I}^{(0)} = v_{I} - \bar{v}_{0I}, \quad (122)$$

where $\bar{u}_{0I}, \bar{v}_{0I}, \bar{h}_{0I}$ verify (120). Linearized PV $\tilde{\zeta}_0 - \tilde{h}_0$ of the fast component is identically zero.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

(120)

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models Vertical averaging of PE Vortices and

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

Approximation ϵ^0 - contd

Fast component solution for h:

Inertia-gravity waves propagating out of initial perturbation; generated by its non-balanced part $\tilde{u}_{l}^{(0)}, \tilde{v}_{l}^{(0)}, \tilde{h}_{0l}$:

$$\tilde{h}_0(\mathbf{x};t) = \sum_{\pm} \int d\mathbf{k} \, H_0^{(\pm)}(\mathbf{k}) e^{i(\mathbf{k}\cdot\mathbf{x}\pm\Omega_{\mathbf{k}}t)} \,, \tag{123}$$

where

$$H_0^{(\pm)}(\mathbf{k}) = rac{1}{2} \left(\hat{\hat{h}}_{0I}(\mathbf{k}) \pm i \, rac{\hat{D}_I(\mathbf{k})}{\Omega_{\mathbf{k}}}
ight),$$

and notation $\hat{\ldots}$ is used for Fourier-transforms.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

ummary

(124)

Approximation ϵ^0 - end

Résumé of the first approximation

- Fast and slow components are defined unambiguously
- Slow and fast motions are dynamically split (non-interacting)
- Fast part is completely resolved :inertia-gravity waves propagate out of initial perturbation
- Evolution of the slow component remains to be determined

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

Approximation ϵ^1

Momentum equations :

$$\partial_t \mathbf{v}_1 + \hat{\mathbf{z}} \wedge \mathbf{v}_1 = -\nabla h_1 - (\partial_{t_1} + \mathbf{v}_0 \cdot \nabla) \mathbf{v}_0.$$
 (125)

PV equation, first order :

$$\partial_t \left(\zeta_1 - h_1\right) - \Pi_0 \,\partial_t \tilde{h}_0 + \tilde{u}^{(0)} \partial_x \Pi_0 + \tilde{v}^{(0)} \partial_y \Pi_0 = -\partial_{t_1} \Pi_0 - J(\bar{h}_0, \Pi_0)$$
(126)

Integrability condition \leftrightarrow averaging in t:

$$\partial_{t_1} \Pi_0 + J(\bar{h}_0, \Pi_0) \equiv \partial_{t_1} (\nabla^2 \bar{h}_0 - \bar{h}_0) + J(\bar{h}_0, \nabla^2 \bar{h}_0) = 0.$$
(127)

 \Rightarrow QG equation . Originates from elimination of resonances for the fast component at order 1.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

Numerical simulations of the geostrophic ajustement. Initial perturbation of h.

t = 0.0001.25 18 16 1.2 14 12 1.15 10 8 1.1 2 1.05 0 -25 -20 -15 -10 -5 5

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

Initial stage of adjustement, h field.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

Initial stage of adjustement, h field.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

Vertical averaging

of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging
Initial stage of adjustement, velocity field.

t=1.650

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

ummary

Advanced stage of adjustement, velocity field.

t=12.000

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

ummary

Preliminary conclusions : QG model(s)

In the limit $Ro \rightarrow 0$, and with the choce of vortex (slow) time-scale

- Inertia-gravity waves are filtered out
- Resulting equations for vortex motions in the *f*-plane approximation are 2D Euler equations with modified streamfunction-vorticity relation
- Specific strongly anysotropic vortex waves (Rossby waves) are present in the β - plane approximation
- ► QG dynamics ⇔ fast-time averaging of the full equations.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model

QG dynamics by time averaging

ummary

Hierarchy of simplified models :

- Large-scale atmospheric and oceanic motions : same primitive equations up to changes of variables
- ► Typical horizontal scale ≫ vertical scales → vertical averaging ⇒ rotating shallow water equations
- Wave-vortex dichotomy; vortex slow, waves fast
- ► Fast-time averaging at small Rossby numbers quasi-geostrophic vortex dynamics equations ≈ 2D Euler/Navier -Stokes

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in Iuid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Summary

Literature

Presentation partially based on : *Nonlinear Dynamics of Rotating Shallow Water : Methods and Advances*, V. Zeitlin, ed., Elsevier, 2007, 391p.

Large-Scale Flows 1. Models.

Introduction

Review Workflow

Crash course in fluid dynamics

Reminder : perfect fluid Molecular dissipation

Primitive equations

Rotating frame. Spherical coordinates. Traditional approximation. Tangent plane "Primitive" equations (PE)

Vertically

averaged models

Vertical averaging of PE Vortices and waves

Vortex dynamics

Vortex dynamics in 1-layer RSW 2-layer QG model QG dynamics by time averaging

Summary