Counting stationary modes: a discrete view of geometry and dynamics

Stéphane Nonnenmacher

Institut de Physique Théorique, CEA Saclay

September 20th, 2012 Weyl Law at 100, Fields Institute

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

- A (sketchy) history of Weyl's law, from 19th century physics to V.Ivrii's proof of the 2-term asymptotics
- resonances of open wave systems : counting them all, vs. selecting only the long-living ones

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

An urgent mathematical challenge from theoretical physics

In October 1910, Hendrik Lorentz delivered lectures in Göttingen, *Old and new problems of physics*. He mentioned an "urgent question" related with the **black body radiation problem** :

Prove that the density of standing electromagnetic waves inside a bounded cavity $\Omega \subset \mathbb{R}^3$ is, at high frequency, independent of the shape of Ω .

A similar conjecture had been expressed a month earlier by Arnold Sommerfeld, for *scalar* waves. In this case, the problem boils down to counting the solutions of the *Helmholtz equation* inside a bounded domain $\Omega \subset \mathbb{R}^d$:

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

$$(\Delta + \lambda_n^2) u_n = 0,$$
 $u_{n \upharpoonright \partial \Omega} = 0$ (Dirichlet b.c.)

Our central object : the *counting function* $N(\lambda) \stackrel{\text{def}}{=} \#\{0 \le \lambda_n \le \lambda\}$. In 1910, $N(\lambda)$ could be computed only for simple, separable domains (rectangle, disk, ball..) : one gets in the high-frequeny limit ($\lambda \to \infty$)

$$N(\lambda) \sim rac{|\Omega|}{4\pi} \lambda^2$$
 (2 - dim.), $N(\lambda) \sim rac{|\Omega|}{6\pi^2} \lambda^3$ (3 - dim.)

An efficient postdoc

Hermann Weyl (a fresh PhD) was attending Lorentz's lectures. A few months later he had proved the 2-dimensional scalar case,

$$N(\lambda) = rac{|\Omega|}{4\pi} \lambda^2 + o(\lambda^2), \quad \lambda o \infty,$$

which was presented by D.Hilbert in front of the Royal Academy of Sciences.

Within a couple of years, Weyl had generalized his result in various ways : 3 dimensions, electromagnetic waves, elasticity waves.

In 1913 he conjectured (based on the case of the rectangle) a 2-term asymptotics, depending on the boundary conditions :

$$N_{D/N}^{(d)}(\lambda) = \frac{\omega_d |\Omega|}{(2\pi)^d} \lambda^d \mp \frac{\omega_{d-1} |\partial\Omega|}{4(2\pi)^{d-1}} \lambda^{d-1} + o(\lambda^{d-1})$$

Then he switched to other topics (general relativity, gauge theory etc.)

The **black body radiation problem** had puzzled physicists for several decades [KIRCHHOFF'1859].

At thermal equilibrium, a black body emits EM waves with a spectral distribution $\rho(\lambda, T)$, which depends on the density $D(\lambda) = \frac{dN(\lambda)}{d\lambda}$ of stationary waves inside Ω .

(日) (日) (日) (日) (日) (日) (日)

The **black body radiation problem** had puzzled physicists for several decades [KIRCHHOFF'1859].

At thermal equilibrium, a black body emits EM waves with a spectral distribution $\rho(\lambda, T)$, which depends on the density $D(\lambda) = \frac{dN(\lambda)}{d\lambda}$ of stationary waves inside Ω .

Around 1900, all physicists *took for granted* that the asymptotics for $D(\lambda)$ was independent of the shape. They were confronting a more annoying puzzle : **Ultraviolet** catastrophe

Equipartition of energy $\implies \rho(\lambda, T) \propto D(\lambda)T \propto |\Omega|\lambda^2 T$ \implies the full emitted power $P(T) = \int_0^\infty \rho(\lambda, T) d\lambda$ is infinite as soon as T > 0!

The **black body radiation problem** had puzzled physicists for several decades [KIRCHHOFF'1859].

At thermal equilibrium, a black body emits EM waves with a spectral distribution $\rho(\lambda, T)$, which depends on the density $D(\lambda) = \frac{dN(\lambda)}{d\lambda}$ of stationary waves inside Ω .

Around 1900, all physicists *took for granted* that the asymptotics for $D(\lambda)$ was independent of the shape. They were confronting a more annoying puzzle : **Ultraviolet** catastrophe

Equipartition of energy $\implies \rho(\lambda, T) \propto D(\lambda)T \propto |\Omega|\lambda^2 T$ \implies the full emitted power $P(T) = \int_0^\infty \rho(\lambda, T) d\lambda$ is infinite as soon as T > 0!

Several heuristic laws were proposed (Wien, Rayleigh, Jeans...). Finally, Planck's '1900 guess $\rho(\lambda, T) \propto \frac{\lambda^3}{e^{h\lambda/T}-1}$ gave a good experimental fit, and initiated quantum mechanics.

The **black body radiation problem** had puzzled physicists for several decades [KIRCHHOFF'1859].

At thermal equilibrium, a black body emits EM waves with a spectral distribution $\rho(\lambda, T)$, which depends on the density $D(\lambda) = \frac{dN(\lambda)}{d\lambda}$ of stationary waves inside Ω .

Around 1900, all physicists *took for granted* that the asymptotics for $D(\lambda)$ was independent of the shape. They were confronting a more annoying puzzle : **Ultraviolet** catastrophe

Equipartition of energy $\implies \rho(\lambda, T) \propto D(\lambda)T \propto |\Omega|\lambda^2 T$ \implies the full emitted power $P(T) = \int_0^\infty \rho(\lambda, T) d\lambda$ is infinite as soon as T > 0!

Several heuristic laws were proposed (Wien, Rayleigh, Jeans...). Finally, Planck's '1900 guess $\rho(\lambda, T) \propto \frac{\lambda^3}{e^{h\lambda/T}-1}$ gave a good experimental fit, and initiated quantum mechanics.

Once the "catastrophe" was put aside, it was time to put the assumption $D(\lambda) \propto |\Omega| \lambda^2$ on rigorous grounds.

The **black body radiation problem** had puzzled physicists for several decades [KIRCHHOFF'1859].

At thermal equilibrium, a black body emits EM waves with a spectral distribution $\rho(\lambda, T)$, which depends on the density $D(\lambda) = \frac{dN(\lambda)}{d\lambda}$ of stationary waves inside Ω .

Around 1900, all physicists *took for granted* that the asymptotics for $D(\lambda)$ was independent of the shape. They were confronting a more annoying puzzle : **Ultraviolet** catastrophe

Equipartition of energy $\implies \rho(\lambda, T) \propto D(\lambda)T \propto |\Omega|\lambda^2 T$ \implies the full emitted power $P(T) = \int_0^\infty \rho(\lambda, T) d\lambda$ is infinite as soon as T > 0!

Several heuristic laws were proposed (Wien, Rayleigh, Jeans...). Finally, Planck's '1900 guess $\rho(\lambda, T) \propto \frac{\lambda^3}{e^{h\lambda/T}-1}$ gave a good experimental fit, and initiated quantum mechanics.

Once the "catastrophe" was put aside, it was time to put the assumption $D(\lambda) \propto |\Omega| \lambda^2$ on rigorous grounds.

Rectangular cavities

The (Dirichlet) stationary modes of strings or rectangles are explicit :

string:
$$u_n(x) = \sin(\pi x n/L), \quad \lambda = \frac{\pi n}{L}, \ n \ge 1 \Longrightarrow N_D(\lambda) = [\lambda L/\pi]$$

rectangle: $u_{n_1,n_2}(x,y) = \sin(\pi x n_1/L_1) \sin(\pi y n_2/L_2), \quad \lambda = \pi \sqrt{\left(\frac{n_1}{L_1}\right)^2 + \left(\frac{n_2}{L_2}\right)^2},$

→ Gauss's lattice point problem in a 1/4-ellipse. Leads to the 2-term asymptotics, in any dimension $d \ge 2$:

$$N_{D/N}(\lambda) = \frac{L_1 L_2}{4\pi} \lambda^2 \mp \frac{2(L_1 + L_2)}{4\pi} \lambda + o(\lambda) \quad (2 - \dim) \,.$$

 ${\bf \leftarrow} \equiv {\bf \rightarrow}$

ъ

NB : even in this case, estimating the remainder is a difficult task.

What if Ω is not separable?

If the domain Ω doesn't allow separation of variables, the eigenmodes/values are not known explicitly (true PDE problem). Weyl's achievement : nevertheless obtain *global* information on the spectrum, like the asymptotics of $N(\lambda)$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

What if Ω is not separable?

If the domain Ω doesn't allow separation of variables, the eigenmodes/values are not known explicitly (true PDE problem). Weyl's achievement : nevertheless obtain *global* information on the spectrum, like the asymptotics of $N(\lambda)$.

Weyl used the result for rectangles + a variational method, consequence of the minimax principle : Dirichlet-Neumann bracketing.

Pave Ω with (small) rectangles. Then,

$$\sum_{\Box} \mathsf{N}_{\Box,D}(\lambda) \leq \mathsf{N}_{\Omega}(\lambda) \leq \sum_{\Box+\Box} \mathsf{N}_{\Box,N}(\lambda)$$

Refine the paving when $\lambda \to \infty$

$$\rightsquigarrow \quad N_D(\lambda) = \frac{|\Omega|}{4\pi} \lambda^2 + o(\lambda^2)$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

What if Ω is not separable?

If the domain Ω doesn't allow separation of variables, the eigenmodes/values are not known explicitly (true PDE problem). Weyl's achievement : nevertheless obtain *global* information on the spectrum, like the asymptotics of $N(\lambda)$.

Weyl used the result for rectangles + a variational method, consequence of the minimax principle : Dirichlet-Neumann bracketing.

Pave Ω with (small) rectangles. Then,

$$\sum_{\Box} \mathsf{N}_{\Box, D}(\lambda) \leq \mathsf{N}_{\Omega}(\lambda) \leq \sum_{\Box + \Box} \mathsf{N}_{\Box, N}(\lambda)$$

Refine the paving when $\lambda \to \infty$

$$\rightsquigarrow \quad \textit{N}_{\textit{D}}(\lambda) = \frac{|\Omega|}{4\pi}\lambda^2 + \textit{o}(\lambda^2)$$

[COURANT'1924] : this variational method can be improved to give a remainder $\mathcal{O}(\lambda \log \lambda)$, but no better.

• Estimate the remainder $R(\lambda) = N(\lambda) - \frac{\omega_d |\Omega|}{(2\pi)^d} \lambda^d$. Possibly, prove Weyl's 2-term asymptotics

• Estimate the remainder $R(\lambda) = N(\lambda) - \frac{\omega_d |\Omega|}{(2\pi)^d} \lambda^d$. Possibly, prove Weyl's 2-term asymptotics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

· generalize the counting problem to other settings

- Estimate the remainder $R(\lambda) = N(\lambda) \frac{\omega_d |\Omega|}{(2\pi)^d} \lambda^d$. Possibly, prove Weyl's 2-term asymptotics
- · generalize the counting problem to other settings
 - Laplace-Beltrami op. (or more general elliptic op.) on a compact Riemannian manifold (with or without boundary).

- Estimate the remainder $R(\lambda) = N(\lambda) \frac{\omega_d |\Omega|}{(2\pi)^d} \lambda^d$. Possibly, prove Weyl's 2-term asymptotics
- generalize the counting problem to other settings
 - Laplace-Beltrami op. (or more general elliptic op.) on a compact Riemannian manifold (with or without boundary).
 - Quantum mechanics : Schrödinger op. $H_{\hbar} = -\frac{\hbar^2 \Delta}{2m} + V(x)$, with Planck's constant $\hbar \approx 10^{-34} J.s.$

(日) (日) (日) (日) (日) (日) (日)

- Estimate the remainder $R(\lambda) = N(\lambda) \frac{\omega_d |\Omega|}{(2\pi)^d} \lambda^d$. Possibly, prove Weyl's 2-term asymptotics
- generalize the counting problem to other settings
 - Laplace-Beltrami op. (or more general elliptic op.) on a compact Riemannian manifold (with or without boundary).
 - Quantum mechanics : Schrödinger op. $H_{\hbar} = -\frac{\hbar^2 \Delta}{2m} + V(x)$, with Planck's constant $\hbar \approx 10^{-34} J.s.$

Semiclassical analysis : in the semiclassical limit $\hbar \to 0,$ deduce properties

of H_{\hbar} from those of the classical Hamiltonian $H(x,\xi) = \frac{|\xi|^2}{2m} + V(x)$ and the flow Φ^t it generates on the phase space $T^* \mathbb{R}^d$.

Weyl's law : count the eigenvalues of H_\hbar in a fixed interval $[E_1,E_2],$ as $\hbar\to 0$:

$$N_{\hbar}([E_1, E_2]) = \frac{1}{(2\pi\hbar)^d} \operatorname{Vol} \left\{ (x, \xi) \in T^* \mathbb{R}^d, \ H(x, \xi) \in [E_1, E_2] \right\} + o(\hbar^{-d})$$

Each quantum state occupies a volume $\approx (2\pi\hbar)^d$ in phase space.

- Estimate the remainder $R(\lambda) = N(\lambda) \frac{\omega_d |\Omega|}{(2\pi)^d} \lambda^d$. Possibly, prove Weyl's 2-term asymptotics
- generalize the counting problem to other settings
 - Laplace-Beltrami op. (or more general elliptic op.) on a compact Riemannian manifold (with or without boundary).
 - Quantum mechanics : Schrödinger op. $H_{\hbar} = -\frac{\hbar^2 \Delta}{2m} + V(x)$, with Planck's constant $\hbar \approx 10^{-34} J.s.$

Semiclassical analysis : in the semiclassical limit $\hbar \to 0,$ deduce properties

of H_{\hbar} from those of the classical Hamiltonian $H(x,\xi) = \frac{|\xi|^2}{2m} + V(x)$ and the flow Φ^t it generates on the phase space $T^* \mathbb{R}^d$.

Weyl's law : count the eigenvalues of H_\hbar in a fixed interval $[E_1,E_2],$ as $\hbar\to 0$:

$$N_{\hbar}([E_1, E_2]) = \frac{1}{(2\pi\hbar)^d} \operatorname{Vol}\left\{(x, \xi) \in T^* \mathbb{R}^d, \ H(x, \xi) \in [E_1, E_2]\right\} + o(\hbar^{-d})$$

Each quantum state occupies a volume $\approx (2\pi\hbar)^d$ in phase space.

$$H_{\hbar} = -\frac{\hbar^2 \Delta}{2}$$
 : back to the geometric setting, Φ^t = geodesic flow, $\lambda \sim \hbar^{-1}$.

Alternative to variational method : mollifying $N(\lambda)$ The spectral density can be expressed as a **trace** :

$$N(\lambda) = \operatorname{Tr} \Theta(\lambda - \sqrt{-\Delta}).$$

Easier to analyze operators given by *smooth* functions of Δ or $\sqrt{-\Delta}$

- resolvent $(z + \Delta)^{-1}$ defined for $z \in \mathbb{C} \setminus \mathbb{R}$ [Carleman'34]
- heat semigroup $e^{t\Delta}$. Heat kernel $e^{t\Delta}(x, y) = \text{diffusion of a Brownian particle. Tr } e^{t\Delta} = \sum_n e^{-t\lambda_n^2}$ is a smoothing of $N(\lambda)$, with $\lambda \sim t^{-1/2}$ [MINAKSHISUNDARAM-PLEIJEL'52]
- Wave group e^{-it√-∆}, solves the wave equation. Propagates at unit speed.

Once one has a good control on the trace of either of these operators, get estimates on $N(\lambda)$ through some *Tauberian theorem*.

Using the wave equation - *X* without boundary

The **wave group** provides the most precise estimates for $R(\lambda)$ (Fourier transform is easily inverted)

Uncertainty principle : control $e^{-it\sqrt{-\Delta}}$ on a time scale $|t| \leq T \iff$ control $D(\lambda)$ smoothed on a scale $\delta \lambda \sim \frac{1}{T}$.

Using the wave equation - X without boundary

The **wave group** provides the most precise estimates for $R(\lambda)$ (Fourier transform is easily inverted)

Uncertainty principle : control $e^{-it\sqrt{-\Delta}}$ on a time scale $|t| \leq T \iff$ control $D(\lambda)$ smoothed on a scale $\delta \lambda \sim \frac{1}{T}$.

• [LEVITAN'52, AVAKUMOVIČ'56, HÖRMANDER'68] : Parametrix of $e^{-it\sqrt{-\Delta}}$ for $|t| \leq T_0 \rightsquigarrow \mathcal{R}(\lambda) = \mathcal{O}(\lambda^{d-1})$. Optimal for $X = \mathbb{S}^d$ due to large degeneracies.

(日) (日) (日) (日) (日) (日) (日)

Using the wave equation - X without boundary

The **wave group** provides the most precise estimates for $R(\lambda)$ (Fourier transform is easily inverted)

Uncertainty principle : control $e^{-it\sqrt{-\Delta}}$ on a time scale $|t| \leq T \iff$ control $D(\lambda)$ smoothed on a scale $\delta \lambda \sim \frac{1}{T}$.

• [LEVITAN'52, AVAKUMOVIČ'56, HÖRMANDER'68] : Parametrix of $e^{-it\sqrt{-\Delta}}$ for $|t| \leq T_0 \rightsquigarrow \mathcal{R}(\lambda) = \mathcal{O}(\lambda^{d-1})$. Optimal for $X = \mathbb{S}^d$ due to large degeneracies.

• [CHAZARAIN'73,DUISTERMAAT-GUILLEMIN'75] Tr $e^{-it\sqrt{-\Delta}}$ has singularities at $t = T_{\gamma}$ the lengths of closed geodesics $\rightsquigarrow R(\lambda) = o(\lambda^{d-1})$, provided the set of periodic points has measure zero.

Periodic orbits as oscillations of $D(\lambda)$

Around 1970, (some) physicists want to understand the oscillations of $D(\lambda)$. Motivations : nuclear physics, semiconductors

... [GUTZWILLER'70, BALIAN-BLOCH'72]

In the case of a classically chaotic system, the *Gutzwiller trace formula* relates quantum and classical informations :

$$D(\lambda) = \overline{D(\lambda)} + D^{fl}(\lambda) \stackrel{\lambda \to \infty}{\sim} \sum_{j \ge 0} A_{0,j} \lambda^{d-j} + \operatorname{Re} \sum_{\gamma \text{ per. geod.}} e^{i\lambda T_{\gamma}} \sum_{j \ge 0} A_{\gamma,j} \lambda^{-j}$$

(日) (日) (日) (日) (日) (日) (日)

 $D(\lambda)$ contains the information on the periodic geodesics (and vice-versa)

Periodic orbits as oscillations of $D(\lambda)$

Around 1970, (some) physicists want to understand the oscillations of $D(\lambda)$. Motivations : nuclear physics, semiconductors

... [GUTZWILLER'70, BALIAN-BLOCH'72]

In the case of a classically chaotic system, the *Gutzwiller trace formula* relates quantum and classical informations :

$$D(\lambda) = \overline{D(\lambda)} + D^{fl}(\lambda) \stackrel{\lambda \to \infty}{\sim} \sum_{j \ge 0} A_{0,j} \lambda^{d-j} + \operatorname{Re} \sum_{\gamma \text{ per. geod.}} e^{i\lambda T_{\gamma}} \sum_{j \ge 0} A_{\gamma,j} \lambda^{-j}$$

(日) (日) (日) (日) (日) (日) (日)

 $D(\lambda)$ contains the information on the periodic geodesics (*and vice-versa*) "Generalizes" Selberg's trace formula (1956) for $X = \Gamma \setminus \mathbb{H}^2$ compact.

Periodic orbits as oscillations of $D(\lambda)$

Around 1970, (some) physicists want to understand the oscillations of $D(\lambda)$. Motivations : nuclear physics, semiconductors

... [GUTZWILLER'70, BALIAN-BLOCH'72]

In the case of a classically chaotic system, the *Gutzwiller trace formula* relates quantum and classical informations :

$$D(\lambda) = \overline{D(\lambda)} + D^{ff}(\lambda) \stackrel{\lambda \to \infty}{\sim} \sum_{j \ge 0} A_{0,j} \lambda^{d-j} + \operatorname{Re} \sum_{\gamma \text{ per. geod.}} e^{i\lambda T_{\gamma}} \sum_{j \ge 0} A_{\gamma,j} \lambda^{-j}$$

 $D(\lambda)$ contains the information on the periodic geodesics (*and vice-versa*) "Generalizes" Selberg's trace formula (1956) for $X = \Gamma \setminus \mathbb{H}^2$ compact.

• 1 application : (X, g) negatively curved, lower bound for $R(\lambda)$, in terms of the full set of per. orbits [JAKOBSON-POLTEROVICH-TOTH'07]

Domains with (smooth) boundaries

Even if $\partial\Omega$ is smooth, describing the wave propagation in presence of boundaries is difficult, mostly due to gliding or grazing rays. Lots of progresses in the 1970s [Melrose, SJÖSTRAND, TAYLOR]

・ コット (雪) (小田) (コット 日)

Domains with (smooth) boundaries

Even if $\partial\Omega$ is smooth, describing the wave propagation in presence of boundaries is difficult, mostly due to gliding or grazing rays. Lots of progresses in the 1970s [Melrose, SJÖSTRAND, TAYLOR]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $[\mathsf{SEELEY'78}]: R(\lambda) = \mathcal{O}(\lambda^{d-1}).$

Domains with (smooth) boundaries

Even if $\partial\Omega$ is smooth, describing the wave propagation in presence of boundaries is difficult, mostly due to gliding or grazing rays. Lots of progresses in the 1970s [Melrose, SJÖSTRAND, TAYLOR]

 $[\mathsf{SEELEY'78}]: R(\lambda) = \mathcal{O}(\lambda^{d-1}).$

[IVRII'80, MELROSE'80] : FINALLY, Weyl's 2-term asymptotics

$$\mathcal{R}_{D/N}(\lambda) = \mp rac{\omega_{d-1} |\partial \Omega|}{4(2\pi)^{d-1}} \lambda^{d-1} + o(\lambda^{d-1}),$$

provided the set of periodic (broken) geodesics has measure zero.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

238 pages

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

238 pages

238 pages

750 pages

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

238 pages

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Microlocal Analysis, Sharp Spectral Asymptotics and Applications

Victor Ivrii

Department of Mathematics, University of Toronto

March 3, 2012

238 pages

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Microlocal Analysis, Sharp Spectral Asymptotics and Applications

Victor Ivrii

Department of Mathematics, University of Toronto

March 3, 2012

so far, 2282 pages...

How did Victor manage to find these tricks?

How did Victor manage to find these tricks?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Working hard...

How did Victor manage to find these tricks?

Young worker in Magnesuperil, 1971

...in an inspiring environment

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Working hard...

From eigenvalues to resonances

In quantum or wave physics, stationary modes are most often a mathematical idealization.

A system always interacts with its environment (measuring device, absorption, spontaneous emission...) \rightsquigarrow each excited state has a finite lifetime τ_n .

⇒ the spectrum is not a sum of δ peaks, but rather of Lorentzian peaks centered at $E_n \in \mathbb{R}$, of widths $\Gamma_n = \frac{1}{\tau_n}$ (decay rates).

Each Lorentzian \leftrightarrow a complex resonance $z_n = \lambda_n - i\Gamma_n$.

Clean mathematical setting : geometric scattering

Open cavity with waveguide.

Obstacle / potential $V \in C_c(\mathbb{R}^d) / (X, g)$ Euclidean near infinity

 $-\Delta_{\Omega}$ (or $-\Delta + V$) has abs. cont. spectrum on \mathbb{R}^+ . Yet, the cutoff resolvent $R_{\chi}(z) \stackrel{\text{def}}{=} \chi (\Delta + z^2)^{-1} \chi$ admits (in *odd* dimension) a meromorphic continuation from Im z > 0 to \mathbb{C} , with isolated poles of finite multiplicities $\{z_n\}$, the resonances (or scattering poles) of Δ_{χ} .

(日) (日) (日) (日) (日) (日) (日)

Can we estimate $N(r) \stackrel{\text{def}}{=} \#\{j; |z_j| \le r\}$? Cannot use selfadjoint methods (minimax) \implies *Upper bounds* are much easier to obtain than lower bounds.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Can we estimate $N(r) \stackrel{\text{def}}{=} \#\{j; |z_j| \le r\}$? Cannot use selfadjoint methods (minimax) \implies *Upper bounds* are much easier to obtain than lower bounds. z-plane 0

(日) (日) (日) (日) (日) (日) (日)

Main tool : complex analysis.

Construct an entire function d(z) which vanishes at the resonances. $d(z) = \det(I - K(z))$ with K(z) holomorphic family of compact ops.

• Control the growth of d(z) when $|z| \to \infty$ (count *singular values* of K(z), use self-adjoint Weyl's law)

 $\stackrel{\textit{Jensen}}{\Longrightarrow} N(r) \leq C r^{d}, \quad r \to \infty \qquad [Melrose, Zworski, Vodev, Sjöstrand-Zworski...]$

Connection with a *volume* : $C = c_d a^d$ if Supp $V \subset B(0, a)$ [ZWORSKI'87,STEFANOV'06]

Can we estimate $N(r) \stackrel{\text{def}}{=} \#\{j; |z_j| \le r\}$? Cannot use selfadjoint methods (minimax) \implies *Upper bounds* are much easier to obtain than lower bounds.

Main tool : complex analysis.

Construct an entire function d(z) which vanishes at the resonances. d(z) = det(I - K(z)) with K(z) holomorphic family of compact ops.

• Control the growth of d(z) when $|z| \to \infty$ (count *singular values* of K(z), use self-adjoint Weyl's law)

 $\stackrel{\textit{Jensen}}{\Longrightarrow} N(r) \leq C r^{d}, \quad r \to \infty \qquad [Melrose, Zworski, Vodev, Sjöstrand-Zworski...]$

Connection with a volume : $C = c_d a^d$ if Supp $V \subset B(0, a)$ [ZWORSKI'87,STEFANOV'06]

• [CHRISTIANSEN'05...DINH-VU'12] For generic obstacle / metric perturbation / potential supported in B(0, a), the upper bound is sharp.

Can we estimate $N(r) \stackrel{\text{def}}{=} \#\{j; |z_j| \le r\}$? Cannot use selfadjoint methods (minimax) \implies *Upper bounds* are much easier to obtain than lower bounds. z-plane 0

Main tool : complex analysis.

Construct an entire function d(z) which vanishes at the resonances. $d(z) = \det(I - K(z))$ with K(z) holomorphic family of compact ops.

• Control the growth of d(z) when $|z| \to \infty$ (count *singular values* of K(z), use self-adjoint Weyl's law)

 $\stackrel{\textit{Jensen}}{\Longrightarrow} \textit{N}(r) \leq \textit{C} r^{d}, \quad r \to \infty$ [Melrose,Zworski,Vodev,Sjöstrand-Zworski...]

Connection with a volume : $C = c_d a^d$ if Supp $V \subset B(0, a)$ [ZWORSKI'87,STEFANOV'06]

• [CHRISTIANSEN'05...DINH-VU'12] For generic obstacle / metric perturbation / potential supported in B(0, a), the upper bound is sharp.

• [CHRISTIANSEN'10] Distribution in *angular sectors*, higher density near R. [SJÖSTRAND'12] Semiclassical setting, potential with a small random perturbation : Weyl law for resonances in a thin strip below R.

Counting "long living" resonances

From a physics point of view, the resonances with $|\operatorname{Im} z| \gg 1$ are not very significant (very small lifetime) \rightsquigarrow rather count resonances of bounded decay rates : $N(\lambda, \gamma) \stackrel{\text{def}}{=} \#\{j; |z_j - \lambda| \le \gamma\}\}, \gamma > 0$ fixed, $\lambda \to \infty$.

(日) (日) (日) (日) (日) (日) (日)

This counting gives informations on the classical dynamics on the trapped set

$${\mathcal K} \stackrel{\scriptscriptstyle{ ext{def}}}{=} \left\{ (x,\xi) \in {\mathcal S}^*X \, ; \, \Phi^t(x,\xi) ext{ uniformly bounded for all } t \in {\mathbb R}
ight\}$$

(compact subset of S^*X , invariant through Φ^t).

Counting "long living" resonances

From a physics point of view, the resonances with $|\operatorname{Im} z| \gg 1$ are not very significant (very small lifetime) \rightsquigarrow rather count resonances of bounded decay rates : $N(\lambda, \gamma) \stackrel{\text{def}}{=} \#\{j; |z_j - \lambda| \le \gamma\}\}, \gamma > 0$ fixed, $\lambda \to \infty$.

(日) (日) (日) (日) (日) (日) (日)

This counting gives informations on the classical dynamics on the trapped set

$${\mathcal K}\stackrel{\scriptscriptstyle
m det}{=} ig\{(x,\xi)\in {\mathcal S}^*X$$
 ; $\Phi^t(x,\xi)$ uniformly bounded for all $t\in {\mathbb R}ig\}$

(compact subset of S^*X , invariant through Φ^t).

• $K = \emptyset \implies$ no long-living resonance

Counting "long living" resonances

From a physics point of view, the resonances with $|\operatorname{Im} z| \gg 1$ are not very significant (very small lifetime) \rightsquigarrow rather count resonances of bounded decay rates : $N(\lambda, \gamma) \stackrel{\text{def}}{=} \#\{j; |z_j - \lambda| \le \gamma\}\}, \gamma > 0$ fixed, $\lambda \to \infty$.

This counting gives informations on the classical dynamics on the trapped set

$${\mathcal K}\stackrel{\scriptscriptstyle
m det}{=} ig\{(x,\xi)\in {\mathcal S}^*X$$
 ; $\Phi^t(x,\xi)$ uniformly bounded for all $t\in {\mathbb R}ig\}$

(compact subset of S^*X , invariant through Φ^t).

- $K = \emptyset \implies$ no long-living resonance
- K = a single hyperbolic orbit. Resonances form a (projected) deformed lattice, encoding the length and Lyapunov exponents of the orbit [IKAWA'85,GÉRARD'87]

Counting "long living" resonances (2)

• *K* contains an elliptic periodic orbit \Rightarrow many resonances with Im $z = O(\lambda^{-\infty}) \Longrightarrow N(\lambda, \gamma) \asymp \lambda^{d-1}$ [POPOV, VODEV, STEFANOV]

Counting "long living" resonances (2)

• *K* contains an elliptic periodic orbit \Rightarrow many resonances with Im $z = O(\lambda^{-\infty}) \Longrightarrow N(\lambda, \gamma) \asymp \lambda^{d-1}$ [POPOV, VODEV, STEFANOV]

• K a fractal subset carrying a chaotic (hyperbolic) flow. Quantum chaos

Fractal Weyl upper bound [SJÖSTRAND,SJÖSTRAND-ZWORSKI,N-SJÖSTRAND-ZWORSKI]

 $\forall \gamma > \mathbf{0}, \exists C_{\gamma} > \mathbf{0}, \quad N(\lambda, \gamma) \leq C_{\gamma} \lambda^{\boldsymbol{\nu}}, \quad \lambda \to \infty,$

where dim_{Mink}(K) = 2 ν + 1 (so that 0 < ν < d - 1).

Fractal Weyl law?

 $N(\lambda, \gamma) \leq C_{\gamma} \lambda^{\nu}, \quad \lambda \to \infty,$

This bound also results from a volume estimate : count the number of quantum states "living" in the $\lambda^{-1/2}$ -neighbourhood of *K*.

Fractal Weyl Law conjecture : this upper bound is sharp, at least at the level of the power ν .

(ロ) (同) (三) (三) (三) (三) (○) (○)

Several numerical studies confirm the conjecture [LU-SRIDHAR-ZWORSKI,GUILLOPÉ-LIN-ZWORSKI,SCHOMERUS-TWORZYDŁO].

Fractal Weyl law?

$$N(\lambda, \gamma) \leq C_{\gamma} \lambda^{\nu}, \quad \lambda \to \infty,$$

This bound also results from a volume estimate : count the number of quantum states "living" in the $\lambda^{-1/2}$ -neighbourhood of *K*.

Fractal Weyl Law conjecture : this upper bound is sharp, at least at the level of the power ν .

Several numerical studies confirm the conjecture [LU-SRIDHAR-ZWORSKI,GUILLOPÉ-LIN-ZWORSKI,SCHOMERUS-TWORZYDŁO].

Only proved for a discrete-time toy model (*quantum baker's map*) [N-ZWORSKI] A chaotic open map $B : \mathbb{T}^2 \to \mathbb{T}^2$ is quantized into a family $(B_N)_{N \in \mathbb{N}}$ of subunitary $N \times N$ matrices, where $N \equiv \hbar^{-1}$.

Fractal Weyl law in this context : $\frac{\# \operatorname{Spec}(B_N) \cap \{e^{-\gamma} \le |z| \le 1\} \sim C_{\gamma} N^{\nu} \text{ as}}{N \to \infty, \text{ where } \nu = \frac{\dim(\operatorname{trapped set of } B)}{2} < 1.$

Fractal Weyl law galore

FWL for quantum maps \rightsquigarrow search for FWL in certain families $(M_N)_{N\to\infty}$ of large matrices

Eur. Phys. J. B 75, 299–304 (2010) DOI: 10.1140/epjb/e2010-00144-0 THE EUROPEAN PHYSICAL JOURNAL B

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Regular Article

Ulam method and fractal Weyl law for Perron-Frobenius operators

L. Ermann and D.L. Shepelyansky*

Laboratoire de Physique Théorique du CNRS (IRSAMC), Université de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse Cedex 4, France

Fractal Weyl law galore

FWL for quantum maps \rightsquigarrow search for FWL in certain families $(M_N)_{N\to\infty}$ of large matrices

Eur. Phys. J. B 75 , 299–304 (2010) DOI: 10.1140/epjb/c2010-00144-0	THE EUROPEAN PHYSICAL JOURNAL B
Regular Article	
Ulam method and fractal Weyl operators	aw for Perron-Frobenius
L. Ermann and D.L. Shepelyansky ^a	
Laboratoire de Physique Théorique du CNRS (IRSAMC), Univer Cedex 4, France	sité de Toulouse, UPS, 118 route de Narbonne, 31062 Toulou
Eur. Phys. J. B 79 , 115–120 (2011) DOI: 10.1140/epjb/c2010-10774-7	THE EUROPEAN PHYSICAL JOURNAL B
Regular Article	

L. Ermann¹, A.D. Chepelianskii², and D.L. Shepelyansky^{1,*}

¹ Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse, UPS-CNRS, 31062 Toulouse, France

² LPS, Université Paris-Sud, CNRS, UMR8502, 91405 Orsay, France

PHYSICAL REVIEW E 81, 056109 (2010)

Spectral properties of the Google matrix of the World Wide Web and other directed networks

Bertrand Georgeot, Olivier Giraud,^{*} and Dima L. Shepelyansky Laboratoire de Physique Théorique (IRSAMC), Université de Toulouse-UPS, P-31062 Toulouse, France and LPT (IRSAMC), CNRS, F-31062 Toulouse, France (Received 17 February 2010; published 25 May 2010)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Experimental studies on microwave billiards. [KUHL *et al.*'12] Major difficulty : extract the "true" resonances from the signal.

