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Outline

• A (sketchy) history of Weyl’s law, from 19th century physics to V.Ivrii’s
proof of the 2-term asymptotics

• resonances of open wave systems : counting them all, vs. selecting only
the long-living ones



An urgent mathematical challenge from theoretical physics

In October 1910, Hendrik Lorentz delivered lectures in
Göttingen, Old and new problems of physics. He mentioned
an “urgent question” related with the black body radiation
problem :

Prove that the density of standing electromagnetic
waves inside a bounded cavity Ω ⊂ R3 is, at high
frequency, independent of the shape of Ω.

A similar conjecture had been expressed a month earlier by
Arnold Sommerfeld, for scalar waves. In this case, the
problem boils down to counting the solutions of the Helmholtz
equation inside a bounded domain Ω ⊂ Rd :

(∆ + λ2
n)un = 0, un�∂Ω = 0 (Dirichlet b.c.)

Our central object : the counting function N(λ)
def
= #{0 ≤ λn ≤ λ}.

In 1910, N(λ) could be computed only for simple, separable domains
(rectangle, disk, ball..) : one gets in the high-frequeny limit (λ→∞)

N(λ) ∼ |Ω|
4π

λ2 (2− dim.), N(λ) ∼ |Ω|
6π2 λ

3 (3− dim.)



An efficient postdoc

Hermann Weyl (a fresh PhD) was attending Lorentz’s
lectures. A few months later he had proved the 2-dimensional
scalar case,

N(λ) =
|Ω|
4π

λ2 + o(λ2), λ→∞,

which was presented by D.Hilbert in front of the Royal
Academy of Sciences.

Within a couple of years, Weyl had generalized his result in various ways : 3
dimensions, electromagnetic waves, elasticity waves.

In 1913 he conjectured (based on the case of the rectangle) a 2-term
asymptotics, depending on the boundary conditions :

N(d)
D/N(λ) =

ωd |Ω|
(2π)d λ

d ∓ ωd−1|∂Ω|
4(2π)d−1 λ

d−1 + o(λd−1)

Then he switched to other topics (general relativity, gauge theory etc.)



Why were (prominent) physicists so interested in this question ?
The black body radiation problem had puzzled physicists
for several decades [KIRCHHOFF’1859].
At thermal equilibrium, a black body emits EM waves with a
spectral distribution ρ(λ,T ), which depends on the density
D(λ) = dN(λ)

dλ of stationary waves inside Ω.

Around 1900, all physicists took for granted that the
asymptotics for D(λ) was independent of the shape.They
were confronting a more annoying puzzle : Ultraviolet
catastrophe

Equipartition of energy =⇒ ρ(λ,T ) ∝ D(λ)T ∝ |Ω|λ2T
=⇒ the full emitted power P(T ) =

R∞
0 ρ(λ,T ) dλ is infinite as

soon as T > 0 !

Several heuristic laws were proposed (Wien, Rayleigh,
Jeans. . . ). Finally, Planck’s ’1900 guess ρ(λ,T ) ∝ λ3

ehλ/T−1
gave a good experimental fit, and initiated quantum
mechanics.

Once the “catastrophe” was put aside, it was time to put the
assumption D(λ) ∝ |Ω|λ2 on rigorous grounds.
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Rectangular cavities

2

1 !/"

L !/"

L

The (Dirichlet) stationary modes of strings or rectangles are explicit :

string : un(x) = sin(πxn/L), λ =
πn
L
, n ≥ 1 =⇒ ND(λ) = [λL/π]

rectangle : un1,n2 (x , y) = sin(πxn1/L1) sin(πyn2/L2), λ = π

r“n1

L1

”2
+
“n2

L2

”2
,

 Gauss’s lattice point problem in a 1/4-ellipse. Leads to the 2-term
asymptotics, in any dimension d ≥ 2 :

ND/N(λ) =
L1L2

4π
λ2∓2(L1 + L2)

4π
λ+ o(λ) (2− dim) .

NB : even in this case, estimating the remainder is a difficult task.



What if Ω is not separable ?

If the domain Ω doesn’t allow separation of variables, the eigenmodes/values
are not known explicitly (true PDE problem).
Weyl’s achievement : nevertheless obtain global information on the spectrum,
like the asymptotics of N(λ).

Weyl used the result for rectangles + a variational
method, consequence of the minimax principle :
Dirichlet-Neumann bracketing.
Pave Ω with (small) rectangles. Then,X

�

N�,D(λ) ≤ NΩ(λ) ≤
X
�+�

N�,N(λ)

Refine the paving when λ→∞

 ND(λ) =
|Ω|
4π

λ2 + o(λ2)

[COURANT’1924] : this variational method can be
improved to give a remainder O(λ logλ), but no better.
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What to do next ?

• Estimate the remainder R(λ) = N(λ)− ωd |Ω|
(2π)d λ

d . Possibly, prove Weyl’s
2-term asymptotics

• generalize the counting problem to other settings
• Laplace-Beltrami op. (or more general elliptic op.) on a compact Riemannian

manifold (with or without boundary).
• Quantum mechanics : Schrödinger op. H~ = −~2∆

2m + V (x), with Planck’s
constant ~ ≈ 10−34J.s.

Semiclassical analysis : in the semiclassical limit ~→ 0, deduce properties

of H~ from those of the classical Hamiltonian H(x , ξ) = |ξ|2
2m + V (x) and the

flow Φt it generates on the phase space T∗Rd .

Weyl’s law : count the eigenvalues of H~ in a fixed interval [E1,E2], as
~→ 0 :

N~([E1,E2]) =
1

(2π~)d
Vol

n
(x , ξ) ∈ T∗Rd , H(x , ξ) ∈ [E1,E2]

o
+ o(~−d )

Each quantum state occupies a volume ≈ (2π~)d in phase space.

H~ = −~2∆
2 : back to the geometric setting, Φt = geodesic flow, λ ∼ ~−1.



What to do next ?

• Estimate the remainder R(λ) = N(λ)− ωd |Ω|
(2π)d λ

d . Possibly, prove Weyl’s
2-term asymptotics

• generalize the counting problem to other settings

• Laplace-Beltrami op. (or more general elliptic op.) on a compact Riemannian
manifold (with or without boundary).

• Quantum mechanics : Schrödinger op. H~ = −~2∆
2m + V (x), with Planck’s

constant ~ ≈ 10−34J.s.

Semiclassical analysis : in the semiclassical limit ~→ 0, deduce properties

of H~ from those of the classical Hamiltonian H(x , ξ) = |ξ|2
2m + V (x) and the

flow Φt it generates on the phase space T∗Rd .

Weyl’s law : count the eigenvalues of H~ in a fixed interval [E1,E2], as
~→ 0 :

N~([E1,E2]) =
1

(2π~)d
Vol

n
(x , ξ) ∈ T∗Rd , H(x , ξ) ∈ [E1,E2]

o
+ o(~−d )

Each quantum state occupies a volume ≈ (2π~)d in phase space.

H~ = −~2∆
2 : back to the geometric setting, Φt = geodesic flow, λ ∼ ~−1.



What to do next ?

• Estimate the remainder R(λ) = N(λ)− ωd |Ω|
(2π)d λ

d . Possibly, prove Weyl’s
2-term asymptotics

• generalize the counting problem to other settings
• Laplace-Beltrami op. (or more general elliptic op.) on a compact Riemannian

manifold (with or without boundary).

• Quantum mechanics : Schrödinger op. H~ = −~2∆
2m + V (x), with Planck’s

constant ~ ≈ 10−34J.s.

Semiclassical analysis : in the semiclassical limit ~→ 0, deduce properties

of H~ from those of the classical Hamiltonian H(x , ξ) = |ξ|2
2m + V (x) and the

flow Φt it generates on the phase space T∗Rd .

Weyl’s law : count the eigenvalues of H~ in a fixed interval [E1,E2], as
~→ 0 :

N~([E1,E2]) =
1

(2π~)d
Vol

n
(x , ξ) ∈ T∗Rd , H(x , ξ) ∈ [E1,E2]

o
+ o(~−d )

Each quantum state occupies a volume ≈ (2π~)d in phase space.

H~ = −~2∆
2 : back to the geometric setting, Φt = geodesic flow, λ ∼ ~−1.



What to do next ?

• Estimate the remainder R(λ) = N(λ)− ωd |Ω|
(2π)d λ

d . Possibly, prove Weyl’s
2-term asymptotics

• generalize the counting problem to other settings
• Laplace-Beltrami op. (or more general elliptic op.) on a compact Riemannian

manifold (with or without boundary).
• Quantum mechanics : Schrödinger op. H~ = −~2∆

2m + V (x), with Planck’s
constant ~ ≈ 10−34J.s.

Semiclassical analysis : in the semiclassical limit ~→ 0, deduce properties

of H~ from those of the classical Hamiltonian H(x , ξ) = |ξ|2
2m + V (x) and the

flow Φt it generates on the phase space T∗Rd .

Weyl’s law : count the eigenvalues of H~ in a fixed interval [E1,E2], as
~→ 0 :

N~([E1,E2]) =
1

(2π~)d
Vol

n
(x , ξ) ∈ T∗Rd , H(x , ξ) ∈ [E1,E2]

o
+ o(~−d )

Each quantum state occupies a volume ≈ (2π~)d in phase space.

H~ = −~2∆
2 : back to the geometric setting, Φt = geodesic flow, λ ∼ ~−1.



What to do next ?

• Estimate the remainder R(λ) = N(λ)− ωd |Ω|
(2π)d λ

d . Possibly, prove Weyl’s
2-term asymptotics

• generalize the counting problem to other settings
• Laplace-Beltrami op. (or more general elliptic op.) on a compact Riemannian

manifold (with or without boundary).
• Quantum mechanics : Schrödinger op. H~ = −~2∆

2m + V (x), with Planck’s
constant ~ ≈ 10−34J.s.

Semiclassical analysis : in the semiclassical limit ~→ 0, deduce properties

of H~ from those of the classical Hamiltonian H(x , ξ) = |ξ|2
2m + V (x) and the

flow Φt it generates on the phase space T∗Rd .

Weyl’s law : count the eigenvalues of H~ in a fixed interval [E1,E2], as
~→ 0 :

N~([E1,E2]) =
1

(2π~)d
Vol

n
(x , ξ) ∈ T∗Rd , H(x , ξ) ∈ [E1,E2]

o
+ o(~−d )

Each quantum state occupies a volume ≈ (2π~)d in phase space.

H~ = −~2∆
2 : back to the geometric setting, Φt = geodesic flow, λ ∼ ~−1.



What to do next ?

• Estimate the remainder R(λ) = N(λ)− ωd |Ω|
(2π)d λ

d . Possibly, prove Weyl’s
2-term asymptotics

• generalize the counting problem to other settings
• Laplace-Beltrami op. (or more general elliptic op.) on a compact Riemannian

manifold (with or without boundary).
• Quantum mechanics : Schrödinger op. H~ = −~2∆

2m + V (x), with Planck’s
constant ~ ≈ 10−34J.s.

Semiclassical analysis : in the semiclassical limit ~→ 0, deduce properties

of H~ from those of the classical Hamiltonian H(x , ξ) = |ξ|2
2m + V (x) and the

flow Φt it generates on the phase space T∗Rd .

Weyl’s law : count the eigenvalues of H~ in a fixed interval [E1,E2], as
~→ 0 :

N~([E1,E2]) =
1

(2π~)d
Vol

n
(x , ξ) ∈ T∗Rd , H(x , ξ) ∈ [E1,E2]

o
+ o(~−d )

Each quantum state occupies a volume ≈ (2π~)d in phase space.

H~ = −~2∆
2 : back to the geometric setting, Φt = geodesic flow, λ ∼ ~−1.



Alternative to variational method : mollifying N(λ)
The spectral density can be expressed as a trace :

N(λ) = Tr Θ(λ−
√
−∆) .

Easier to analyze operators given by smooth functions of ∆ or
√
−∆

• resolvent (z + ∆)−1 defined for z ∈ C \ R [CARLEMAN’34]

• heat semigroup et∆. Heat kernel et∆(x , y) = diffusion of a Brownian
particle. Tr et∆ =

P
n e−tλ2

n is a smoothing of N(λ), with λ ∼ t−1/2

[MINAKSHISUNDARAM-PLEIJEL’52]

• Wave group e−it
√
−∆, solves the wave equation. Propagates at unit

speed.

Once one has a good control on the trace of either of these operators, get
estimates on N(λ) through some Tauberian theorem.



Using the wave equation - X without boundary
The wave group provides the most precise estimates for R(λ) (Fourier
transform is easily inverted)
Uncertainty principle : control e−it

√
−∆ on a time scale |t | ≤ T ⇐⇒ control

D(λ) smoothed on a scale δλ ∼ 1
T .

• [LEVITAN’52, AVAKUMOVIČ’56,HÖRMANDER’68] : Parametrix of e−it
√
−∆ for

|t | ≤ T0  R(λ) = O(λd−1).
Optimal for X = Sd due to large degeneracies.

• [CHAZARAIN’73,DUISTERMAAT-GUILLEMIN’75] Tr e−it
√
−∆ has singularities at

t = Tγ the lengths of closed geodesics R(λ) = o(λd−1), provided the
set of periodic points has measure zero.
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Periodic orbits as oscillations of D(λ)

Around 1970, (some) physicists want to understand the oscillations of D(λ).
Motivations : nuclear physics, semiconductors
. . . [GUTZWILLER’70,BALIAN-BLOCH’72]

In the case of a classically chaotic system, the Gutzwiller trace formula
relates quantum and classical informations :

D(λ) = D(λ) + Dfl (λ)
λ→∞∼

X
j≥0

A0,jλ
d−j + Re

X
γ per. geod.

eiλTγ
X
j≥0

Aγ,jλ−j

D(λ) contains the information on the periodic geodesics (and vice-versa)

”Generalizes” Selberg’s trace formula (1956) for X = Γ\H2 compact.

• 1 application : (X , g) negatively curved, lower bound for R(λ), in terms of
the full set of per. orbits [JAKOBSON-POLTEROVICH-TOTH’07]
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Domains with (smooth) boundaries

Even if ∂Ω is smooth, describing the wave propagation in
presence of boundaries is difficult, mostly due to gliding or
grazing rays. Lots of progresses in the 1970s [MELROSE,
SJÖSTRAND, TAYLOR]

[SEELEY’78] : R(λ) = O(λd−1).

[IVRII’80, MELROSE’80] : FINALLY, Weyl’s 2-term asymptotics

RD/N(λ) = ∓ωd−1|∂Ω|
4(2π)d−1 λ

d−1 + o(λd−1),

provided the set of periodic (broken) geodesics has measure zero.



Domains with (smooth) boundaries

Even if ∂Ω is smooth, describing the wave propagation in
presence of boundaries is difficult, mostly due to gliding or
grazing rays. Lots of progresses in the 1970s [MELROSE,
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From eigenvalues to resonances
In quantum or wave physics, stationary modes are most often a mathematical
idealization.
A system always interacts with its environment (measuring device,
absorption, spontaneous emission. . . ) each excited state has a finite
lifetime τn.

=⇒ the spectrum is not a sum of δ peaks, but rather of Lorentzian peaks
centered at En ∈ R, of widths Γn = 1

τn
(decay rates).
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Clean mathematical setting : geometric scattering
Open cavity with waveguide.
Obstacle / potential V ∈ Cc(Rd ) / (X , g) Euclidean near infinity

−∆Ω (or −∆ + V ) has abs. cont. spectrum on R+. Yet, the cutoff resolvent
Rχ(z)

def
= χ(∆ + z2)−1χ admits (in odd dimension) a meromorphic

continuation from Im z > 0 to C, with isolated poles of finite multiplicities {zn},
the resonances (or scattering poles) of ∆X .

z!

jz

0
plane



Counting (all) resonances

Can we estimate N(r)
def
= #{j ; |zj | ≤ r}?

Cannot use selfadjoint methods (minimax)
=⇒ Upper bounds are much easier to obtain
than lower bounds.

0
!

N(r)
r

z!plane

Main tool : complex analysis.
Construct an entire function d(z) which vanishes at the resonances.
d(z) = det(I − K (z)) with K (z) holomorphic family of compact ops.

• Control the growth of d(z) when |z| → ∞ (count singular values of K (z),
use self-adjoint Weyl’s law)

Jensen
=⇒ N(r) ≤ C r d , r →∞ [MELROSE,ZWORSKI,VODEV,SJÖSTRAND-ZWORSKI. . . ]

Connection with a volume : C = cd ad if Supp V ⊂ B(0, a)
[ZWORSKI’87,STEFANOV’06]

• [CHRISTIANSEN’05. . . DINH-VU’12] For generic obstacle / metric perturbation /
potential supported in B(0, a), the upper bound is sharp.

• [CHRISTIANSEN’10] Distribution in angular sectors, higher density near R.
[SJÖSTRAND’12] Semiclassical setting, potential with a small random
perturbation : Weyl law for resonances in a thin strip below R.
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Counting ”long living” resonances

From a physics point of view, the resonances with
| Im z| � 1 are not very significant (very small lifetime)
 rather count resonances of bounded decay rates :
N(λ, γ)

def
= #{j ; |zj − λ| ≤ γ)}, γ > 0 fixed, λ→∞.

///
jz

!
"0

This counting gives informations on the classical dynamics on the trapped set

K def
=
˘

(x , ξ) ∈ S∗X ; Φt (x , ξ) uniformly bounded for all t ∈ R
¯

(compact subset of S∗X , invariant through Φt ).

• K = ∅ =⇒ no long-living resonance
• K = a single hyperbolic orbit. Resonances form a (projected) deformed

lattice, encoding the length and Lyapunov exponents of the orbit
[IKAWA’85,GÉRARD’87]

N(  ,   )=O(1)

!
"0

" !
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N(  ,   )=O(1)

!
"0

" !



Counting ”long living” resonances (2)
• K contains an elliptic periodic orbit⇒ many resonances with

Im z = O(λ−∞) =⇒ N(λ, γ) � λd−1 [POPOV,VODEV,STEFANOV]

N(     )~C 

!
"

0

!," d!1!

• K a fractal subset carrying a chaotic (hyperbolic) flow. Quantum chaos

!

"
!0

///

N(  ,   ) < C ! " #

Fractal Weyl upper bound
[SJÖSTRAND,SJÖSTRAND-ZWORSKI,N-SJÖSTRAND-ZWORSKI]

∀γ > 0,∃Cγ > 0, N(λ, γ) ≤ Cγ λν , λ→∞,

where dimMink (K ) = 2ν + 1 (so that 0 < ν < d − 1).
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Fractal Weyl law ?

N(λ, γ) ≤ Cγ λν , λ→∞,

This bound also results from a volume estimate : count the number of
quantum states ”living” in the λ−1/2-neighbourhood of K .

Fractal Weyl Law conjecture : this upper bound is sharp, at least at the level
of the power ν.

Several numerical studies confirm the conjecture
[LU-SRIDHAR-ZWORSKI,GUILLOPÉ-LIN-ZWORSKI,SCHOMERUS-TWORZYDŁO].

Only proved for a discrete-time toy model
(quantum baker’s map) [N-ZWORSKI]
A chaotic open map B : T2 → T2 is quantized
into a family (BN)N∈N of subunitary N × N
matrices, where N ≡ ~−1.

Fractal Weyl law in this context :
# Spec(BN) ∩ {e−γ ≤ |z| ≤ 1} ∼ Cγ Nν as
N →∞, where ν = dim(trapped set of B)

2 < 1.
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Fractal Weyl law galore

FWL for quantum maps search for FWL in certain families (MN)N→∞ of
large matrices
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Experimental studies on microwave billiards. [KUHL et al.’12]
Major difficulty : extract the ”true” resonances from the signal.


