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Part I: spectral triples from ergodic actions

Theorem (G. & Grensing – 2013)
If

a compact Lie group G acts ergodically
on a (unital) C∗-algebra A,

then
a n+-summable spectral triple (A,H ,D) is defined.

Remarks:
Links algebraic and analytic properties.
Recovers spectral triples on NC tori.
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Plan of the talk

Joint project with M. Grensing.

Aims of the talk:

1 Construct a spectral triples from ergodic actions.

2 Introduce Generalized Crossed Products (GCPs).

3 Sketch construction of spectral triple on these GCPs.

Disclaimers:
all algebras are unital.
Part on GCPs is still work in progress!
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Ergodic actions of compact Lie groups
Definition
α : G y A is ergodic if (∀g ∈ G , αg (a) = a) =⇒ a ∈ C1.

Theorem (Høegh-Krohn, Landstad & Størmer – 1981)
If α : G y A is ergodic, then

the unique G-invariant state of A is a trace τ .

Corollary
The Hilbert space H0 := GNS(A, τ) is endowed with a
covariant representation of A and G.

Covariance relation: ∀a ∈ A,∀x ∈H0,
αg (a)x = UgaU∗gx . (Covariance)

Dense G-smooth A ⊆ A and H ∞
0 ⊆H0. Basis (∂j) of g,

∂A
j (a)ξ = ∂j(ax)− a∂j(x) = [∂j , a]x (Comm)

Relation [∂j , a] = ∂A
j (a): yields bounded commutators.
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Definition and properties of the Dirac operator

Cl(n), (complexified) Clifford algebra gen. by n elements Fj s.t.

F ∗j = −Fj FjFk + FkFj = −2δjk . (Def-F)

Let S be a (fin. dim.) Clifford module, identify Fj with π(Fj),

D :=
∑

∂j ⊗ Fj (Dirac)

is a symmetric unbounded operator on H ∞
0 ⊗ S.

Properties:
(i) D has bounded commutators – clear from (Comm).
(ii) D is essentially selfadjoint: ran(D ± i) dense,

via Peter-Weyl decomposition of H0. Details

(iii) Grading, first order condition, Real structure... Details

(iv) D is n+-summable.
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Summability condition
If T compact op., then |T | := (T ∗T )1/2 compact positive.
|T | admits a basis of eigenvectors,
with eigenvalues λ1 > λ2 > · · · (with multiplicities).

The ideal Ln+ ⊆ B(H ) is defined by

Ln+
:=

{
T ∈ B(H )

∣∣∣∣ sup
k

λ1 + · · ·+ λk
k(n−1)/n <∞

}
.

Definition
A spectral triple is n+-summable if (1 + D2)−1/2 ∈ Ln+ .

Such summable spectral triple defines a cyclic cocycle.

Example:
The spectral triple (C∞(M),H , /D) on a dimension n spin
manifold is n+-summable.
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Spectral subspaces for ergodic actions

Given E`, irrep. of G of dim. d`, with norm. char.
χ`(g) = d` Tr(π`(g−1)), the associated spectral subspace is:

A` :=

{∫
G
χ`(g)αg (a)dg

∣∣∣∣a ∈ A
}
⊆ A.

It decomposes into m` copies of E`.

Theorem (Høegh-Krohn, Landstad & Størmer – 1981)
If α : G y A is ergodic, then

the multiplicity m` as above is bounded: m` 6 d`.

Theorem (G. & Grensing – 2013)
Given an ergodic action on A, with H0 as above,

D has compact resolvent and is n+-summable.
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Part I: GNS for G compact

Theorem (G. & Grensing – 2013)
Given an ergodic action on A, with H0 as above,

D has compact resolvent and is n+-summable.

Idea of proof: comparison with spectral triple on A = C∞(G).

Set Href := L2(G)⊗ S and Dref defined by (Dirac).
Peter-Weyl’s decomposition for Href:

Href =
⊕

E` ⊗Cd` ⊗ S.

Considering the trivial spin structure on G , Dref is a Dirac
operator on A = C∞(G).
Hence Dref has compact resolvent and is n+-summable.
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Part I: end of proof
Peter-Weyl’s decomposition for H0:

H0 =
⊕

E` ⊗Cm`

Since H0 = GNS(A, τ) and multiplicities in A are
controlled (prev. Theorem), get m` 6 d`.
Thus H0 ⊗ S ↪→Href; Dref and D coincide on E`,k .
Writing λk (resp. µk) for eigenvalues of Dref (resp. D).
Get λk 6 µk : suppressing terms in increasing sequence
yields a faster increasing sequence.
Consider f (x) = (1 + x2)−1/2.

Setting λ′k := f (λk) and µ′k := f (µk), we get µ′k 6 λ′k .
Dref is n+-summable means∥∥∥∥(1 + D2

ref

)−1/2∥∥∥∥
n+

= sup
k

∑k−1
p=0 λ

′
p

k(n−1)/n <∞.

Consequently, D is n+-summable:∥∥∥∥(1 + D2
)−1/2∥∥∥∥

n+
= sup

k

∑k−1
p=0 µ

′
p

k(n−1)/n 6
∥∥∥∥(1 + D2

ref

)−1/2∥∥∥∥
n+
<∞.
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Remarks on Part I and further research
About the degree of summability:

We only get an upper bound on summability.
It is not saturated in general!
However, orientability condition – Hochschild cocycle
c =

∑
c0,j ⊗ c1,j ⊗ · · · ⊗ cn,j ∈ Zp(A ,A ) s.t.∑

c0,j [D, c1,j ] · · · [D, cn,j ] = γ.

Perspectives:
Is the trace ϕ(a) = Trω a|D|−n G-invariant?

Consequences: if ϕ is G-inv. then
∃λ > 0 s.t. ϕ = λτ (unicity of G-inv. τ),
thus we should get:

Trω
(
γa0[D, a1] · · · [D, an][D|−n)=∑

ε(σ)τ
(
a0∂σ(1)(a1) · · · ∂σ(n)(an)

)
It works for NC 2-tori and Quantum Heisenberg Manifolds!
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About the degree of summability:

We only get an upper bound on summability.
It is not saturated in general!
However, orientability condition – Hochschild cocycle
c =

∑
c0,j ⊗ c1,j ⊗ · · · ⊗ cn,j ∈ Zp(A ,A ) s.t.∑

c0,j [D, c1,j ] · · · [D, cn,j ] = γ.

Perspectives:
Is the trace ϕ(a) = Trω a|D|−n G-invariant?

Consequences: if ϕ is G-inv. then
∃λ > 0 s.t. ϕ = λτ (unicity of G-inv. τ),
thus we should get:

Trω
(
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Generalized Crossed Products (GCP)

A with σ, pointwise continuous gauge action of S1 = R/Z.

∀a ∈ A, t 7→ σt(a) 1-periodic, Banach-valued cont. funct.
Fourier series: introduce subspaces An, n ∈ Z

An =
{
a ∈ A

∣∣∣∀t ∈ R, σt(a) = ei2πnta
}
.

“· · · ⊕ A−2 ⊕ A−1 ⊕ A0 ⊕ A1 ⊕ A2 ⊕ · · · ” is dense in A.

Properties: A−1 = (A1)∗; A1, Hilbert bimodule over A0 Def. .

Definition (Generalized Crossed Product)
The C∗-algebra A is a generalized crossed product iff it is

generated (as C∗-algebra) by A0 and A1.

Inversely, given B = A0 (basis algebra) and E = A1,
 define A = B oE Z, as universal C∗-algebra

generated by b ∈ B and ξ ∈ E .
11
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Examples of GCP – QHM
Examples of GCP:

Crossed products by Z: take A0 = B and E = BU;

Commutative case: if moreover A∗1A1 = A0, then
continuous functions on a S1-principal bundle P → X :

B = C(X ) A = C(P).

The gauge action corresponds to the principal action.

Quantum Heisenberg Manifolds (QHM – Rieffel, 1989):
Take B := C(T 2), E := Γ(T 2;L), line bundle L → T 2.
Natural right action B on E and Hermitian structure.
Left action: b · ξ = ξτµ,ν(b), translat. on T 2 by µ, ν ∈ R .
“Twisted” left Hermitian structure.

QHM: algebras Dc
µ,ν , indices c ∈ Z (class. L) and µ, ν ∈ R.

Also: ergodic action of Heisenberg group.
12
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Vertical class in K -homology
All GCP come with a natural class in KK1(A,B). Def.

The action σ yields a conditional expectation E : A→ B.
It induces a A-B-C∗-correspondance X :

X is a right B-Hilbert module, completion of A for

〈a1, a2〉B = E(a∗1a2).

A acts naturally on the left of X .

Gauge action σt(b) = b, σt(ξ) = ei2πtξ extends naturally
to X . Denote ∂t its derivative.

(X , ∂t) = [∂] is an unbounded Kasparov module in KK1(A,B)
(see e.g. Wahl ’10 or Carey, Neshveyev, Nest & Rennie ’11).

Definition (Vertical class)
We call [∂] the vertical class of the GCP A.
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Summary of the construction

Idea: investigate “permanence properties” of spectral triples,
just like in Adam Skalski’s talk.

Assume that:
1 S1 y A is a GCP with B := AS1 ,
2 (B,H ,D) is a spectral triple on B

with D described by (Dirac) as in Part I,
3 we have a two-sided Hermitian connexion ∇ on E = A1

which is associated to D
then

Conjecture
1 we construct a spectral triple (A,H ,D) on A = B oE Z,
2 in KK -theory, [D] represents the (inner) Kasparov product:

[D] = [∂]⊗B [D].

14



Spectral
triples

O.G.

Spectral triple
from ergodic
action

Generalized
Crossed
Products

Spectral
triples as
Kasparov
products

Conclusion

Connexions
For D =

∑
∂j ⊗ Fj , then B-bimodule of differential forms is

Ω1
D :=

{∑
b0,j [D, b1,j ]

∣∣∣b0,j , b1,j ∈ B
}
⊆ B ⊗ 〈F1, . . . ,Fn〉.

Definition (connexion)
A connexion is densely defined map ∇ : E → E ⊗B Ω1

D s.t.

∇(ξb) = (∇ξ)b + ξ ⊗ [D, b] (R-Connexion)

Proposition
∇ satisfies (R-Connexion) iff there are maps ∇j : E → E s.t.

∇(ξ) =
∑
∇j(ξ)⊗ Fj ∇j(ξb) = ∇j(ξ)b + ξ∂j(b)

Proof: identify E ⊗B Ω1
D with E ⊗ 〈F1, . . . ,Fn〉 and expand...
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Two-sided Hermitian connexions: definition
For our purposes, we will need more properties:

Definition
A two-sided Hermitian connexion on E is ∇ =

∑
∇j ⊗ Fj s.t.

∇j(ξb) = ∇j(ξ)b + ξ∂j(b) ∂j(ξ
∗η) = ∇j(ξ)∗η + ξ∗∇j(η)

(Hermitian right-connexion) and:

∇j(bξ) = ∂j(b)ξ + b∇j(ξ) ∂j(ξη
∗) = ∇j(ξ)η∗ + ξ∇j(η)∗.

Define A as ∗-algebraic span of B and E inside A = B oE Z.

Hypotheses on ∇j and ∂j suffice to obtain:
∇j unique ∗-derivation on A extending ∇j and ∂j .

Necessary properties:

∇j(η · ξ) := ∇j(η) · ξ + η · ∇j(ξ) ∇j(ξ
∗) :=

(
∇j(ξ)

)∗
.

16
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Two-sided Hermitian connexions: examples
Example 1: action β of Lie group G on E over B:

Definition
A Hilbert bimodule action β associated to α satisfies:

β(ξb) = β(ξ)α(b) α (〈ξ, η〉B) = 〈β(ξ), β(η)〉B
β(bξ) = α(b)β(ξ) α (B〈ξ, η〉) = B〈β(ξ), β(η)〉

Infinitesimal generators of β  two-sided Hermitian connexion.
Link part 1: β  action G y A, combine gauge action,

 obtain action of G × S1 and apply previous theory!

Example 2: quantum Heisenberg manifolds. Reminder:
B = C(T 2) and E = C(T 2;L) with L → T 2, line bundle.
Action α of G := T 2 on B  canonical Dirac on B.
Connexion ∇ on E assoc. to α, two-sided and Hermitian.
Not of the previous type: curvature ∇2 6= 0!
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Spectral triple: algebraic expression

Reminder: X , C∗-correspondence constructed from A to B
obtained out of E : A→ B, conditional expectation.

If (B,H ,D), spectral triple on basis B of A,
define a spectral triple (A,H ,D) by

H := X ⊗B H (well-defined Hilbert space),
A represented on H by a · ([a′]⊗ x) = [aa′]⊗ x ,
If (B,H ,D) is even with grading γ (acting on S), set

D :=
∑

(∇j ⊗ 1 + 1⊗ ∂j)⊗ Fj + ∂t ⊗ 1⊗ γ

with domain Dom(D) = A �B H ∞
0 ⊗ S.

For odd spectral triple, double S and more involved expression.
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Unbounded symmetric operator

D =
∑

(∇j ⊗ 1 + 1⊗ ∂j)⊗ Fj + ∂t ⊗ 1⊗ γ

on Dom(D) = A �B H ∞
0 ⊗ S defines a symmetric operator:

1 Is D well-defined?
Problem of the tensor product over B:
∇j(ab)⊗ x + ab ⊗ ∂j(x) = ∇j(a)⊗ bx + a ⊗ ∂j(bx).

Requires:
right-connection property: ∇j(ab) = ∇j(a)b + a∂B

j (b),
and ∂j(bx) = ∂B

j (b)x + b∂j(x).
2 Is D symmetric?

∇j and ∂t commute with the gauge action...
... hence consider η ⊗ x and η′ ⊗ x ′ for η, η′ ∈ Xn.
Check property for all j separately. Clear for ∂t .

3 Does D have bounded commutators?
Yes! Action of A on Dom(D) and ∇j derivations.
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Selfadjoint operator

The difficulties that remain:
show that D is selfadjoint;
prove that it has compact resolvent.

To prove this rely on:
Spectral flow and the unbounded Kasparov product

by J. Kaad and M. Lesch (to appear)
Given two unbounded Kasparov modules, they show how to:

1 construct another unbounded Kasparov module,
2 prove this is the Kasparov product of the original modules

Similar to B. Mesland ’09...
...major technical improvements: “C1-version” of Hilbert
module (operator ∗-module) instead of “smooth version”.
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Operator ∗-algebra

Definition (Operator ∗-algebra, Mesland ’09 & Ivankov ’11)
A Banach algebra B is an operator ∗-algebra if

1 B is an operator space, Def.

2 the multiplication m on B is completely bounded,
3 the involution ∗ on B is also completely bounded.

Example: π : B → L(FC ) faithful rep. and δ : B → L(F ) s.t.
δ(bb′) = δ(b)π(b′) + π(b)δ(b′) δ(b∗) = Uδ(b)∗U

for some unitary U ∈ L(F ) which commutes with b ∈ B,
we obtain an operator ∗-algebra B1 as completion of B for:

ρB(b) =

(
π(b) 0
δ(b) π(b)

)
∈ L(F ⊕ F ).

Properties:
B1 is a subalgebra of B iff δ is closable.
In this case, B1 is stable under holom. funct. calculus. 21
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Operator ∗-module
Similar “C1-version” for Hilbert module: operator ∗-module.

Definition (operator ∗-module, Kaad & Lesch ’11)
Y1 is an operator ∗-module over the operator ∗-algebra A1 if:

Y1 is an operator space,
the product Y1 × A1 → Y1 is completely bounded,
there is a completely bounded pairing Y1 × Y1 → A1 with
the usual properties of Hilbert modules,
Y1 is a direct summand of the standard module over A1.

Example: given
(π, δ) for B ⊆ B as before and
E dense in E , f.g proj. Hilbert module with 〈E , E〉 ⊆ B1,
with a Hermitian closable connection ∇ assoc. to δ,

then we get an operator ∗-module E1 as completion of E for

ρE (ξ) =

(
π(ξ) 0
∇(ξ) π(ξ)

)
∈ L(F ⊕ F ).
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Frames of operator ∗-module

Proposition (G. & Grensing - ’13)
Given a Hermitian closable connexion ∇ and a finitely
generated proj. E with 〈E1,E1〉 ⊆ B1 then

there is a frame of E inside E1.

Conversely, a frame of E inside E1 imposes that ∇ is closable.

In particular, E1 is a direct summand of BN
1 .

Proof: (first implication only)
Consider C1 := {T ∈ EndB(E )|T (E1) ⊆ E1}.
∂(T )(ξ) := ∇(T (ξ))− (T ⊗ 1)(∇(ξ)) is a densely defined
and closed derivation on End(E ).
C1 ⊆ End(E ), dense and stable under holom. calculus.
Frame for E , perturb and rectify  frame for E1.

Use this to construct a closable connexion ∇ on X ,
assuming E is left and right f.g. projective.
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Kasparov product (Kaad–Lesch)

Theorem (Kaad-Lesch, to appear)
If

(X ,D1) and (Y ,D2) are two unbounded Kasparov
modules for (A,B) and (B,C) resp.
there is a correspondence (X1,∇) from (X ,D1) to (Y ,D2),
∇D2 : X1 → X ⊗̂BL(Y ) be any Hermitian D2-connexion,

then
(D1 ×∇ D2, (X ⊗̂BY )2), even Kasparov A-C module...
...which is the Kasparov product of (X ,D1) and (Y ,D2).

Definition
A D2-connexion ∇ is a completely bounded linear map
∇ : X1 → X ⊗̂L(Y ) which is a (R-Connexion).

We can now apply this theorem to (X ,D1) the vertical class [∂]
and (Y ,D2) the spectral triple on B. 24
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Outline

1 Spectral triples from ergodic actions

2 Generalized crossed products

3 Extension of spectral triples to GCP by Kasparov products

4 Conclusion
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Conclusion

Summary:
Construction of spectral triples from ergodic actions.

Introduction of Generalized Crossed Products (GCP).

Extension of spectral triples from basis to GCP.

Perspectives:

Link between
∫
−a|D|−n and τ?

Do the same “extension construction” and Kasparov
product for SU(2)-principal bundles?
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Thank you for your attention!

...
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Additional properties
Spectral triple of dimension n = dimG .
Parity For even n, grading operator γ s.t. γ2 = 1, γ∗ = γ

aγ = γa Dγ = −γD
Motivations: K -homology.
Real structure and order one
Norm-preserving antilinear operator J : H →H s.t.

[a, Jb∗J ] = 0, [[D, a], Jb∗J ] = 0, J2 = εJ

and
J(Dom(D)) ⊆ Dom(D) JD = εDDJ J γ = εγγ J ,

with εJ , εD and (possibly) εγ in ±1, depending on n Table .

Motivations:
KR-homology for A ⊗A 0 with Σ(a ⊗ b0) = b∗ ⊗ (a∗)0,
H as A-bimodule, Poincaré duality in KK -theory. More

For Poincaré duality: K -theory class in K (A⊗ A0)? Back
29
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Operator spaces

A Banach space (X , ‖ · ‖) is an operator space if there exists a
norm ‖ · ‖X : M(X )→ [0,∞) on the finite matrices over X s.t.

for all finite matrices over C v ,w ∈ M(C), and any
matrix x ∈ M(X ), we have:

‖v · x · w‖X 6 ‖v‖C ‖x‖X ‖w‖C

for any projections p, q ∈ M(C) with pq = 0 and
x , y ∈ M(X ), we have:

‖pxp + qyq‖X = max{‖pxp‖X , ‖qyq‖X}

for any projection p ∈ M(C) of rank 1 and x ∈ X , we
have ‖p ⊗ x‖X = ‖x‖.

Last condition: original ‖ · ‖ is “compatible” with ‖ · ‖X .
Back
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Unbounded Kasparov modules

Definition
An unbounded Kasparov module A-B module is (X ,D) where

X , B-Hilbert module with action ϕ : A→ L(XB),
D is an unbounded regular selfadjoint operator on X ,

such that
there is a dense subalgebra A ⊆ A with

a(Dom(D)) ⊆ Dom(D),
and [D, a] extends to a bounded operator on X ,

the resolvent (D − i)−1 ∈ K(X ) is B-compact.

In particular, D has to be selfadjoint. Regular operator

Back

31



Spectral
triples

O.G.

GNS

Selfadj. op.

Covariant representation and compact Lie groups

Proposition
If G is compact, then

D defined in (Dirac) is essentially selfadjoint. Def.

Proof:
Criterion: both ran(D ± i) are dense in H = H0 ⊗ S. Reminder

By Peter-Weyl’s decomposition theorem:
H0 =

⊕
E` ⊗Cm`

For each E`, choose spaces E`,k . Projections P`,k on H0.
Q`,k := P`,k ⊗ 1S commutes with D.
Q`,kD selfadjoint on finite dimensional space,
hence it has real eigenvalues and...
... Q`,kD ± i is surjective!

Corollary of proof: D admits a basis of eigenvectors.
Back
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Regular operator

Let E and F be two Hilbert modules over A.

Definition
A regular (unbounded) operator from E to F is
a densely defined closed A-linear map T : Dom(T )→ F s.t.

T ∗ is densely defined,
and 1 + T ∗T has dense range.

Lemma
If T : E → E is densely defined and selfadjoint, then

T is regular if and only if the operators T ± i are surjective.

Back
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Clifford algebra Cl(n) – II

Proposition (Dabrowski & Dossena – 2011)
For any n ∈ N, consider S with its matrices as in (Def-F).

For even n, grading operator γS with γ∗S = γS , γ2S = 1 and
γSFj = −FjγS .
Antilinear map JS s.t. 〈JSs, JSs ′〉 = 〈s ′, s〉 and

J2S = εJ JSFj = εDFjJS JS γS = εγγS JS ,

where εJ , εD and εγ : either −1 or 1, as in Table Real structure .

If H0 = GNS(A, τ) for a G-invariant trace τ on A,
H0 is naturally endowed with a covariant rep. of (A,G),
we use the above to get better properties for D.

34



Spectral
triples

O.G.

GNS

Selfadj. op.

Unbounded symmetric operator – part II
If H0 = GNS(A, τ), consider H := H0 ⊗ S and still
D =

∑
∂j ⊗ Fj defined on Dom(D) = H ∞

0 ⊗C S ⊆H .

Proposition
The operator D on H has further properties:
(iii) For even n, grading operator γ = 1⊗ γS s.t. γ2 = 1 and

for all a ∈ A,

γa = aγ γ(DomD) ⊆ Dom(D) γD = −Dγ;

(iv) D has a real structure, i.e. antilinear J = J0 ⊗ JS on H
with commutation relations of Real structure .

(v) D and J satisfy the first order condition, i.e. for all
a, a′ ∈ A , [

[D, a′], Ja∗J−1
]

= 0;

(vi) D admits a selfadjoint extension D̃.
35
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Sketch of proof

General idea: use properties of tensor product.
(iii) Grading operator: γ = 1⊗ γS and γS satisfies all required

properties...
(iv) Real structure: J = J0 ⊗ JS . Since H0 := GNS(A, τ), the

set [a] ∈H0 is dense. Set J0
(
[a]
)

= [a∗] then

UgJ0
(
[a]
)

= [αg (a∗)] = [αg (a)∗] = J0Ug
(
[a]
)

and all properties follow.
(v) First order condition: notice that J0bJ−10

(
[a]
)

= [ab∗] so
[D, a′] and JaJ−1 act on “different sides” of H .

(vi) Selfadjoint extension: very different idea. Requires a
theorem by von Neumann.

Existence of selfadjoint extension: why is it interesting?

36



Spectral
triples

O.G.

GNS

Selfadj. op.

Example of conditions: real structure

Real structure antilinear operator J : H →H s.t.
〈Jξ, Jη〉 = 〈η, ξ〉, J2 = εJ , [a, Jb∗J ] = 0 and

J(Dom(D)) ⊆ Dom(D) JD = εDDJ J γ = εγγ J ,

where εJ , εD and (possibly) εγ are all ±1, depending on n:
n 0 2 4 6 1 3 5 7
εJ + − − + + − − +
εD + + + + − + − +
εγ + − + −

Motivations:
Real K -homology (KR-homology). Spin.
Turns H into A ⊗A op module. Natural involution
a ⊗ bop 7→ b∗ ⊗ (a∗)op. Poincaré duality.
Tomita operator (traceless case).

Clifford algebra Additional properties

37
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Hilbert bimodule
Hilbert bimodule: a Hilbert module on both left and right.

Definition (Hilbert bimodule)
A-B-bimodule E such that

E is a left A-Hilbert module,
with an A-valued scalar product A〈 , 〉.

E is a right A-Hilbert module,
with an A-valued scalar product 〈 , 〉A.

condition de compatibilité : pour tous ξ, ζ, η dans E ,

ξ〈ζ, η〉B = A〈ξ, ζ〉η.

Closely related notion: Morita equivalence bimodule.
Example:
E = A with the standard action on both sides and

A〈ξ, η〉 = ξη∗ 〈ξ, η〉A = ξ∗η. Back
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Modules hilbertiens : idée générale

Idée : généralisation des espaces hilbertiens pour C∗-algèbres
autres que C.

Exemple dans le cas commutatif :
M, variété riemannienn lisse et A = C(M).
TM, fibré tangent de M.

E , sections continues de TM: module sur A.
Formule 〈ξ, η〉(x) = 〈ξ(x), η(x)〉: définit un produit scalaire à
valeur dans A !

Definition (: module hilbertien (à droite))
E , A-module (à droite) et produit scalaire 〈·, ·〉 à valeur dans A.

Définition similaire pour les modules hilbertiens à gauche.
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Modules hilbertiens : définition complète

Soit A une C∗-algèbre,

Definition (: module hilbertien (à droite))
E , A-module à droite et 〈·|·〉, produit scalaire à valeur dans A:
for all ξ, η ∈ E and a ∈ A,

1 0 6 〈ξ|ξ〉 dans A.
2 〈ξ|ξ〉 = 0⇐⇒ ξ = 0
3 〈ξ|η a〉 = 〈ξ|η〉a
4 〈ξ|η〉∗ = 〈η|ξ〉
5 E est complet pour la norme ‖ξ‖ = ‖〈ξ|ξ〉‖

1
2 .

Retour
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Poincaré duality in KK -theory

Let A and B be two C∗-algebras, assume we have two elements

α ∈ KK (A⊗ B,C) β ∈ KK (C,A⊗ B)

such that

β ⊗A α = 1B ∈ KK (B,B) β ⊗B α = 1A ∈ KK (A,A)

which exchanges K -theory and K -homology for A and B:

K∗(A) = KK (C,A) ' KK (B,C) = K ∗(B)

K∗(B) = KK (C,B) ' KK (A,C) = K ∗(A)

Back
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Reminder: unbounded operators Back

Definition
Given densely defined T , Dom(T ∗) set of x ∈H s.t.

∃z ∈H ,∀y ∈ Dom(T ), 〈x ,Ty〉 = 〈z , y〉.
The adjoint T ∗ of T is defined by T ∗x = z .
T selfadjoint iff T = T ∗ (in part. Dom(T ) = Dom(T ∗)).

Delicate equilibrium: enlarging Dom(T ) puts more constraints,
thus restricting Dom(T ∗)...

For symmetric T , i.e. ∀x , y ∈ Dom(T ), 〈Tx , y〉 = 〈x ,Ty〉,
we have Dom(T ) ⊆ Dom(T ∗).
In this case, the closure T is defined on Dom(T ),
completion of Dom(T ) for ‖x‖2T = ‖x‖2 + ‖Tx‖2.

T is essentially selfadjoint if T is selfadjoint.

The spectral theorem only holds for selfadjoint operators!
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Reminder: essentially selfadjoint operators Back

Proposition
If T is symmetric, TFAE:

1 T is essentially selfadjoint;
2 ker(T ∗ + i) = {0} and ker(T ∗ − i) = {0};
3 Both ran(T + i) and ran(T − i) are dense in H .

Example: T = id/ds with
Dom(T ) := {f ∈ H1([0, 1]), f (0) = 0 = f (1)}

Integration by parts: T is symmetric.
Adjoint: T ∗ = id/ds on Dom(T ∗) = H1([0, 1]),

 no restriction on f (0) and f (1)!
T is not essentially selfadjoint:
e±s ∈ Dom(T ∗) and (T ∗ ± i)e±s = 0.

Selfadjoint extensions? Yes! Tα for |α| = 1 with:
Dom(Tα) := {f ∈ AC([0, 1]), f (0) = αf (1)}
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