Lie group actions, spectral triples and generalized crossed products

Olivier GABRIEL

Georg-August-Universität Göttingen

Fields Institute, Toronto – June 28th 2013

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Part I: spectral triples from ergodic actions

Theorem (G. & Grensing – 2013)

lf

- a compact Lie group G acts ergodically
- on a (unital) C*-algebra A,

then

• a n^+ -summable spectral triple (A, \mathcal{H}, D) is defined.

Remarks:

- Links algebraic and analytic properties.
- Recovers spectral triples on NC tori.

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Joint project with M. GRENSING.

Aims of the talk:

Onstruct a spectral triples from ergodic actions.

Introduce Generalized Crossed Products (GCPs).

Sketch construction of spectral triple on these GCPs.

Disclaimers:

- all algebras are unital.
- Part on GCPs is still work in progress!

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Definition

 $\alpha \colon {\sf G} \curvearrowright {\sf A} \text{ is ergodic if } (\forall {\sf g} \in {\sf G}, \alpha_{\sf g}({\sf a}) = {\sf a}) \implies {\sf a} \in \mathbb{C}1.$

Theorem (Høegh-Krohn, Landstad & Størmer – 1981)

If α : $G \curvearrowright A$ is ergodic, then

the unique G-invariant state of A is a trace τ .

Corollary

The Hilbert space $\mathscr{H}_0 := GNS(A, \tau)$ is endowed with a covariant representation of A and G.

Covariance relation: $\forall a \in A, \forall x \in \mathscr{H}_0$,

 $\alpha_{g}(a)x = U_{g}aU_{g}^{*}x. \qquad (\text{Covariance})$ ense *G*-smooth $\mathscr{A} \subseteq A$ and $\mathscr{H}_{0}^{\infty} \subseteq \mathscr{H}_{0}$. Basis (∂_{j}) of \mathfrak{g} , $\partial_{j}^{\mathscr{A}}(a)\xi = \partial_{j}(ax) - a\partial_{j}(x) = [\partial_{j}, a]x \qquad (\text{Comm})$ elation $[\partial_{j}, a] = \partial_{j}^{\mathscr{A}}(a)$: yields bounded commutators. Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Definition

$$\alpha\colon {\boldsymbol{\mathsf{G}}} \curvearrowright {\boldsymbol{\mathsf{A}}} \text{ is ergodic if } (\forall {\boldsymbol{\mathsf{g}}} \in {\boldsymbol{\mathsf{G}}}, \alpha_{{\boldsymbol{\mathsf{g}}}}({\boldsymbol{\mathsf{a}}}) = {\boldsymbol{\mathsf{a}}}) \implies {\boldsymbol{\mathsf{a}}} \in \mathbb{C} 1.$$

Theorem (Høegh-Krohn, Landstad & Størmer – 1981)

If $\alpha \colon \mathcal{G} \curvearrowright \mathcal{A}$ is ergodic, then

the unique G-invariant state of A is a trace τ .

Corollary

The Hilbert space $\mathscr{H}_0 := GNS(A, \tau)$ is endowed with a covariant representation of A and G.

Covariance relation: $\forall a \in A, \forall x \in \mathscr{H}_0$,

 $\alpha_g(a)x = U_g a U_g^* x. \qquad (\text{Covariance})$ ise *G*-smooth $\mathscr{A} \subseteq A$ and $\mathscr{H}_0^{\infty} \subseteq \mathscr{H}_0$. Basis (∂_j) of \mathfrak{g} , $\partial_j^{\mathscr{A}}(a)\xi = \partial_j(ax) - a\partial_j(x) = [\partial_j, a]x \qquad (\text{Comm})$ ation $[\partial_j, a] = \partial_j^{\mathscr{A}}(a)$: yields bounded commutators. Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Definition

$$\alpha\colon {\boldsymbol{\mathsf{G}}} \curvearrowright {\boldsymbol{\mathsf{A}}} \text{ is ergodic if } (\forall {\boldsymbol{\mathsf{g}}} \in {\boldsymbol{\mathsf{G}}}, \alpha_{{\boldsymbol{\mathsf{g}}}}({\boldsymbol{\mathsf{a}}}) = {\boldsymbol{\mathsf{a}}}) \implies {\boldsymbol{\mathsf{a}}} \in \mathbb{C} 1.$$

Theorem (Høegh-Krohn, Landstad & Størmer – 1981)

If $\alpha : G \curvearrowright A$ is ergodic, then

the unique G-invariant state of A is a trace τ .

Corollary

The Hilbert space $\mathscr{H}_0 := GNS(A, \tau)$ is endowed with a covariant representation of A and G.

Covariance relation: $\forall a \in A, \forall x \in \mathscr{H}_0$,

 $\alpha_g(a)x = U_g a U_g^* x.$ (Covariance)

Dense *G*-smooth $\mathscr{A} \subseteq A$ and $\mathscr{H}_0^{\infty} \subseteq \mathscr{H}_0$. Basis (∂_j) of \mathfrak{g} ,

 $\partial_j^{\mathscr{A}}(a)\xi = \partial_j(ax) - a\partial_j(x) = [\partial_j, a]x \qquad (Comm)$ tion $[\partial_i, a] = \partial_i^{\mathscr{A}}(a)$; yields bounded commutators. Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Definition

$$\alpha\colon {\boldsymbol{\mathsf{G}}} \curvearrowright {\boldsymbol{\mathsf{A}}} \text{ is ergodic if } (\forall {\boldsymbol{\mathsf{g}}} \in {\boldsymbol{\mathsf{G}}}, \alpha_{{\boldsymbol{\mathsf{g}}}}({\boldsymbol{\mathsf{a}}}) = {\boldsymbol{\mathsf{a}}}) \implies {\boldsymbol{\mathsf{a}}} \in \mathbb{C} 1.$$

Theorem (Høegh-Krohn, Landstad & Størmer – 1981)

If $\alpha : G \curvearrowright A$ is ergodic, then

the unique G-invariant state of A is a trace τ .

Corollary

The Hilbert space $\mathscr{H}_0 := GNS(A, \tau)$ is endowed with a covariant representation of A and G.

Covariance relation: $\forall a \in A, \forall x \in \mathscr{H}_0$,

 $\alpha_g(a)x = U_g a U_g^* x.$ (Covariance)

Dense *G*-smooth $\mathscr{A} \subseteq A$ and $\mathscr{H}_0^{\infty} \subseteq \mathscr{H}_0$. Basis (∂_j) of \mathfrak{g} ,

 $\partial_j^{\mathscr{A}}(a)\xi = \partial_j(ax) - a\partial_j(x) = [\partial_j, a]x$ (Comm)

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Definition

$$lpha : \mathbf{G} \curvearrowright \mathbf{A} \text{ is ergodic if } (\forall \mathbf{g} \in \mathbf{G}, lpha_{\mathbf{g}}(\mathbf{a}) = \mathbf{a}) \implies \mathbf{a} \in \mathbb{C} 1.$$

Theorem (Høegh-Krohn, Landstad & Størmer – 1981)

If $\alpha : G \curvearrowright A$ is ergodic, then

the unique G-invariant state of A is a trace τ .

Corollary

Rela

The Hilbert space $\mathscr{H}_0 := GNS(A, \tau)$ is endowed with a covariant representation of A and G.

Covariance relation: $\forall a \in A, \forall x \in \mathscr{H}_0$,

 $\alpha_g(a)x = U_g a U_g^* x.$ (Covariance)

Dense *G*-smooth $\mathscr{A} \subseteq A$ and $\mathscr{H}_0^{\infty} \subseteq \mathscr{H}_0$. Basis (∂_j) of \mathfrak{g} ,

$$\partial_j^{\mathscr{A}}(a)\xi = \partial_j(ax) - a\partial_j(x) = [\partial_j, a]x$$
 (Comm)
tion $[\partial_j, a] = \partial_i^{\mathscr{A}}(a)$: yields bounded commutators.

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Definition and properties of the Dirac operator

 $\mathbb{C}I(n)$, (complexified) Clifford algebra gen. by *n* elements F_j s.t.

$$F_j^* = -F_j \qquad F_j F_k + F_k F_j = -2\delta_{jk}. \qquad (\text{Def-F})$$

Let S be a (fin. dim.) Clifford module, identify F_j with $\pi(F_j)$,

$$D := \sum \partial_j \otimes F_j \qquad (\text{Dirac})$$

is a symmetric unbounded operator on $\mathscr{H}_0^{\infty} \otimes S$.

Properties:

- (i) *D* has bounded commutators clear from (Comm).
- (ii) D is essentially selfadjoint: $ran(D \pm i)$ dense, via Peter-Weyl decomposition of \mathcal{H}_0 .
- (iii) Grading, first order condition, Real structure...
 (iv) D is n⁺-summable.

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Summability condition

If T compact op., then $|T| := (T^*T)^{1/2}$ compact positive.

- |T| admits a basis of eigenvectors,
- with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots$ (with multiplicities).

The ideal $\mathcal{L}^{n^+} \subseteq B(\mathscr{H})$ is defined by

$$\mathcal{L}^{n^+} := \left\{ T \in B(\mathscr{H}) \middle| \sup_k \frac{\lambda_1 + \cdots + \lambda_k}{k^{(n-1)/n}} < \infty \right\}.$$

Definition

A spectral triple is n^+ -summable if $(1 + D^2)^{-1/2} \in \mathcal{L}^{n^+}$.

Such summable spectral triple defines a cyclic cocycle.

Example:

The spectral triple $(C^{\infty}(M), \mathcal{H}, \mathcal{D})$ on a dimension *n* spin manifold is *n*⁺-summable.

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Spectral subspaces for ergodic actions

Given E_{ℓ} , irrep. of G of dim. d_{ℓ} , with norm. char. $\chi_{\ell}(g) = d_{\ell} \operatorname{Tr}(\pi_{\ell}(g^{-1}))$, the associated *spectral subspace* is:

$${\sf A}_\ell:=\overline{\left\{\int_{{\sf G}}\chi_\ell(g)lpha_g({\sf a})dgig|{\sf a}\in{\sf A}
ight\}}\subseteq{\sf A}.$$

It decomposes into m_{ℓ} copies of E_{ℓ} .

Theorem (Høegh-Krohn, Landstad & Størmer – 1981)

If $\alpha : G \curvearrowright A$ is ergodic, then

the multiplicity m_ℓ as above is bounded: $m_\ell \leqslant d_\ell$.

Theorem (G. & Grensing – 2013)

Given an ergodic action on A, with \mathscr{H}_0 as above,

D has compact resolvent and is n^+ -summable.

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Given an ergodic action on A, with \mathscr{H}_0 as above,

D has compact resolvent and is n^+ -summable.

Idea of proof: comparison with spectral triple on $\mathscr{A} = C^{\infty}(G)$.

• Set $\mathscr{H}_{ref} := L^2(G) \otimes S$ and D_{ref} defined by (Dirac).

 \bullet Peter-Weyl's decomposition for $\mathscr{H}_{\mathsf{ref}}$:

$$\mathscr{H}_{\mathrm{ref}} = \bigoplus E_{\ell} \otimes \mathbb{C}^{d_{\ell}} \otimes S.$$

- Considering the trivial spin structure on G, D_{ref} is a Dirac operator on A = C[∞](G).
- Hence *D*_{ref} has compact resolvent and is *n*⁺-summable.

Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Given an ergodic action on A, with \mathscr{H}_0 as above,

D has compact resolvent and is n^+ -summable.

Idea of proof: comparison with spectral triple on $\mathscr{A} = C^{\infty}(G)$.

• Set $\mathscr{H}_{ref} := L^2(G) \otimes S$ and D_{ref} defined by (Dirac).

• Peter-Weyl's decomposition for \mathscr{H}_{ref} :

$$\mathscr{H}_{\mathrm{ref}} = \bigoplus E_{\ell} \otimes \mathbb{C}^{d_{\ell}} \otimes S.$$

- Considering the trivial spin structure on G, D_{ref} is a Dirac operator on A = C[∞](G).
- Hence *D*_{ref} has compact resolvent and is *n*⁺-summable.

Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Given an ergodic action on A, with \mathscr{H}_0 as above,

D has compact resolvent and is n^+ -summable.

Idea of proof: comparison with spectral triple on $\mathscr{A} = C^{\infty}(G)$.

- Set $\mathscr{H}_{ref} := L^2(G) \otimes S$ and D_{ref} defined by (Dirac).
- Peter-Weyl's decomposition for $\mathscr{H}_{\mathsf{ref}}$:

$$\mathscr{H}_{\mathsf{ref}} = \bigoplus E_{\ell} \otimes \mathbb{C}^{d_{\ell}} \otimes S.$$

- Considering the trivial spin structure on G, D_{ref} is a Dirac operator on A = C[∞](G).
- Hence *D*_{ref} has compact resolvent and is *n*⁺-summable.

Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Given an ergodic action on A, with \mathscr{H}_0 as above,

D has compact resolvent and is n^+ -summable.

Idea of proof: comparison with spectral triple on $\mathscr{A} = C^{\infty}(G)$.

- Set $\mathscr{H}_{ref} := L^2(G) \otimes S$ and D_{ref} defined by (Dirac).
- Peter-Weyl's decomposition for $\mathscr{H}_{\mathsf{ref}}$:

$$\mathscr{H}_{\mathsf{ref}} = \bigoplus E_{\ell} \otimes \mathbb{C}^{d_{\ell}} \otimes S.$$

Considering the trivial spin structure on G, D_{ref} is a Dirac operator on 𝔄 = C[∞](G).

• Hence *D*_{ref} has compact resolvent and is *n*⁺-summable.

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Given an ergodic action on A, with \mathscr{H}_0 as above,

D has compact resolvent and is n^+ -summable.

Idea of proof: comparison with spectral triple on $\mathscr{A} = C^{\infty}(G)$.

- Set $\mathscr{H}_{ref} := L^2(G) \otimes S$ and D_{ref} defined by (Dirac).
- Peter-Weyl's decomposition for $\mathscr{H}_{\mathsf{ref}}$:

$$\mathscr{H}_{\mathsf{ref}} = \bigoplus E_{\ell} \otimes \mathbb{C}^{d_{\ell}} \otimes S.$$

- Considering the trivial spin structure on G, D_{ref} is a Dirac operator on 𝔄 = C[∞](G).
- Hence D_{ref} has compact resolvent and is n^+ -summable.

Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

• Peter-Weyl's decomposition for \mathcal{H}_0 :

$$\mathscr{H}_0 = \bigoplus E_\ell \otimes \mathbb{C}^{m_\ell}$$

- Since ℋ₀ = GNS(A, τ) and multiplicities in A are controlled (prev. Theorem), get m_ℓ ≤ d_ℓ.
- Thus $\mathscr{H}_0 \otimes S \hookrightarrow \mathscr{H}_{\mathsf{ref}}$; D_{ref} and D coincide on $E_{\ell,k}$.
- Writing λ_k (resp. μ_k) for eigenvalues of D_{ref} (resp. D).
- Get λ_k ≤ μ_k: suppressing terms in increasing sequence yields a faster increasing sequence.
- Consider $f(x) = (1 + x^2)^{-1/2}$. Setting $\lambda'_k := f(\lambda_k)$ and $\mu'_k := f(\mu_k)$, we get $\mu'_k \leq \lambda'_k$
- *D*_{ref} is *n*⁺-summable means

$$\left\| \left(1 + D_{\mathsf{ref}}^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{\rho=0}^{k-1} \lambda'_{\rho}}{k^{(n-1)/n}} < \infty.$$

• Consequently, D is n^+ -summable:

$$\left\| \left(1 + D^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{\rho=0}^{k-1} \mu'_{\rho}}{k^{(n-1)/n}} \leqslant \left\| \left(1 + D_{\text{ref}}^2 \right)^{-1/2} \right\|_{n^+} < \infty$$

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

• Peter-Weyl's decomposition for \mathscr{H}_0 :

$$\mathscr{H}_0 = \bigoplus E_\ell \otimes \mathbb{C}^{m_\ell}$$

- Since ℋ₀ = GNS(A, τ) and multiplicities in A are controlled (prev. Theorem), get m_ℓ ≤ d_ℓ.
- Thus $\mathscr{H}_0 \otimes S \hookrightarrow \mathscr{H}_{ref}$; D_{ref} and D coincide on $E_{\ell,k}$.
- Writing λ_k (resp. μ_k) for eigenvalues of D_{ref} (resp. D).
- Get λ_k ≤ μ_k: suppressing terms in increasing sequence yields a faster increasing sequence.
- Consider $f(x) = (1 + x^2)^{-1/2}$. Setting $\lambda'_k := f(\lambda_k)$ and $\mu'_k := f(\mu_k)$, we get $\mu'_k \leq \lambda'_k$
- *D*_{ref} is *n*⁺-summable means

$$\left\| \left(1 + D_{\mathsf{ref}}^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{\rho=0}^{k-1} \lambda'_{\rho}}{k^{(n-1)/n}} < \infty.$$

• Consequently, *D* is *n*⁺-summable:

$$\left\| \left(1 + D^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{\rho=0}^{k-1} \mu'_{\rho}}{k^{(n-1)/n}} \leqslant \left\| \left(1 + D_{\text{ref}}^2 \right)^{-1/2} \right\|_{n^+} < \infty$$

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

• Peter-Weyl's decomposition for \mathcal{H}_0 :

$$\mathscr{H}_0 = \bigoplus E_\ell \otimes \mathbb{C}^{m_\ell}$$

- Since ℋ₀ = GNS(A, τ) and multiplicities in A are controlled (prev. Theorem), get m_ℓ ≤ d_ℓ.
- Thus $\mathscr{H}_0 \otimes S \hookrightarrow \mathscr{H}_{\mathsf{ref}}$; D_{ref} and D coincide on $E_{\ell,k}$.
- Writing λ_k (resp. μ_k) for eigenvalues of D_{ref} (resp. D).
- Get λ_k ≤ μ_k: suppressing terms in increasing sequence yields a faster increasing sequence.
- Consider $f(x) = (1 + x^2)^{-1/2}$. Setting $\lambda'_k := f(\lambda_k)$ and $\mu'_k := f(\mu_k)$, we get $\mu'_k \leq \lambda'_k$
- *D*_{ref} is *n*⁺-summable means

$$\left\| \left(1 + D_{\mathsf{ref}}^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{p=0}^{k-1} \lambda'_p}{k^{(n-1)/n}} < \infty.$$

• Consequently, *D* is *n*⁺-summable:

$$\left\| \left(1 + D^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{\rho=0}^{k-1} \mu'_{\rho}}{k^{(n-1)/n}} \leqslant \left\| \left(1 + D_{\mathsf{ref}}^2 \right)^{-1/2} \right\|_{n^+} < \infty$$

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

• Peter-Weyl's decomposition for \mathcal{H}_0 :

$$\mathscr{H}_0 = \bigoplus E_\ell \otimes \mathbb{C}^{m_\ell}$$

- Since $\mathscr{H}_0 = \text{GNS}(A, \tau)$ and multiplicities in A are controlled (prev. Theorem), get $m_{\ell} \leq d_{\ell}$.
- Thus $\mathscr{H}_0 \otimes S \hookrightarrow \mathscr{H}_{ref}$; D_{ref} and D coincide on $E_{\ell,k}$.
- Writing λ_k (resp. μ_k) for eigenvalues of D_{ref} (resp. D).
- Get λ_k ≤ μ_k: suppressing terms in increasing sequence yields a faster increasing sequence.
- Consider $f(x) = (1 + x^2)^{-1/2}$. Setting $\lambda'_k := f(\lambda_k)$ and $\mu'_k := f(\mu_k)$, we get $\mu'_k \leq \lambda'_k$
- *D*_{ref} is *n*⁺-summable means

$$\left\| \left(1 + D_{\text{ref}}^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{p=0}^{k-1} \lambda'_p}{k^{(n-1)/n}} < \infty.$$

• Consequently, *D* is *n*⁺-summable:

$$\left\| \left(1 + D^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{\rho=0}^{k-1} \mu'_{\rho}}{k^{(n-1)/n}} \leqslant \left\| \left(1 + D_{\mathsf{ref}}^2 \right)^{-1/2} \right\|_{n^+} < \infty$$

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

• Peter-Weyl's decomposition for \mathcal{H}_0 :

$$\mathscr{H}_0 = \bigoplus E_\ell \otimes \mathbb{C}^{m_\ell}$$

- Since ℋ₀ = GNS(A, τ) and multiplicities in A are controlled (prev. Theorem), get m_ℓ ≤ d_ℓ.
- Thus $\mathscr{H}_0 \otimes S \hookrightarrow \mathscr{H}_{\mathsf{ref}}$; D_{ref} and D coincide on $E_{\ell,k}$.
- Writing λ_k (resp. μ_k) for eigenvalues of D_{ref} (resp. D).
- Get λ_k ≤ μ_k: suppressing terms in increasing sequence yields a faster increasing sequence.
- Consider $f(x) = (1 + x^2)^{-1/2}$. Setting $\lambda'_k := f(\lambda_k)$ and $\mu'_k := f(\mu_k)$, we get $\mu'_k \leq \lambda'_k$.
- *D*_{ref} is *n*⁺-summable means

$$\left\| \left(1 + D_{\mathsf{ref}}^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{\rho=0}^{k-1} \lambda'_{\rho}}{k^{(n-1)/n}} < \infty.$$

• Consequently, *D* is *n*⁺-summable:

$$\left\| \left(1 + D^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{\rho=0}^{k-1} \mu'_{\rho}}{k^{(n-1)/n}} \leqslant \left\| \left(1 + D_{\text{ref}}^2 \right)^{-1/2} \right\|_{n^+} < \infty$$

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

• Peter-Weyl's decomposition for \mathcal{H}_0 :

$$\mathscr{H}_0 = \bigoplus E_\ell \otimes \mathbb{C}^{m_\ell}$$

- Since ℋ₀ = GNS(A, τ) and multiplicities in A are controlled (prev. Theorem), get m_ℓ ≤ d_ℓ.
- Thus $\mathscr{H}_0 \otimes S \hookrightarrow \mathscr{H}_{\mathsf{ref}}$; D_{ref} and D coincide on $E_{\ell,k}$.
- Writing λ_k (resp. μ_k) for eigenvalues of D_{ref} (resp. D).
- Get λ_k ≤ μ_k: suppressing terms in increasing sequence yields a faster increasing sequence.
- Consider $f(x) = (1 + x^2)^{-1/2}$. Setting $\lambda'_k := f(\lambda_k)$ and $\mu'_k := f(\mu_k)$, we get $\mu'_k \leq \lambda'_k$.

*D*_{ref} is *n*⁺-summable means

$$\left\| \left(1 + D_{\mathsf{ref}}^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{\rho=0}^{k-1} \lambda'_{\rho}}{k^{(n-1)/n}} < \infty.$$

• Consequently, *D* is *n*⁺-summable:

$$\left\| \left(1 + D^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{p=0}^{k-1} \mu'_p}{k^{(n-1)/n}} \leqslant \left\| \left(1 + D_{\text{ref}}^2 \right)^{-1/2} \right\|_{n^+} < \infty$$

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

• Peter-Weyl's decomposition for \mathscr{H}_0 :

$$\mathscr{H}_0 = \bigoplus E_\ell \otimes \mathbb{C}^{m_\ell}$$

- Since ℋ₀ = GNS(A, τ) and multiplicities in A are controlled (prev. Theorem), get m_ℓ ≤ d_ℓ.
- Thus $\mathscr{H}_0 \otimes S \hookrightarrow \mathscr{H}_{ref}$; D_{ref} and D coincide on $E_{\ell,k}$.
- Writing λ_k (resp. μ_k) for eigenvalues of D_{ref} (resp. D).
- Get λ_k ≤ μ_k: suppressing terms in increasing sequence yields a faster increasing sequence.
- Consider $f(x) = (1 + x^2)^{-1/2}$. Setting $\lambda'_k := f(\lambda_k)$ and $\mu'_k := f(\mu_k)$, we get $\mu'_k \leq \lambda'_k$.
- D_{ref} is n^+ -summable means

$$\left\| \left(1 + D_{\mathsf{ref}}^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{p=0}^{k-1} \lambda'_p}{k^{(n-1)/n}} < \infty.$$

• Consequently, D is n^+ -summable:

$$\left\| \left(1 + D^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{p=0}^{k-1} \mu'_p}{k^{(n-1)/n}} \leqslant \left\| \left(1 + D_{\mathsf{ref}}^2 \right)^{-1/2} \right\|_{n^+} < \infty.$$

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

• Peter-Weyl's decomposition for \mathscr{H}_0 :

$$\mathscr{H}_0 = \bigoplus E_\ell \otimes \mathbb{C}^{m_\ell}$$

- Since ℋ₀ = GNS(A, τ) and multiplicities in A are controlled (prev. Theorem), get m_ℓ ≤ d_ℓ.
- Thus $\mathscr{H}_0 \otimes S \hookrightarrow \mathscr{H}_{ref}$; D_{ref} and D coincide on $E_{\ell,k}$.
- Writing λ_k (resp. μ_k) for eigenvalues of D_{ref} (resp. D).
- Get λ_k ≤ μ_k: suppressing terms in increasing sequence yields a faster increasing sequence.
- Consider $f(x) = (1 + x^2)^{-1/2}$. Setting $\lambda'_k := f(\lambda_k)$ and $\mu'_k := f(\mu_k)$, we get $\mu'_k \leq \lambda'_k$.
- D_{ref} is n^+ -summable means

$$\left\| \left(1 + D_{\mathsf{ref}}^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{\rho=0}^{k-1} \lambda'_{\rho}}{k^{(n-1)/n}} < \infty.$$

• Consequently, *D* is *n*⁺-summable:

$$\left\| \left(1 + D^2 \right)^{-1/2} \right\|_{n^+} = \sup_k \frac{\sum_{\rho=0}^{k-1} \mu'_{\rho}}{k^{(n-1)/n}} \leqslant \left\| \left(1 + D_{\mathsf{ref}}^2 \right)^{-1/2} \right\|_{n^+} < \infty.$$

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

About the degree of summability:

- We only get an upper bound on summability.
- It is not saturated in general!
- However, *orientability condition* Hochschild cocycle

$$= \sum c_{0,j} \otimes c_{1,j} \otimes \cdots \otimes c_{n,j} \in \mathbb{Z}_p(\mathscr{A}, \mathscr{A}) \text{ s.t.}$$
$$\sum c_{0,j}[D, c_{1,j}] \cdots [D, c_{n,j}] = \gamma.$$

Perspectives:

• Is the trace $\varphi(a) = \operatorname{Tr}_{\omega} a |D|^{-n}$ G-invariant?

Consequences: if φ is *G*-inv. then

- $\exists \lambda \ge 0$ s.t. $\varphi = \lambda \tau$ (unicity of *G*-inv. τ),
- thus we should get:

$$\operatorname{Tr}_{\omega}\left(\gamma a_{0}[D, a_{1}]\cdots[D, a_{n}][D|^{-n}\right)=\sum \varepsilon(\sigma)\tau\left(a_{0}\partial_{\sigma(1)}(a_{1})\cdots\partial_{\sigma(n)}(a_{n})\right)$$

It works for NC 2-tori and Quantum Heisenberg Manifolds!

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

About the degree of summability:

- We only get an upper bound on summability.
- It is not saturated in general!
- However, orientability condition Hochschild cocycle $c = \sum c_{0,j} \otimes c_{1,j} \otimes \cdots \otimes c_{n,j} \in Z_p(\mathscr{A}, \mathscr{A})$ s.t. $\sum c_{0,j}[D, c_{1,j}] \cdots [D, c_{n,j}] = \gamma.$

Perspectives:

• Is the trace $\varphi(a) = \operatorname{Tr}_{\omega} a |D|^{-n}$ G-invariant?

Consequences: if φ is *G*-inv. then

• $\exists \lambda \ge 0$ s.t. $\varphi = \lambda \tau$ (unicity of *G*-inv. τ),

• thus we should get:

$$\operatorname{Tr}_{\omega}\left(\gamma a_{0}[D, a_{1}]\cdots[D, a_{n}][D|^{-n}\right)=\sum \varepsilon(\sigma)\tau\left(a_{0}\partial_{\sigma(1)}(a_{1})\cdots\partial_{\sigma(n)}(a_{n})\right)$$

It works for NC 2-tori and Quantum Heisenberg Manifolds!

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

About the degree of summability:

- We only get an upper bound on summability.
- It is not saturated in general!
- However, orientability condition Hochschild cocycle

$$c = \sum c_{0,j} \otimes c_{1,j} \otimes \cdots \otimes c_{n,j} \in Z_p(\mathscr{A}, \mathscr{A}) \text{ s.t.}$$
$$\sum c_{0,j}[D, c_{1,j}] \cdots [D, c_{n,j}] = \gamma.$$

Perspectives:

• Is the trace $\varphi(a) = \operatorname{Tr}_{\omega} a |D|^{-n} G$ -invariant?

Consequences: if φ is *G*-inv. then

• $\exists \lambda \ge 0$ s.t. $\varphi = \lambda \tau$ (unicity of *G*-inv. τ),

• thus we should get:

$$\operatorname{Tr}_{\omega}\left(\gamma a_{0}[D, a_{1}]\cdots[D, a_{n}][D|^{-n}\right)=\sum \varepsilon(\sigma)\tau\left(a_{0}\partial_{\sigma(1)}(a_{1})\cdots\partial_{\sigma(n)}(a_{n})\right)$$

It works for NC 2-tori and Quantum Heisenberg Manifolds!

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

About the degree of summability:

- We only get an upper bound on summability.
- It is not saturated in general!
- However, orientability condition Hochschild cocycle

$$c = \sum c_{0,j} \otimes c_{1,j} \otimes \cdots \otimes c_{n,j} \in Z_p(\mathscr{A}, \mathscr{A}) \text{ s.t.}$$
$$\sum c_{0,j}[D, c_{1,j}] \cdots [D, c_{n,j}] = \gamma.$$

Perspectives:

• Is the trace $\varphi(a) = \operatorname{Tr}_{\omega} a |D|^{-n}$ G-invariant?

Consequences: if φ is *G*-inv. then

• $\exists \lambda \ge 0$ s.t. $\varphi = \lambda \tau$ (unicity of *G*-inv. τ),

• thus we should get:

$$\operatorname{Tr}_{\omega}\left(\gamma a_{0}[D, a_{1}]\cdots[D, a_{n}][D|^{-n}\right) = \sum \varepsilon(\sigma)\tau\left(a_{0}\partial_{\sigma(1)}(a_{1})\cdots\partial_{\sigma(n)}(a_{n})\right)$$

It works for NC 2-tori and Quantum Heisenberg Manifolds!

Spectra triples

O.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

About the degree of summability:

- We only get an upper bound on summability.
- It is not saturated in general!
- However, orientability condition Hochschild cocycle

$$c = \sum c_{0,j} \otimes c_{1,j} \otimes \cdots \otimes c_{n,j} \in Z_p(\mathscr{A}, \mathscr{A}) \text{ s.t.}$$
$$\sum c_{0,j}[D, c_{1,j}] \cdots [D, c_{n,j}] = \gamma.$$

Perspectives:

• Is the trace $\varphi(a) = \operatorname{Tr}_{\omega} a |D|^{-n}$ G-invariant?

Consequences: if φ is *G*-inv. then

- $\exists \lambda \ge 0 \text{ s.t. } \varphi = \lambda \tau \text{ (unicity of } G\text{-inv. } \tau \text{),}$
- thus we should get:

$$\mathsf{Tr}_{\omega} \left(\gamma a_0[D, a_1] \cdots [D, a_n][D|^{-n} \right) = \sum \varepsilon(\sigma) \tau \left(a_0 \partial_{\sigma(1)}(a_1) \cdots \partial_{\sigma(n)}(a_n) \right)$$

It works for NC 2-tori and Quantum Heisenberg Manifolds!

Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

A with σ , pointwise continuous gauge action of $S^1 = \mathbb{R}/\mathbb{Z}$.

• $\forall a \in A, t \mapsto \sigma_t(a)$ 1-periodic, Banach-valued cont. funct.

• Fourier series: introduce subspaces A_n , $n \in \mathbb{Z}$

$$A_n = \left\{ a \in A \middle| \forall t \in \mathbb{R}, \sigma_t(a) = e^{i2\pi nt} a \right\}.$$

• " $\cdots \oplus A_{-2} \oplus A_{-1} \oplus A_0 \oplus A_1 \oplus A_2 \oplus \cdots$ " is dense in A.

Properties: $A_{-1} = (A_1)^*$; A_1 , Hilbert bimodule over A_0 • Def.

Definition (Generalized Crossed Product)

The C^* -algebra A is a generalized crossed product iff it is generated (as C^* -algebra) by A_0 and A_1 .

Inversely, given $B = A_0$ (*basis algebra*) and $E = A_1$, \rightsquigarrow define $A = B \rtimes_E \mathbb{Z}$, as universal C^* -algebra generated by $b \in B$ and $\xi \in E$ Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

A with σ , pointwise continuous gauge action of $S^1 = \mathbb{R}/\mathbb{Z}$.

• $\forall a \in A, t \mapsto \sigma_t(a)$ 1-periodic, Banach-valued cont. funct.

• Fourier series: introduce subspaces A_n , $n \in \mathbb{Z}$

$$A_n = \left\{ a \in A \middle| \forall t \in \mathbb{R}, \sigma_t(a) = e^{i2\pi nt} a \right\}.$$

• " $\cdots \oplus A_{-2} \oplus A_{-1} \oplus A_0 \oplus A_1 \oplus A_2 \oplus \cdots$ " is dense in A.

Properties: $A_{-1} = (A_1)^*$; A_1 , Hilbert bimodule over A_0 \bullet Def

Definition (Generalized Crossed Product)

The C^* -algebra A is a generalized crossed product iff it is generated (as C^* -algebra) by A_0 and A_1 .

Inversely, given $B = A_0$ (*basis algebra*) and $E = A_1$, \rightsquigarrow define $A = B \rtimes_E \mathbb{Z}$, as universal C^* -algebra generated by $b \in B$ and $\xi \in E$ Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

A with σ , pointwise continuous gauge action of $S^1 = \mathbb{R}/\mathbb{Z}$.

- $\forall a \in A, t \mapsto \sigma_t(a)$ 1-periodic, Banach-valued cont. funct.
- Fourier series: introduce subspaces A_n , $n \in \mathbb{Z}$

$$A_n = \left\{ a \in A \middle| \forall t \in \mathbb{R}, \sigma_t(a) = e^{i2\pi nt} a \right\}.$$

• " $\cdots \oplus A_{-2} \oplus A_{-1} \oplus A_0 \oplus A_1 \oplus A_2 \oplus \cdots$ " is dense in A.

Properties: $A_{-1} = (A_1)^*$; A_1 , Hilbert bimodule over A_0 • Def

Definition (Generalized Crossed Product)

The C^* -algebra A is a *generalized crossed product* iff it is generated (as C^* -algebra) by A_0 and A_1 .

Inversely, given $B = A_0$ (*basis algebra*) and $E = A_1$, \rightsquigarrow define $A = B \rtimes_E \mathbb{Z}$, as universal C^* -algebra generated by $b \in B$ and $\xi \in E$ Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

A with σ , pointwise continuous gauge action of $S^1 = \mathbb{R}/\mathbb{Z}$.

- $\forall a \in A, t \mapsto \sigma_t(a)$ 1-periodic, Banach-valued cont. funct.
- Fourier series: introduce subspaces A_n , $n \in \mathbb{Z}$

$$A_n = \left\{ a \in A \middle| \forall t \in \mathbb{R}, \sigma_t(a) = e^{i2\pi nt} a \right\}.$$

• " $\cdots \oplus A_{-2} \oplus A_{-1} \oplus A_0 \oplus A_1 \oplus A_2 \oplus \cdots$ " is dense in A.

Properties: $A_{-1} = (A_1)^*$; A_1 , Hilbert bimodule over A_0 \bigcirc

Definition (Generalized Crossed Product)

The C^* -algebra A is a *generalized crossed product* iff it is generated (as C^* -algebra) by A_0 and A_1 .

Inversely, given $B = A_0$ (*basis algebra*) and $E = A_1$, \rightsquigarrow define $A = B \rtimes_E \mathbb{Z}$, as universal C^* -algebra generated by $b \in B$ and $\xi \in E$ Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

A with σ , pointwise continuous gauge action of $S^1 = \mathbb{R}/\mathbb{Z}$.

- $\forall a \in A, t \mapsto \sigma_t(a)$ 1-periodic, Banach-valued cont. funct.
- Fourier series: introduce subspaces A_n , $n \in \mathbb{Z}$

$$A_n = \left\{ a \in A \middle| \forall t \in \mathbb{R}, \sigma_t(a) = e^{i2\pi nt} a \right\}.$$

• " $\cdots \oplus A_{-2} \oplus A_{-1} \oplus A_0 \oplus A_1 \oplus A_2 \oplus \cdots$ " is dense in A.

Properties: $A_{-1} = (A_1)^*$; A_1 , Hilbert bimodule over A_0 \bigcirc Def.

Definition (Generalized Crossed Product)

The C^* -algebra A is a generalized crossed product iff it is generated (as C^* -algebra) by A_0 and A_1 .

Inversely, given $B = A_0$ (*basis algebra*) and $E = A_1$, \rightsquigarrow define $A = B \rtimes_E \mathbb{Z}$, as universal C^* -algebra generated by $b \in B$ and $\xi \in E$ Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

A with σ , pointwise continuous gauge action of $S^1 = \mathbb{R}/\mathbb{Z}$.

- $\forall a \in A, t \mapsto \sigma_t(a)$ 1-periodic, Banach-valued cont. funct.
- Fourier series: introduce subspaces A_n , $n \in \mathbb{Z}$

$$A_n = \left\{ a \in A \middle| \forall t \in \mathbb{R}, \sigma_t(a) = e^{i2\pi nt} a \right\}.$$

• "
$$\cdots \oplus A_{-2} \oplus A_{-1} \oplus A_0 \oplus A_1 \oplus A_2 \oplus \cdots$$
" is dense in A.

Properties: $A_{-1} = (A_1)^*$; A_1 , Hilbert bimodule over A_0 \bigcirc Def.

Definition (Generalized Crossed Product)

The C^{*}-algebra A is a generalized crossed product iff it is generated (as C^{*}-algebra) by A_0 and A_1 .

Inversely, given $B = A_0$ (*basis algebra*) and $E = A_1$, \rightsquigarrow define $A = B \rtimes_E \mathbb{Z}$, as universal C^* -algebr generated by $b \in B$ and $\xi \in E$ Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

A with σ , pointwise continuous gauge action of $S^1 = \mathbb{R}/\mathbb{Z}$.

- $\forall a \in A, t \mapsto \sigma_t(a)$ 1-periodic, Banach-valued cont. funct.
- Fourier series: introduce subspaces A_n , $n \in \mathbb{Z}$

$$A_n = \left\{ a \in A \middle| \forall t \in \mathbb{R}, \sigma_t(a) = e^{i2\pi nt} a \right\}.$$

• "
$$\cdots \oplus A_{-2} \oplus A_{-1} \oplus A_0 \oplus A_1 \oplus A_2 \oplus \cdots$$
" is dense in A.

Properties: $A_{-1} = (A_1)^*$; A_1 , Hilbert bimodule over A_0 \bigcirc Def.

Definition (Generalized Crossed Product)

The C^{*}-algebra A is a generalized crossed product iff it is generated (as C^{*}-algebra) by A_0 and A_1 .

Inversely, given $B = A_0$ (basis algebra) and $E = A_1$, \rightsquigarrow define $A = B \rtimes_E \mathbb{Z}$, as universal C^* -algebra generated by $b \in B$ and $\xi \in E$. Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Examples of GCP:

Crossed products by \mathbb{Z} : take $A_0 = B$ and $E = B\mathbb{U}$;

Commutative case: if moreover $A_1^*A_1 = A_0$, then continuous functions on a S^1 -principal bundle $P \to X$: B = C(X) A = C(P).

The gauge action corresponds to the principal action.

Quantum Heisenberg Manifolds (QHM – Rieffel, 1989):

- Take $B := C(T^2)$, $E := \Gamma(T^2; \mathcal{L})$, line bundle $\mathcal{L} \to T^2$.
- Natural right action B on E and Hermitian structure.
- Left action: $b \cdot \xi = \xi \tau_{\mu,\nu}(b)$, translat. on T^2 by $\mu, \nu \in \mathbb{R}$.

"Twisted" left Hermitian structure.

QHM: algebras $D_{\mu,\nu}^c$, indices $c \in \mathbb{Z}$ (class. \mathcal{L}) and $\mu, \nu \in \mathbb{R}$. Also: ergodic action of Heisenberg group. Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Examples of GCP:

Crossed products by \mathbb{Z} : take $A_0 = B$ and $E = B\mathbb{U}$;

Commutative case: if moreover $A_1^*A_1 = A_0$, then continuous functions on a S^1 -principal bundle $P \to X$: B = C(X) A = C(P).

The gauge action corresponds to the principal action.

Quantum Heisenberg Manifolds (QHM – Rieffel, 1989):

- Take $B := C(T^2)$, $E := \Gamma(T^2; \mathcal{L})$, line bundle $\mathcal{L} \to T^2$.
- Natural right action B on E and Hermitian structure.
- Left action: $b \cdot \xi = \xi \tau_{\mu,\nu}(b)$, translat. on T^2 by $\mu, \nu \in \mathbb{R}$.

• "Twisted" left Hermitian structure.

QHM: algebras $D_{\mu,\nu}^c$, indices $c \in \mathbb{Z}$ (class. \mathcal{L}) and $\mu, \nu \in \mathbb{R}$. Also: ergodic action of Heisenberg group. Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Examples of GCP:

Crossed products by \mathbb{Z} : take $A_0 = B$ and $E = B\mathbb{U}$;

Commutative case: if moreover $A_1^*A_1 = A_0$, then continuous functions on a S^1 -principal bundle $P \to X$: B = C(X) A = C(P).

The gauge action corresponds to the principal action.

Quantum Heisenberg Manifolds (QHM – Rieffel, 1989):

- Take $B := C(T^2)$, $E := \Gamma(T^2; \mathcal{L})$, line bundle $\mathcal{L} \to T^2$.
- Natural right action B on E and Hermitian structure.
- Left action: $b \cdot \xi = \xi \tau_{\mu,\nu}(b)$, translat. on T^2 by $\mu, \nu \in \mathbb{R}$.

• "Twisted" left Hermitian structure.

QHM: algebras $D_{\mu,\nu}^c$, indices $c \in \mathbb{Z}$ (class. \mathcal{L}) and $\mu, \nu \in \mathbb{R}$. Also: ergodic action of Heisenberg group. Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Examples of GCP:

Crossed products by \mathbb{Z} : take $A_0 = B$ and $E = B\mathbb{U}$;

Commutative case: if moreover $A_1^*A_1 = A_0$, then continuous functions on a S^1 -principal bundle $P \to X$: B = C(X) A = C(P).

The gauge action corresponds to the principal action.

Quantum Heisenberg Manifolds (QHM – Rieffel, 1989):

- Take $B := C(T^2)$, $E := \Gamma(T^2; \mathcal{L})$, line bundle $\mathcal{L} \to T^2$.
- Natural right action B on E and Hermitian structure.
- Left action: $b \cdot \xi = \xi \tau_{\mu,\nu}(b)$, translat. on T^2 by $\mu, \nu \in \mathbb{R}$.
- "Twisted" left Hermitian structure.

QHM: algebras $D_{\mu,\nu}^c$, indices $c \in \mathbb{Z}$ (class. \mathcal{L}) and $\mu, \nu \in \mathbb{R}$. Also: ergodic action of Heisenberg group. Spectral triples

0.G.

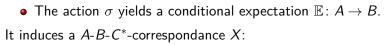
Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Vertical class in K-homology

All GCP come with a natural class in $KK_1(A, B)$.



• X is a right B-Hilbert module, completion of A for

$$\langle a_1, a_2 \rangle_B = \mathbb{E}(a_1^*a_2).$$

A acts naturally on the left of X.

 Gauge action σ_t(b) = b, σ_t(ξ) = e^{i2πt}ξ extends naturally to X. Denote ∂_t its derivative.

 $(X, \partial_t) = [\partial]$ is an unbounded Kasparov module in $KK_1(A, B)$ (see *e.g.* Wahl '10 or Carey, Neshveyev, Nest & Rennie '11).

Definition (Vertical class)

We call $[\partial]$ the *vertical class* of the GCP A.

Spectra triples

O.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Idea: investigate "permanence properties" of spectral triples, just like in Adam Skalski's talk.

Assume that:

$$I S^1 \frown A$$
 is a GCP with $B := A^{S^1}$,

- we have a *two-sided Hermitian connexion* ∇ on $E = A_1$ which is associated to D

then

Conjecture

- **9** we construct a spectral triple $(A, \underline{\mathscr{H}}, \underline{D})$ on $A = B \rtimes_E \mathbb{Z}$,
- (a) in *KK*-theory, [D] represents the (inner) Kasparov product:

$$[\underline{D}] = [\partial] \otimes_B [D].$$

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Connexions

For $D = \sum \partial_j \otimes F_j$, then *B*-bimodule of differential forms is

$$\Omega^1_D := \overline{\left\{ \sum b_{0,j} [D, b_{1,j}] \middle| b_{0,j}, b_{1,j} \in \mathscr{B} \right\}} \subseteq B \otimes \langle F_1, \ldots, F_n \rangle.$$

Definition (connexion)

A connexion is densely defined map $\nabla \colon \mathcal{E} \to E \otimes_B \Omega^1_D$ s.t.

 $abla(\xi b) = (\nabla \xi)b + \xi \otimes [D, b]$ (R-Connexion)

Proposition

 ∇ satisfies (R-Connexion) iff there are maps $\nabla_j \colon \mathcal{E} \to E$ s.t.

$$abla(\xi) = \sum
abla_j(\xi) \otimes F_j \qquad
abla_j(\xi b) =
abla_j(\xi) b + \xi \partial_j(b)$$

Proof: identify $E \otimes_B \Omega^1_D$ with $E \otimes \langle F_1, \ldots, F_n \rangle$ and expand...

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Two-sided Hermitian connexions: definition

For our purposes, we will need more properties:

Definition

A two-sided Hermitian connexion on E is
$$abla = \sum
abla_j \otimes F_j$$
 s.t.

 $abla_j(\xi b) =
abla_j(\xi)b + \xi \partial_j(b) \quad \partial_j(\xi^*\eta) =
abla_j(\xi)^*\eta + \xi^*
abla_j(\eta)$

(Hermitian right-connexion) and:

$$abla_j(b\xi) = \partial_j(b)\xi + b
abla_j(\xi) \quad \partial_j(\xi\eta^*) =
abla_j(\xi)\eta^* + \xi
abla_j(\eta)^*$$

Define \mathscr{A} as *-algebraic span of \mathscr{B} and \mathcal{E} inside $A = B \rtimes_E \mathbb{Z}$.

Hypotheses on ∇_i and ∂_i suffice to obtain:

 $\underline{\nabla}_{j}$ unique *-derivation on \mathscr{A} extending ∇_{j} and ∂_{j} .

Necessary properties:

$$\underline{\nabla}_j(\eta \cdot \xi) := \underline{\nabla}_j(\eta) \cdot \xi + \eta \cdot \nabla_j(\xi) \quad \underline{\nabla}_j(\xi^*) := \left(\underline{\nabla}_j(\xi)\right)^*$$

Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Two-sided Hermitian connexions: examples

Example 1: action β of Lie group G on E over B:

Definition

A Hilbert bimodule action β associated to α satisfies:

 $\begin{aligned} \beta(\xi b) &= \beta(\xi)\alpha(b) & \alpha\left(\langle \xi, \eta \rangle_B\right) = \langle \beta(\xi), \beta(\eta) \rangle_B \\ \beta(b\xi) &= \alpha(b)\beta(\xi) & \alpha\left({}_B\langle \xi, \eta \rangle\right) = {}_B\langle \beta(\xi), \beta(\eta) \rangle \end{aligned}$

Infinitesimal generators of $\beta \rightsquigarrow$ two-sided Hermitian connexion. Link part 1: $\beta \rightsquigarrow$ action $G \curvearrowright A$, combine gauge action, \rightsquigarrow obtain action of $G \times S^1$ and apply previous theory!

Example 2: quantum Heisenberg manifolds. Reminder: $B = C(T^2)$ and $E = C(T^2; \mathcal{L})$ with $\mathcal{L} \to T^2$, line bundle.

- Action α of $G := T^2$ on $B \rightsquigarrow$ canonical Dirac on B.
- Connexion ∇ on E assoc. to α , two-sided and Hermitian.
- Not of the previous type: curvature $\nabla^2 \neq 0!$

Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Spectral triple: algebraic expression

Reminder: X, C^{*}-correspondence constructed from A to B obtained out of $\mathbb{E} : A \to B$, conditional expectation.

If (B, \mathcal{H}, D) , spectral triple on basis B of A, define a spectral triple $(A, \underline{\mathcal{H}}, \underline{D})$ by

- $\underline{\mathscr{H}} := X \otimes_B \mathscr{H}$ (well-defined Hilbert space),
- A represented on $\underline{\mathscr{H}}$ by $a \cdot ([a'] \otimes x) = [aa'] \otimes x$,
- If (B, \mathscr{H}, D) is even with grading γ (acting on S), set

$$\underline{D} := \sum (\underline{\nabla}_j \otimes 1 + 1 \otimes \partial_j) \otimes F_j + \partial_t \otimes 1 \otimes \gamma$$

with domain $\text{Dom}(\underline{D}) = \mathscr{A} \odot_{\mathscr{B}} \mathscr{H}_0^{\infty} \otimes S$.

For odd spectral triple, double S and more involved expression.

Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Spectral triple: algebraic expression

Reminder: X, C^{*}-correspondence constructed from A to B obtained out of $\mathbb{E} : A \to B$, conditional expectation.

If (B, \mathcal{H}, D) , spectral triple on basis *B* of *A*, define a spectral triple $(A, \underline{\mathcal{H}}, \underline{D})$ by

- $\underline{\mathscr{H}} := X \otimes_B \mathscr{H}$ (well-defined Hilbert space),
- A represented on $\underline{\mathscr{H}}$ by $a \cdot ([a'] \otimes x) = [aa'] \otimes x$,
- If (B, \mathscr{H}, D) is even with grading γ (acting on S), set

$$\underline{D} := \sum (\underline{\nabla}_j \otimes 1 + 1 \otimes \partial_j) \otimes F_j + \partial_t \otimes 1 \otimes \gamma$$

with domain $\text{Dom}(\underline{D}) = \mathscr{A} \odot_{\mathscr{B}} \mathscr{H}_0^{\infty} \otimes S$.

For odd spectral triple, double S and more involved expression.

Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

$$\underline{D} = \sum (\underline{\nabla}_j \otimes 1 + 1 \otimes \partial_j) \otimes F_j + \partial_t \otimes 1 \otimes \gamma$$

on $\mathsf{Dom}(\underline{D}) = \mathscr{A} \odot_{\mathscr{B}} \mathscr{H}_0^\infty \otimes S$ defines a symmetric operator:

Is <u>D</u> well-defined?

Problem of the tensor product over *B*

 $\overline{
abla}_j(\mathsf{ab})\otimes \mathsf{x}+\mathsf{ab}\otimes \partial_j(\mathsf{x})=\overline{
abla}_j(\mathsf{a})\otimes \mathsf{b}\mathsf{x}+\mathsf{a}\otimes \partial_j(\mathsf{b}\mathsf{x}).$

Requires:

- right-connection property: $\underline{\nabla}_j(ab) = \underline{\nabla}_j(a)b + a\partial_j^{\mathscr{B}}(b)$,
- and $\partial_j(bx) = \partial_j^{\mathscr{B}}(b)x + b\partial_j(x)$.
- Is <u>D</u> symmetric?
 - $\underline{\nabla}_i$ and ∂_t commute with the gauge action...
 - ... hence consider $\eta \otimes x$ and $\eta' \otimes x'$ for $\eta, \eta' \in X_n$.
 - Check property for all j separately. Clear for ∂_t .
- Ooes <u>D</u> have bounded commutators? Yes! Action of *A* on Dom(<u>D</u>) and <u>∇</u>_i derivations.

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

$$\underline{D} = \sum (\underline{\nabla}_j \otimes 1 + 1 \otimes \partial_j) \otimes F_j + \partial_t \otimes 1 \otimes \gamma$$

on $\mathsf{Dom}(\underline{D}) = \mathscr{A} \odot_{\mathscr{B}} \mathscr{H}_0^\infty \otimes S$ defines a symmetric operator:

Is <u>D</u> well-defined?

Problem of the tensor product over \mathscr{B} :

$$\overline{\nabla}_j(\mathsf{a} b)\otimes x+\mathsf{a} b\otimes \partial_j(x)=\overline{\nabla}_j(\mathsf{a})\otimes bx+\mathsf{a}\otimes \partial_j(bx).$$

Requires:

• right-connection property: $\underline{\nabla}_j(ab) = \underline{\nabla}_j(a)b + a\partial_j^{\mathscr{B}}(b)$,

• and
$$\partial_j(bx) = \partial_j^{\mathscr{B}}(b)x + b\partial_j(x)$$
.

Is <u>D</u> symmetric?

- $\underline{\nabla}_i$ and ∂_t commute with the gauge action...
- ... hence consider $\eta \otimes x$ and $\eta' \otimes x'$ for $\eta, \eta' \in X_n$.
- Check property for all j separately. Clear for ∂_t .
- Ooes <u>D</u> have bounded commutators? Yes! Action of *A* on Dom(<u>D</u>) and <u>∇</u>_i derivations.

Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

$$\underline{D} = \sum (\underline{\nabla}_j \otimes 1 + 1 \otimes \partial_j) \otimes F_j + \partial_t \otimes 1 \otimes \gamma$$

on $\mathsf{Dom}(\underline{D}) = \mathscr{A} \odot_{\mathscr{B}} \mathscr{H}_0^\infty \otimes S$ defines a symmetric operator:

Is <u>D</u> well-defined?

Problem of the tensor product over \mathscr{B} :

$$\overline{\nabla}_j(\mathsf{a} b)\otimes x+\mathsf{a} b\otimes \partial_j(x)=\overline{\nabla}_j(\mathsf{a})\otimes bx+\mathsf{a}\otimes \partial_j(bx).$$

Requires:

- right-connection property: $\underline{\nabla}_j(ab) = \underline{\nabla}_j(a)b + a\partial_j^{\mathscr{B}}(b)$,
- and $\partial_j(bx) = \partial_j^{\mathscr{B}}(b)x + b\partial_j(x)$.
- Is <u>D</u> symmetric?
 - $\underline{\nabla}_i$ and ∂_t commute with the gauge action...
 - ... hence consider $\eta \otimes x$ and $\eta' \otimes x'$ for $\eta, \eta' \in X_n$.
 - Check property for all j separately. Clear for ∂_t .

Ooes <u>D</u> have bounded commutators? Yes! Action of *A* on Dom(<u>D</u>) and <u>∇</u>_i derivations. Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

$$\underline{D} = \sum (\underline{\nabla}_j \otimes 1 + 1 \otimes \partial_j) \otimes F_j + \partial_t \otimes 1 \otimes \gamma$$

on $\mathsf{Dom}(\underline{D}) = \mathscr{A} \odot_{\mathscr{B}} \mathscr{H}_0^\infty \otimes S$ defines a symmetric operator:

Is <u>D</u> well-defined?

Problem of the tensor product over \mathscr{B} :

$$\overline{\nabla}_j(\mathsf{a} b)\otimes x+\mathsf{a} b\otimes \partial_j(x)=\overline{\nabla}_j(\mathsf{a})\otimes bx+\mathsf{a}\otimes \partial_j(bx).$$

Requires:

- right-connection property: $\underline{\nabla}_j(ab) = \underline{\nabla}_j(a)b + a\partial_j^{\mathscr{B}}(b)$,
- and $\partial_j(bx) = \partial_j^{\mathscr{B}}(b)x + b\partial_j(x)$.
- Is <u>D</u> symmetric?
 - $\underline{\nabla}_i$ and ∂_t commute with the gauge action...
 - ... hence consider $\eta \otimes x$ and $\eta' \otimes x'$ for $\eta, \eta' \in X_n$.
 - Check property for all j separately. Clear for ∂_t .
- Ooes <u>D</u> have bounded commutators? Yes! Action of *A* on Dom(<u>D</u>) and <u>∇</u>_i derivations.

Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Selfadjoint operator

The difficulties that remain:

- show that <u>D</u> is selfadjoint;
- prove that it has compact resolvent.

To prove this rely on:

Spectral flow and the unbounded Kasparov product by J. Kaad and M. Lesch (to appear)

Given two unbounded Kasparov modules, they show how to:

- construct another unbounded Kasparov module,
- Prove this is the Kasparov product of the original modules
 - Similar to B. Mesland '09...
 - ...major technical improvements: "C¹-version" of Hilbert module (operator *-module) instead of "smooth version".

Spectral triples

O.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Operator *-algebra

Definition (Operator *-algebra, Mesland '09 & Ivankov '11)

A Banach algebra ${\mathscr B}$ is an operator *-algebra if

- **1** \mathscr{B} is an operator space,
- **2** the multiplication m on \mathcal{B} is completely bounded,
- the involution * on *B* is also completely bounded.

Example: $\pi : \mathscr{B} \to \mathcal{L}(F_{\mathcal{C}})$ faithful rep. and $\delta : \mathscr{B} \to \mathcal{L}(F)$ s.t.

$$\delta(bb') = \delta(b)\pi(b') + \pi(b)\delta(b') \qquad \delta(b^*) = U\delta(b)^*U$$

for some unitary $U \in \mathcal{L}(F)$ which commutes with $b \in \mathscr{B}$, we obtain an *operator* *-*algebra* B_1 as completion of \mathscr{B} for:

$$\rho_B(b) = \begin{pmatrix} \pi(b) & 0 \\ \delta(b) & \pi(b) \end{pmatrix} \in \mathcal{L}(F \oplus F).$$

Properties:

- B_1 is a subalgebra of B iff δ is closable.
- In this case, B_1 is stable under holom. funct. calculus.

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Conclusion

▶ Def

Operator *-module

Similar "*C*¹-version" for Hilbert module: *operator* *-*module*.

Definition (operator *-module, Kaad & Lesch '11)

 Y_1 is an operator *-module over the operator *-algebra A_1 if:

• Y₁ is an operator space,

• the product $Y_1 imes A_1 o Y_1$ is completely bounded,

- there is a completely bounded pairing $Y_1 \times Y_1 \rightarrow A_1$ with the usual properties of Hilbert modules,
- Y_1 is a direct summand of the standard module over A_1 .

Example: given

- (π, δ) for $\mathscr{B} \subseteq B$ as before and
- \mathcal{E} dense in E, f.g proj. Hilbert module with $\langle \mathcal{E}, \mathcal{E} \rangle \subseteq B_1$,

• with a Hermitian closable connection ∇ assoc. to δ , then we get an operator *-module E_1 as completion of \mathcal{E} for

$$\rho_E(\xi) = \begin{pmatrix} \pi(\xi) & 0 \\ \nabla(\xi) & \pi(\xi) \end{pmatrix} \in \mathcal{L}(F \oplus F).$$

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Given a Hermitian closable connexion ∇ and a finitely generated proj. *E* with $\langle E_1, E_1 \rangle \subseteq B_1$ then

there is a frame of E inside E_1 .

Conversely, a frame of *E* inside E_1 imposes that ∇ is closable.

In particular, E_1 is a direct summand of B_1^N .

Proof: (first implication only)

- Consider $C_1 := \{T \in \operatorname{End}_B(E) | T(E_1) \subseteq E_1\}.$
- ∂(T)(ξ) := ∇(T(ξ)) − (T ⊗ 1)(∇(ξ)) is a densely defined and closed derivation on End(E).
- $C_1 \subseteq \text{End}(E)$, dense and stable under holom. calculus.
- Frame for E, perturb and rectify \rightsquigarrow frame for E_1 .

Use this to construct a closable connexion $\overline{\nabla}$ on X, assuming E is left and right f.g. projective Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Given a Hermitian closable connexion ∇ and a finitely generated proj. *E* with $\langle E_1, E_1 \rangle \subseteq B_1$ then

there is a frame of E inside E_1 .

Conversely, a frame of *E* inside E_1 imposes that ∇ is closable.

In particular, E_1 is a direct summand of B_1^N .

Proof: (first implication only)

- Consider $C_1 := \{T \in \operatorname{End}_B(E) | T(E_1) \subseteq E_1\}.$
- ∂(T)(ξ) := ∇(T(ξ)) − (T ⊗ 1)(∇(ξ)) is a densely defined and closed derivation on End(E).
- $C_1 \subseteq \text{End}(E)$, dense and stable under holom. calculus.
- Frame for E, perturb and rectify \rightsquigarrow frame for E_1 .

Use this to construct a closable connexion $\overline{\nabla}$ on X, assuming E is left and right f.g. projectiv Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Given a Hermitian closable connexion ∇ and a finitely generated proj. *E* with $\langle E_1, E_1 \rangle \subseteq B_1$ then

there is a frame of E inside E_1 .

Conversely, a frame of *E* inside E_1 imposes that ∇ is closable.

In particular, E_1 is a direct summand of B_1^N .

Proof: (first implication only)

- Consider $C_1 := \{T \in \operatorname{End}_B(E) | T(E_1) \subseteq E_1\}.$
- ∂(T)(ξ) := ∇(T(ξ)) − (T ⊗ 1)(∇(ξ)) is a densely defined and closed derivation on End(E).
- $C_1 \subseteq \text{End}(E)$, dense and stable under holom. calculus.
- Frame for E, perturb and rectify \rightsquigarrow frame for E_1 .

Use this to construct a closable connexion ∇ on X, assuming F is left and right f.g. projection

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Given a Hermitian closable connexion ∇ and a finitely generated proj. *E* with $\langle E_1, E_1 \rangle \subseteq B_1$ then

there is a frame of E inside E_1 .

Conversely, a frame of *E* inside E_1 imposes that ∇ is closable.

In particular, E_1 is a direct summand of B_1^N .

Proof: (first implication only)

- Consider $C_1 := \{T \in \operatorname{End}_B(E) | T(E_1) \subseteq E_1\}.$
- ∂(T)(ξ) := ∇(T(ξ)) − (T ⊗ 1)(∇(ξ)) is a densely defined and closed derivation on End(E).
- $C_1 \subseteq \text{End}(E)$, dense and stable under holom. calculus.
- Frame for E, perturb and rectify \rightsquigarrow frame for E_1 .

Use this to construct a closable connexion $\overline{\nabla}$ on X, assuming E is left and right f.g. projective

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Given a Hermitian closable connexion ∇ and a finitely generated proj. *E* with $\langle E_1, E_1 \rangle \subseteq B_1$ then

there is a frame of E inside E_1 .

Conversely, a frame of *E* inside E_1 imposes that ∇ is closable.

In particular, E_1 is a direct summand of B_1^N .

Proof: (first implication only)

- Consider $C_1 := \{T \in \operatorname{End}_B(E) | T(E_1) \subseteq E_1\}.$
- ∂(T)(ξ) := ∇(T(ξ)) − (T ⊗ 1)(∇(ξ)) is a densely defined and closed derivation on End(E).
- $C_1 \subseteq \text{End}(E)$, dense and stable under holom. calculus.
- Frame for *E*, perturb and rectify \rightsquigarrow frame for *E*₁.

Use this to construct a closable connexion $\overline{\nabla}$ on X, assuming E is left and right f.g. projective. Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Given a Hermitian closable connexion ∇ and a finitely generated proj. *E* with $\langle E_1, E_1 \rangle \subseteq B_1$ then

there is a frame of E inside E_1 .

Conversely, a frame of *E* inside E_1 imposes that ∇ is closable.

In particular, E_1 is a direct summand of B_1^N .

Proof: (first implication only)

- Consider $C_1 := \{T \in \operatorname{End}_B(E) | T(E_1) \subseteq E_1\}.$
- ∂(T)(ξ) := ∇(T(ξ)) − (T ⊗ 1)(∇(ξ)) is a densely defined and closed derivation on End(E).
- $C_1 \subseteq \text{End}(E)$, dense and stable under holom. calculus.
- Frame for *E*, perturb and rectify \rightsquigarrow frame for *E*₁.

Use this to construct a closable connexion $\underline{\nabla}$ on X,

assuming E is left and right f.g. projective.

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Kasparov product (Kaad-Lesch)

Theorem (Kaad-Lesch, to appear)

lf

- (X, D₁) and (Y, D₂) are two unbounded Kasparov modules for (A, B) and (B, C) resp.
- there is a correspondence (X_1, ∇) from (X, D_1) to (Y, D_2) ,
- $\nabla_{D_2} \colon X_1 \to X \hat{\otimes}_B \mathcal{L}(Y)$ be any Hermitian D₂-connexion,

then

- $(D_1 \times_{\nabla} D_2, (X \hat{\otimes}_B Y)^2)$, even Kasparov A-C module...
- ...which is the Kasparov product of (X, D_1) and (Y, D_2) .

Definition

A D_2 -connexion ∇ is a completely bounded linear map $\nabla \colon X_1 \to X \hat{\otimes} \mathcal{L}(Y)$ which is a (R-Connexion).

We can now apply this theorem to (X, D_1) the vertical class $[\partial]$ and (Y, D_2) the spectral triple on B.

Spectral triples

O.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Spectral triples from ergodic actions

2 Generalized crossed products

3 Extension of spectral triples to GCP by Kasparov products

Spectra triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

- Construction of spectral triples from ergodic actions.
- Introduction of Generalized Crossed Products (GCP).
- Extension of spectral triples from basis to GCP.

Perspectives:

- Link between $\int a|D|^{-n}$ and τ ?
- Do the same "extension construction" and Kasparov product for *SU*(2)-principal bundles?

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

- Construction of spectral triples from ergodic actions.
- Introduction of Generalized Crossed Products (GCP).
- Extension of spectral triples from basis to GCP.

Perspectives:

- Link between $\int a|D|^{-n}$ and τ ?
- Do the same "extension construction" and Kasparov product for *SU*(2)-principal bundles?

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

- Construction of spectral triples from ergodic actions.
- Introduction of Generalized Crossed Products (GCP).
- Extension of spectral triples from basis to GCP.

Perspectives:

- Link between $\int a|D|^{-n}$ and τ ?
- Do the same "extension construction" and Kasparov product for *SU*(2)-principal bundles?

Spectral triples

O.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

- Construction of spectral triples from ergodic actions.
- Introduction of Generalized Crossed Products (GCP).
- Extension of spectral triples from basis to GCP.

Perspectives:

- Link between $fa|D|^{-n}$ and τ ?
- Do the same "extension construction" and Kasparov product for *SU*(2)-principal bundles?

Spectral triples

O.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

- Construction of spectral triples from ergodic actions.
- Introduction of Generalized Crossed Products (GCP).
- Extension of spectral triples from basis to GCP.

Perspectives:

- Link between $fa|D|^{-n}$ and τ ?
- Do the same "extension construction" and Kasparov product for *SU*(2)-principal bundles?

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

• For ergodic actions:

O. G. and M. GRENSING Ergodic actions and spectral triples http://arxiv.org/abs/1302.0426

• For generalized crossed products:

O. G. and M. GRENSING Generalized crossed products and spectral triples Coming soon! Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Thank you for your attention!

. . .

Spectral triples

0.G.

Spectral triple from ergodic action

Generalized Crossed Products

Spectral triples as Kasparov products

Additional properties

Spectral triple of dimension $n = \dim G$. Parity For even *n*, grading operator γ s.t. $\gamma^2 = 1$, $\gamma^* = \gamma$

$$a\gamma = \gamma a$$
 $D\gamma = -\gamma D$

Motivations: K-homology.

Real structure and order one

Norm-preserving antilinear operator $J: \mathscr{H} \to \mathscr{H}$ s.t.

$$[a, Jb^*J] = 0,$$
 $[[D, a], Jb^*J] = 0,$ $J^2 = \varepsilon_J$

and

 $J(\mathsf{Dom}(D)) \subseteq \mathsf{Dom}(D) \qquad JD = \varepsilon_D DJ \qquad J\gamma = \varepsilon_\gamma \gamma J,$

with $\varepsilon_J, \varepsilon_D$ and (possibly) ε_γ in ± 1 , depending on n • Table

Motivations:

- *KR*-homology for $\mathscr{A} \otimes \mathscr{A}^0$ with $\Sigma(a \otimes b^0) = b^* \otimes (a^*)^0$,
- \mathcal{H} as A-bimodule, Poincaré duality in KK-theory. For Poincaré duality: K-theory class in $K(A \otimes A^0)$?

Spectra triples

O.G.

GNS Selfadj. op

Additional properties

Spectral triple of dimension $n = \dim G$. Parity For even *n*, grading operator γ s.t. $\gamma^2 = 1$, $\gamma^* = \gamma$

$$a\gamma = \gamma a$$
 $D\gamma = -\gamma D$

Motivations: *K*-homology.

Real structure and order one

Norm-preserving antilinear operator $J \colon \mathscr{H} \to \mathscr{H}$ s.t.

$$[a, Jb^*J] = 0,$$
 $[[D, a], Jb^*J] = 0,$ $J^2 = \varepsilon_J$

and

$$J(\mathsf{Dom}(D)) \subseteq \mathsf{Dom}(D)$$
 $JD = \varepsilon_D DJ$ $J\gamma = \varepsilon_\gamma \gamma J$,

with $\varepsilon_J, \varepsilon_D$ and (possibly) ε_γ in ± 1 , depending on n **Table**.

Motivations:

- *KR*-homology for $\mathscr{A} \otimes \mathscr{A}^0$ with $\Sigma(a \otimes b^0) = b^* \otimes (a^*)^0$,
- \mathscr{H} as A-bimodule, Poincaré duality in KK-theory.

For Poincaré duality: *K*-theory class in $K(A \otimes A^0)$?

GNS Selfadj. op.

Additional properties

Spectral triple of dimension $n = \dim G$. Parity For even *n*, grading operator γ s.t. $\gamma^2 = 1$, $\gamma^* = \gamma$

$$a\gamma = \gamma a$$
 $D\gamma = -\gamma D$

Motivations: *K*-homology.

Real structure and order one

Norm-preserving antilinear operator $J \colon \mathscr{H} \to \mathscr{H}$ s.t.

$$[a, Jb^*J] = 0,$$
 $[[D, a], Jb^*J] = 0,$ $J^2 = \varepsilon_J$

and

$$J(\mathsf{Dom}(D)) \subseteq \mathsf{Dom}(D)$$
 $JD = \varepsilon_D DJ$ $J\gamma = \varepsilon_\gamma \gamma J$,

with $\varepsilon_J, \varepsilon_D$ and (possibly) ε_γ in ± 1 , depending on *n* **Proble**.

Motivations:

- KR-homology for $\mathscr{A}\otimes \mathscr{A}^0$ with $\Sigma(a\otimes b^0)=b^*\otimes (a^*)^0$,
- \mathscr{H} as A-bimodule, Poincaré duality in KK-theory. For Poincaré duality: K-theory class in $K(A \otimes A^0)$?

Spectral triples

O.G.

GNS Selfadj. op.

Operator spaces

A Banach space $(X, \|\cdot\|)$ is an *operator space* if there exists a norm $\|\cdot\|_X \colon M(X) \to [0, \infty)$ on the finite matrices over X s.t.

• for all finite matrices over \mathbb{C} $v, w \in M(\mathbb{C})$, and any matrix $x \in M(X)$, we have:

 $\|v \cdot x \cdot w\|_X \leqslant \|v\|_{\mathbb{C}} \, \|x\|_X \, \|w\|_{\mathbb{C}}$

• for any projections $p, q \in M(\mathbb{C})$ with pq = 0 and $x, y \in M(X)$, we have:

 $\|pxp + qyq\|_X = \max\{\|pxp\|_X, \|qyq\|_X\}$

for any projection p ∈ M(ℂ) of rank 1 and x ∈ X, we have ||p ⊗ x||_X = ||x||.

Last condition: original $\|\cdot\|$ is "compatible" with $\|\cdot\|_X$.

Spectral triples

0.G.

GNS Selfadj. op

Back

An unbounded Kasparov module A-B module is (X, D) where

- X, B-Hilbert module with action $\varphi \colon A \to \mathcal{L}(X_B)$,
- *D* is an unbounded regular selfadjoint operator on *X*, such that
 - there is a dense subalgebra $\mathscr{A} \subseteq A$ with
 - $a(\operatorname{Dom}(D)) \subseteq \operatorname{Dom}(D)$,
 - and [D, a] extends to a bounded operator on X,
 - the resolvent $(D-i)^{-1} \in \mathcal{K}(X)$ is *B*-compact.

In particular, D has to be selfadjoint.

O.G. GNS Selfadi, op.

Covariant representation and compact Lie groups

Proposition

If G is *compact*, then

D defined in (Dirac) is essentially selfadjoint.

Proof:

Criterion: both ran $(D \pm i)$ are dense in $\mathscr{H} = \mathscr{H}_0 \otimes S$. Preminder

• By Peter-Weyl's decomposition theorem:

• For each E_{ℓ} , choose spaces $E_{\ell,k}$. Projections $P_{\ell,k}$ on \mathscr{H}_0 .

 $\mathscr{H}_0 = \bigoplus E_\ell \otimes \mathbb{C}^{m_\ell}$

- $Q_{\ell,k} := P_{\ell,k} \otimes 1_S$ commutes with D.
- $Q_{\ell,k}D$ selfadjoint on finite dimensional space,
- hence it has real eigenvalues and...
- ... $Q_{\ell,k}D \pm i$ is surjective!

Corollary of proof: D admits a basis of eigenvectors.

Selfadi, op

40

Let E and F be two Hilbert modules over A.

Definition

A regular (unbounded) operator from E to F is a densely defined closed A-linear map $T: \text{Dom}(T) \to F$ s.t.

- T* is densely defined,
- and $1 + T^*T$ has dense range.

Lemma

If $T: E \to E$ is densely defined and selfadjoint, then

T is regular if and only if the operators $T \pm i$ are surjective.

0.G.

Proposition (Dabrowski & Dossena – 2011)

For any $n \in \mathbb{N}$, consider S with its matrices as in (Def-F).

- For even *n*, grading operator γ_S with $\gamma_S^* = \gamma_S$, $\gamma_S^2 = 1$ and $\gamma_S F_j = -F_j \gamma_S$.
- Antilinear map J_S s.t. $\langle J_S s, J_S s'
 angle = \langle s', s
 angle$ and

$$J_{S}^{2} = \varepsilon_{J} \qquad J_{S}F_{j} = \varepsilon_{D}F_{j}J_{S} \qquad J_{S}\gamma_{S} = \varepsilon_{\gamma}\gamma_{S}J_{S},$$

where $\varepsilon_J, \varepsilon_D$ and ε_{γ} : either -1 or 1, as in Table • Real structure.

If $\mathscr{H}_0 = \mathsf{GNS}(A, \tau)$ for a *G*-invariant trace τ on *A*,

- \mathcal{H}_0 is naturally endowed with a covariant rep. of (A, G),
- we use the above to get better properties for *D*.

Spectral triples

0.G.

Selfadj. op.

Unbounded symmetric operator – part II

If $\mathscr{H}_0 = \mathsf{GNS}(A, \tau)$, consider $\mathscr{H} := \mathscr{H}_0 \otimes S$ and still $D = \sum \partial_j \otimes F_j$ defined on $\mathsf{Dom}(D) = \mathscr{H}_0^\infty \otimes_{\mathbb{C}} S \subseteq \mathscr{H}$.

Proposition

The operator D on \mathscr{H} has further properties:

(iii) For even *n*, grading operator $\gamma = 1 \otimes \gamma_S$ s.t. $\gamma^2 = 1$ and for all $a \in A$,

$$\gamma a = a\gamma \qquad \gamma(\operatorname{Dom} D) \subseteq \operatorname{Dom}(D) \qquad \gamma D = -D\gamma;$$

- (iv) D has a real structure, *i.e.* antilinear $J = J_0 \otimes J_S$ on \mathscr{H} with commutation relations of \checkmark Real structure.
- (v) D and J satisfy the first order condition, i.e. for all $a, a' \in \mathscr{A}$,

$$[[D, a'], Ja^*J^{-1}] = 0;$$

(vi) D admits a selfadjoint extension D.

35

Spectral triples

0.G.

Sketch of proof

General idea: use properties of tensor product.

- (iii) Grading operator: $\gamma = 1 \otimes \gamma_S$ and γ_S satisfies all required properties...
- (iv) Real structure: $J = J_0 \otimes J_S$. Since $\mathscr{H}_0 := \text{GNS}(A, \tau)$, the set $[a] \in \mathscr{H}_0$ is dense. Set $J_0([a]) = [a^*]$ then

$$U_g J_0([a]) = [\alpha_g(a^*)] = [\alpha_g(a)^*] = J_0 U_g([a])$$

and all properties follow.

- (v) First order condition: notice that $J_0bJ_0^{-1}([a]) = [ab^*]$ so [D, a'] and JaJ^{-1} act on "different sides" of \mathcal{H} .
- (vi) Selfadjoint extension: very different idea. Requires a theorem by von Neumann.

Existence of selfadjoint extension: why is it interesting?

Spectral triples

0.G.

Example of conditions: real structure

• Real structure antilinear operator $J: \mathscr{H} \to \mathscr{H}$ s.t. $\langle J\xi, J\eta \rangle = \langle \eta, \xi \rangle$, $J^2 = \varepsilon_J$, $[a, Jb^*J] = 0$ and

 $J(\mathsf{Dom}(D)) \subseteq \mathsf{Dom}(D) \quad JD = \varepsilon_D DJ \quad J\gamma = \varepsilon_\gamma \gamma J,$

where $\varepsilon_J, \varepsilon_D$ and (possibly) ε_γ are all ± 1 , depending on *n*:

п	0	2	4	6	1	3	5	7
ε_J	+	_	_	+	+	_	_	+
ε_D	+	+	+	+	—	+	_	+
ε_{γ}	+	_	+	_				

Motivations:

- Real K-homology (KR-homology). Spin.
- Turns \mathscr{H} into $\mathscr{A} \otimes \mathscr{A}^{op}$ module. Natural involution $a \otimes b^{op} \mapsto b^* \otimes (a^*)^{op}$. Poincaré duality.
- Tomita operator (traceless case).

Spectral triples

0.G.

Example of conditions: real structure

• Real structure antilinear operator $J: \mathscr{H} \to \mathscr{H}$ s.t. $\langle J\xi, J\eta \rangle = \langle \eta, \xi \rangle$, $J^2 = \varepsilon_J$, $[a, Jb^*J] = 0$ and

 $J(\mathsf{Dom}(D)) \subseteq \mathsf{Dom}(D) \quad JD = \varepsilon_D DJ \quad J\gamma = \varepsilon_\gamma \gamma J,$

where $\varepsilon_J, \varepsilon_D$ and (possibly) ε_γ are all ± 1 , depending on *n*:

n	0	2	4	6	1	3	5	7
ε_J	+	_	_	+	+	—	_	+
ε_D	+	+	+	+	—	+	_	+
ε_{γ}	+	—	+	—				

Motivations:

- Real K-homology (KR-homology). Spin.
- Turns \mathscr{H} into $\mathscr{A} \otimes \mathscr{A}^{op}$ module. Natural involution $a \otimes b^{op} \mapsto b^* \otimes (a^*)^{op}$. Poincaré duality.
- Tomita operator (traceless case).

Spectral triples

0.G.

Hilbert bimodule

Hilbert bimodule: a Hilbert module on both left and right.

Definition (Hilbert bimodule)

A-B-bimodule E such that

• E is a left A-Hilbert module,

with an A-valued scalar product $_{A}\langle , \rangle$.

• E is a right A-Hilbert module,

with an A-valued scalar product \langle , \rangle_A .

• condition de compatibilité : pour tous ξ, ζ, η dans E,

$$\xi \langle \zeta, \eta \rangle_{B} = {}_{\mathcal{A}} \langle \xi, \zeta \rangle \eta.$$

• Closely related notion: Morita equivalence bimodule. Example:

E = A with the standard action on both sides and

$$_{\mathcal{A}}\langle \xi,\eta
angle=\xi\eta^{*}$$
 $\langle \xi,\eta
angle_{\mathcal{A}}=\xi^{*}\eta.$ (Back)

Spectral triples

0.G.

ldée : généralisation des espaces hilbertiens pour C^* -algèbres autres que \mathbb{C} .

Exemple dans le cas commutatif :

- M, variété riemannienn lisse et A = C(M).
- *TM*, fibré tangent de *M*.

E, sections continues de *TM*: module sur *A*. Formule $\langle \xi, \eta \rangle(x) = \langle \xi(x), \eta(x) \rangle$: définit un produit scalaire à valeur dans *A* !

Definition (: module hilbertien (à droite))

E, *A*-module (à droite) et produit scalaire $\langle \cdot, \cdot \rangle$ à valeur dans *A*.

• Définition similaire pour les modules hilbertiens à gauche.

Spectral triples

0.G.

Soit A une C^* -algèbre,

Definition (: module hilbertien (à droite))

E, *A*-module à droite et $\langle \cdot | \cdot \rangle$, produit scalaire à valeur dans *A*: for all $\xi, \eta \in E$ and $a \in A$,

$$\textbf{0} \hspace{0.2cm} \langle \xi | \xi \rangle = \textbf{0} \Longleftrightarrow \xi = \textbf{0}$$

$$(\xi |\eta a\rangle = \langle \xi |\eta \rangle a$$

$$(\xi|\eta\rangle^* = \langle \eta|\xi\rangle$$

• *E* est complet pour la norme $\|\xi\| = \|\langle \xi | \xi \rangle \|^{\frac{1}{2}}$.

▲ Retour

O G

Selfadi, op

Let A and B be two C^* -algebras, assume we have two elements

 $\alpha \in KK(A \otimes B, \mathbb{C}) \qquad \beta \in KK(\mathbb{C}, A \otimes B)$

such that

$$\beta \otimes_A \alpha = 1_B \in KK(B,B)$$
 $\beta \otimes_B \alpha = 1_A \in KK(A,A)$

which exchanges K-theory and K-homology for A and B:

$$K_*(A) = KK(\mathbb{C}, A) \simeq KK(B, \mathbb{C}) = K^*(B)$$
$$K_*(B) = KK(\mathbb{C}, B) \simeq KK(A, \mathbb{C}) = K^*(A)$$

O.G.

Given densely defined T, $Dom(T^*)$ set of $x \in \mathscr{H}$ s.t.

$$\exists z \in \mathscr{H}, \forall y \in \mathsf{Dom}(T), \langle x, Ty \rangle = \langle z, y \rangle.$$

• The *adjoint* T^* of T is defined by $T^*x = z$.

• T selfadjoint iff $T = T^*$ (in part. $Dom(T) = Dom(T^*)$).

Delicate equilibrium: enlarging Dom(T) puts more constraints, thus restricting $Dom(T^*)$...

- For symmetric T, i.e. ∀x, y ∈ Dom(T), ⟨Tx, y⟩ = ⟨x, Ty⟩, we have Dom(T) ⊆ Dom(T*).
- In this case, the closure T
 is defined on Dom(T
), completion of Dom(T) for ||x||²_T = ||x||² + ||Tx||².

T is essentially selfadjoint if \overline{T} is selfadjoint.

The spectral theorem only holds for selfadjoint operators!

Spectral triples

Back

0.G.

Given densely defined T, $Dom(T^*)$ set of $x \in \mathscr{H}$ s.t.

$$\exists z \in \mathscr{H}, \forall y \in \mathsf{Dom}(T), \langle x, Ty \rangle = \langle z, y \rangle.$$

• The *adjoint* T^* of T is defined by $T^*x = z$.

• T selfadjoint iff $T = T^*$ (in part. $Dom(T) = Dom(T^*)$).

Delicate equilibrium: enlarging Dom(T) puts more constraints, thus restricting $Dom(T^*)$...

- For symmetric T, i.e. ∀x, y ∈ Dom(T), ⟨Tx, y⟩ = ⟨x, Ty⟩, we have Dom(T) ⊆ Dom(T*).
- In this case, the closure T is defined on Dom(T), completion of Dom(T) for ||x||²_T = ||x||² + ||Tx||².

T is essentially selfadjoint if \overline{T} is selfadjoint.

The spectral theorem only holds for selfadjoint operators!

Back

Spectral triples

0.G.

Given densely defined T, $Dom(T^*)$ set of $x \in \mathscr{H}$ s.t.

$$\exists z \in \mathscr{H}, \forall y \in \mathsf{Dom}(T), \langle x, Ty \rangle = \langle z, y \rangle.$$

• The *adjoint* T^* of T is defined by $T^*x = z$.

• T selfadjoint iff $T = T^*$ (in part. $Dom(T) = Dom(T^*)$).

Delicate equilibrium: enlarging Dom(T) puts more constraints, thus restricting $Dom(T^*)$...

- For symmetric T, i.e. ∀x, y ∈ Dom(T), ⟨Tx, y⟩ = ⟨x, Ty⟩, we have Dom(T) ⊆ Dom(T*).
- In this case, the closure T
 is defined on Dom(T), completion of Dom(T) for ||x||²_T = ||x||² + ||Tx||².

T is essentially selfadjoint if \overline{T} is selfadjoint.

The spectral theorem only holds for selfadjoint operators!

Back

0.G.

NS elfadj. op.

Given densely defined T, $Dom(T^*)$ set of $x \in \mathscr{H}$ s.t.

$$\exists z \in \mathscr{H}, \forall y \in \mathsf{Dom}(T), \langle x, Ty \rangle = \langle z, y \rangle.$$

• The *adjoint* T^* of T is defined by $T^*x = z$.

• T selfadjoint iff $T = T^*$ (in part. $Dom(T) = Dom(T^*)$).

Delicate equilibrium: enlarging Dom(T) puts more constraints, thus restricting $Dom(T^*)$...

- For symmetric T, i.e. ∀x, y ∈ Dom(T), ⟨Tx, y⟩ = ⟨x, Ty⟩, we have Dom(T) ⊆ Dom(T*).
- In this case, the closure T is defined on Dom(T), completion of Dom(T) for ||x||²_T = ||x||² + ||Tx||².
- T is essentially selfadjoint if \overline{T} is selfadjoint.

The spectral theorem only holds for selfadjoint operators!

Spectral triples

Back

O.G.

NS ⊵lfadj. op.

Given densely defined T, $Dom(T^*)$ set of $x \in \mathscr{H}$ s.t.

$$\exists z \in \mathscr{H}, \forall y \in \mathsf{Dom}(T), \langle x, Ty \rangle = \langle z, y \rangle.$$

• The *adjoint* T^* of T is defined by $T^*x = z$.

• T selfadjoint iff $T = T^*$ (in part. $Dom(T) = Dom(T^*)$).

Delicate equilibrium: enlarging Dom(T) puts more constraints, thus restricting $Dom(T^*)$...

- For symmetric T, i.e. ∀x, y ∈ Dom(T), ⟨Tx, y⟩ = ⟨x, Ty⟩, we have Dom(T) ⊆ Dom(T*).
- In this case, the closure T
 is defined on Dom(T), completion of Dom(T) for ||x||²_T = ||x||² + ||Tx||².
- T is essentially selfadjoint if \overline{T} is selfadjoint.

The spectral theorem only holds for selfadjoint operators!

Spectral triples

Back

0.G.

NS Ifadj. op.

Proposition

- If T is symmetric, TFAE:
 - T is essentially selfadjoint;
 - 2 ker $(T^* + i) = \{0\}$ and ker $(T^* i) = \{0\}$;
 - So Both ran(T + i) and ran(T i) are dense in \mathcal{H} .

Example: T = id/ds with

 $\mathsf{Dom}(T) := \{ f \in H^1([0,1]), f(0) = 0 = f(1) \}$

- Integration by parts: T is symmetric.
- Adjoint: $T^* = id/ds$ on $Dom(T^*) = H^1([0,1])$, \rightsquigarrow no restriction on f(0) and f
- *T* is *not* essentially selfadjoint:

 $e^{\pm s} \in \mathsf{Dom}(T^*)$ and $(T^* \pm i)e^{\pm s} = 0$.

Selfadjoint extensions? Yes! T_{α} for $|\alpha| = 1$ with:

 $Dom(T_{\alpha}) := \{ f \in AC([0,1]), f(0) = \alpha f(1) \}$

Spectra triples

Back

0.G.

IS Ifadj. op.

Proposition

- If T is symmetric, TFAE:
 - T is essentially selfadjoint;
 - 2 ker $(T^* + i) = \{0\}$ and ker $(T^* i) = \{0\}$;
 - So Both ran(T + i) and ran(T i) are dense in \mathcal{H} .

Example: T = id/ds with

 $\mathsf{Dom}(T) := \{ f \in H^1([0,1]), f(0) = 0 = f(1) \}$

- Integration by parts: T is symmetric.
- Adjoint: $T^* = id/ds$ on $Dom(T^*) = H^1([0, 1])$, \rightsquigarrow no restriction on f(0) and f(1)!
- *T* is *not* essentially selfadjoint:

 $e^{\pm s} \in \mathsf{Dom}(T^*)$ and $(T^* \pm i)e^{\pm s} = 0$.

Selfadjoint extensions? Yes! T_{α} for $|\alpha| = 1$ with:

 $Dom(T_{\alpha}) := \{ f \in AC([0,1]), f(0) = \alpha f(1) \}$

Spectral triples

Back

0.G.

S fadj. op.

Proposition

- If T is symmetric, TFAE:
 - T is essentially selfadjoint;
 - 2 ker $(T^* + i) = \{0\}$ and ker $(T^* i) = \{0\}$;
 - So Both ran(T + i) and ran(T i) are dense in \mathcal{H} .

Example: T = id/ds with

 $\mathsf{Dom}(T) := \{ f \in H^1([0,1]), f(0) = 0 = f(1) \}$

- Integration by parts: T is symmetric.
- Adjoint: $T^* = id/ds$ on $Dom(T^*) = H^1([0, 1])$, \rightsquigarrow no restriction on f(0) and f(1)!
- *T* is *not* essentially selfadjoint:
 - $e^{\pm s} \in \mathsf{Dom}(T^*)$ and $(T^* \pm i)e^{\pm s} = 0$.

Selfadjoint extensions? Yes! T_{α} for $|\alpha| = 1$ with:

 $Dom(T_{\alpha}) := \{ f \in AC([0,1]), f(0) = \alpha f(1) \}$

Spectral triples

Back

0.G.

IS fadj. op.

Proposition

- If T is symmetric, TFAE:
 - T is essentially selfadjoint;
 - 2 ker $(T^* + i) = \{0\}$ and ker $(T^* i) = \{0\}$;
 - So Both ran(T + i) and ran(T i) are dense in \mathcal{H} .

Example: T = id/ds with

$$\mathsf{Dom}(T) := \{ f \in H^1([0,1]), f(0) = 0 = f(1) \}$$

- Integration by parts: T is symmetric.
- Adjoint: $T^* = id/ds$ on $Dom(T^*) = H^1([0, 1])$, \rightsquigarrow no restriction on f(0) and f(1)!
- *T* is *not* essentially selfadjoint:

$$e^{\pm s}\in \mathsf{Dom}(T^*)$$
 and $(T^*\pm i)e^{\pm s}=0.$

Selfadjoint extensions? Yes! T_{α} for $|\alpha| = 1$ with:

 $\mathsf{Dom}(\mathcal{T}_{\alpha}) := \{f \in \mathsf{AC}([0,1]), f(0) = \alpha f(1)\}$

Spectral triples

Back

0.G.

S fadj. op.