The Structure of Quantum Line Bundles over Quantum Teardrops

Albert Jeu-Liang Sheu University of Kansas

June 25, 2013

Quantum vector bundle

- $\bullet \ \mathsf{Quantum} \equiv \mathsf{Noncommutative}$
- (Compact) "quantum space" $X_q \longleftrightarrow$ (Unital) noncommutative C*-algebra $C(X_q)$
 - ▶ Often a dense *-subalgebra O(X_q) of C(X_q) is used in place of C(X_q) to avoid unnecessary technical inconveniences in early stage of development

• Swan's Theorem suggests: Isomorphism classes of "Quantum vector bundle" E_q over a compact quantum space X_q \longleftrightarrow Isomorphism classes of finitely generated *left* projective module $\Gamma(E_q)$ over $C(X_q)$

 $\longleftrightarrow \mathsf{Unitary} \text{ equivalence classes of projections in } M_{\infty}\left(C\left(X_{q}\right) \right)$

Examples of quantum vector bundles

• Example: For $l \in \mathbb{N}$ and \mathcal{K} the algebra of all compact operators, the projections $\oplus_{j=1}^{l} p_{k_j} \in M_1\left(\left(\mathcal{K}^{l}\right)^+\right)$ with $k_j \ge 0$ and $l_{r-1} \oplus \left(l - \left(\oplus_{j=1}^{l} p_{n_j}\right)\right) \oplus \left(\oplus_{j=1}^{l} p_{m_j}\right) \in M_{r+1}\left(\left(\mathcal{K}^{l}\right)^+\right)$ with $r \in \mathbb{N}$, $n_j, m_j \ge 0$ such that $n_j m_j = 0$ represent all unitarily inequivalent classes of projections in $M_{\infty}\left(\left(\mathcal{K}^{l}\right)^+\right)$ where $p_k := \sum_{i=1}^{k} e_{ii} \in \mathcal{K}$ and

$$0 o \mathcal{K}' \equiv \oplus_{j=1}^{l} \mathcal{K} o \left(\mathcal{K}'
ight)^{+} \equiv \mathcal{C}(W\mathbb{P}_{q}\left(k,l
ight)) o \mathbb{C} o 0$$
 exact

• Example: (K. Bach) The projections $1 \otimes p_k$ with $k \ge 0$ and I_r with $r \in \mathbb{N}$ represent all unitarily inequivalent classes of projections in $M_{\infty}\left(C\left(S_q^3\right)\right)$ where

$$0 \to C(\mathbb{T}) \otimes \mathcal{K} \to C\left(SU(2)_q\right) \equiv C\left(S_q^3\right) \to C\left(\mathbb{T}\right) \to 0 \;\; \text{exact}$$

Quantum group

• (Woronowicz, Van Daele, ...) A compact quantum group is a unital separable C*-algebra A with comultiplication Δ such that $(A \otimes 1) \Delta A$ and $(1 \otimes A) \Delta A$ are dense in A.

(Woronowicz) Compact quantum group A contains a dense
 *-subalgebra A, forming a Hopf *-algebras (A, Δ,*, S, ε), and has a Haar state h ∈ A* satisfying h(1) = 1 and

$$(\mathrm{id}\otimes h)\Delta a = h(a)1 = (h\otimes \mathrm{id})\Delta a.$$

 $\begin{array}{l} \Delta, \varepsilon \colon \mathbb{C}\text{-linear *-algebra homomorphism} \\ S \colon \mathbb{C}\text{-linear algebra anti-automorphism} \\ S \left(S\left(\cdot \right)^* \right)^* = \mathrm{id} = (\mathrm{id} \otimes \varepsilon) \, \Delta = (\varepsilon \otimes \mathrm{id}) \, \Delta \\ \mu \left(\mathrm{id} \otimes S \right) \Delta = \mu \left(S \otimes \mathrm{id} \right) \Delta = \varepsilon \end{array}$

• We denote \mathcal{A} by $\mathcal{O}(G_q)$ if A is denoted as $C(G_q)$.

Quantum homogeneous space

• For a quantum subgroup H_q of a compact quantum group G_q given by a surjective Hopf algebra homomorphism $\mathcal{O}(G_q) \rightarrow \mathcal{O}(H_q)$, the *-subalgebra

$$\mathcal{O}\left(G_{q}/H_{q}\right) := \left\{x \in \mathcal{O}\left(G_{q}\right) : \Delta_{R}\left(x\right) = x \otimes 1\right\}$$

of *coinvariants* of the coaction $\mathcal{O}(G_q) \xrightarrow{\Delta_R} \mathcal{O}(G_q) \otimes \mathcal{O}(H_q)$ defines a "quantum homogeneous space" G_q/H_q . • Example: $S_q^{2n+1} = SU(n+1)_q/SU(n)_q$ with $q \in (0,1)$ generated by $z_0, ..., z_n$ subject to $\sum_{m=0}^n z_m z_m^* = 1$, $z_i z_j = q z_j z_i$ for $i < j, z_i z_j^* = q z_j^* z_i$ for $i \neq j$, and $z_i z_i^* = z_i^* z_i + (q^{-2} - 1) \sum_{m=i+1}^n z_m z_m^*$.

Quantum quotient space

• More generally, given a coaction

 $\Delta_{R}: \mathcal{O}(X_{q}) \rightarrow \mathcal{O}(X_{q}) \otimes \mathcal{O}(H_{q}) \text{ of a compact quantum group } H_{q}$ on a compact quantum space X_{q} , the *-subalgebra

$$\mathcal{O}\left(X_{q}/H_{q}\right) := \left\{x \in \mathcal{O}\left(X_{q}\right) : \Delta_{R}\left(x\right) = x \otimes 1\right\}$$

of *coinvariants* defines a "quantum quotient space" X_q/H_q . • Example: The quantum weighted complex projective space $WP_q(I_0, ..., I_n)$, for pairwise coprime numbers $I_0, ..., I_n \in \mathbb{N}$, is defined as the quantum quotient space for the coaction of $\mathcal{O}\left(U(1)_q\right) \equiv \mathcal{O}\left(U(1)\right) = \mathbb{C}\left[u, u^*\right]$ on $\mathcal{O}\left(S_q^{2n+1}\right)$ defined by

 $z_{i}\in\mathcal{O}\left(S_{q}^{2n+1}\right)\mapsto z_{i}\otimes u^{l_{i}}\in\mathcal{O}\left(S_{q}^{2n+1}\right)\otimes\mathcal{O}\left(U\left(1\right)\right) \ \, \text{for}\,\,i=0,...,n$

- When l₀ = ... = l_n = 1, we get the quantum complex projective CPⁿ_q.
- For n = 1, we get the so-called quantum teardrop WP_q(k, l) with k, l coprime.

Quantum principal bundle

• Brzeziński and Fairfax determined that the algebra $\mathcal{O}(S_q^3)$ is a principal $\mathcal{O}(U(1))$ -comodule algebra over $\mathcal{O}(WP_q(k, l))$ if and only if k = l = 1.

Consistent with the classical U(1)-action
 (z, w) → (u^kz, u^lw) (with k, l coprime) for u ∈ T on S³.

• They found that the quantum lens space $L_q(I; 1, I)$ provides the total space of a quantum U(1)-principal bundle over $WP_q(1, I)$, where $L_q(I; 1, I)$ is the quantum quotient space defined by the coaction $\rho : \mathcal{O}(S_q^3) \to \mathcal{O}(S_q^3) \otimes \mathcal{O}(\mathbb{Z}_I)$ with $\rho(\alpha) = \alpha \otimes w$ and $\rho(\beta) = \beta \otimes 1$ where $\alpha := z_0$ and $\beta := z_1^*$ generate $\mathcal{O}(S_q^3) \equiv \mathcal{O}(SU(2)_q)$, and w is the unitary group-like generator of $\mathcal{O}(\mathbb{Z}_I)$ with $w^I = 1$.

With O (L_q (I; 1, I)) generated by c := α^I and d := β, the coaction of O (U (1)) on the quantum U (1)-principal bundle is given by ρ_I : c → c ⊗ u and ρ_I : d → d ⊗ u^{*}.

Quantum line bundle

• The irreducible corepresentations of $\mathcal{O}(U(1))$ on left comodules W_n correspond to exactly the irreducible (1-dimensional) representations of U(1) indexed by $n \in \mathbb{Z}$.

• Brzeziński and Fairfax found that the cotensor product of $\mathcal{O}(L_q(I; 1, I))$ with W_n over $\mathcal{O}(U(1))$ turns out to be a finitely generated projective module $\mathcal{L}[n]$ over $\mathcal{O}(WP_q(1, I))$ and is naturally called a quantum line bundle over $WP_q(1, I)$.

- Following a general procedure, one can compute an idempotent matrix *E*[*n*] over *O*(*WP_q*(1,*l*)) implementing the projective module *L*[*n*] with complicated entries *E*[*n*]_{*ij*} = ω(uⁿ)^{[2]_i} ω(uⁿ)^{[1]_j} where ω(uⁿ) = ∑_i ω(uⁿ)^{[1]_i} ⊗ ω(uⁿ)^{[2]_i} comes from a *strong* connection ω : *O*(*U*(1)) → *O*(*L_q*(*l*; 1, *l*)) ⊗ *O*(*L_q*(*l*; 1, *l*)).
- ► They showed in particular that the O (WP_q (1, I))-module L [1] is not free.

Classification

• Brzeziński and Fairfax also determined the structure of the C*-algebra $C(WP_q(1, I))$ as $(\mathcal{K}^I)^+$ and computed its K-groups. • It is of interest to identify explicitly the quantum line bundles $\mathcal{L}[n]$ for all $n \in \mathbb{Z}$ among all finitely generated projective modules over $(\mathcal{K}^I)^+$ already classified above.

It turns out that L [n] is isomorphic to the projective module represented by projections

►
$$I_1 \oplus \left(\oplus_{j=1}^{l} p_n \right) \in M_2 \left(\left(\mathcal{K}^{l} \right)^+ \right)$$
 if $n \ge 0$
► $I - \left(\oplus_{j=1}^{l} p_{-n} \right) \in M_1 \left(\left(\mathcal{K}^{l} \right)^+ \right)$ if $n < 0$

We note that L [n] ⊗_{C(WPq(1,I))} C (S³_q) for all n ∈ Z is the same rank-1 free module over C (S³_q), showing that these non-isomorphic quantum line bundles L [n] over WPq (1, I) pull back to the same quantum line bundles over S³_q via the quotient S³_q → WPq (1, I).