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Introduction

The goal is to construct certain classes of measurement operations in quantum
theory that only involve a minimal amount of structure.

To the extent that the structure involved is minimal, to the same extent the
class of measurement operations associated with it is maximal—or
“universal”—that is to say, applicable to any system.

We shall look at some explicit examples of UQMs (universal quantum
measurements).

Some of these are tomographic, in the sense that the statistics of the
measurement outcomes allow one to determine the state of the system.
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States

We consider a quantum system represented by a Hilbert space Hα of finite
dimension n.

Write ξα (α = 1, . . . , n) for a typical element of Hα, and ηα for a typical
element of the dual space Hα.

Complex conjugation defines a map Hα → Hα given by ξα ∈ Hα → ξ̄α ∈ Hα.

The state of the system is a positive operator wα
β . Thus wα

βξ
βξ̄α ≥ 0 for all ξβ.

We do not insist that wα
β should have trace unity—physical expressions will

involve ratios.

States of the form wα
β = ZαZ̄β /Z

γZ̄γ are in one to one correspondence with

points of the complex projective space CPn−1.

There is a natural Riemannian metric on the space of pure states, called the
Fubini-Study metric, which is invariant under the action of the unitary group.
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Experiments

For a given quantum system, we need to specify the space of possible results for
an experiment on it, and to say how the state changes as a consequence of the
experiment having been made and a certain result having been obtained.

Each experiment is described by a measurable space (Ω,F) endowed with some
structure that relates it to Hα and the state wα

β .

Here the set Ω represents the possible outcomes of chance, and F is a collection
subsets of Ω forming a σ-algebra.

In a given experiment, if ω ∈ Ω is the outcome of chance, then the result of the
experiment is the smallest element A ∈ F such that ω ∈ A.

It may be that the smallest subset A of Ω that contains ω is the set {ω} ∈ F
that only contains ω.

This happens for example in the case of “refined” experiments where the result
of the experiment is sufficient to determine the outcome of chance.
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We distinguish between outcomes of chance (which are elements of Ω) and
results of experiments (which are elements of F).

If E and F are σ-algebras on Ω, and if E is a sub-σ-algebra of F , then we say
that the experiment F is a refinement of the experiment E .

Transformations

Another ingredient that we require for the specification of an experiment is a
system of state transformations T = {T (A), A ∈ F} satisfying the following
conditions:

1. For each A ∈ F , T (A) is given by a completely positive map

T : wα
β → T αβ

′

βα′ (A)wα′
β′ ; (1)

2. T = {T (A), A ∈ F} is countably additive. Thus, T αβ
′

βα′ (∅) = 0, and if the

sets {An : n ∈ N} are disjoint, and such that A = ∪nAn, then

T αβ
′

βα′ (A) =
∑
n

T αβ
′

βα′ (An) ; (2)
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3. For each A ∈ F , T (A) is trace-reducing:

T γβ
′

γα′ (A) wα′
β′/w

γ
γ ≤ 1 ; (3)

4. T (Ω) satisfies the law of total probability:

T γβ
′

γα′ (Ω) wα′
β′/w

γ
γ = 1 . (4)

Probabilities

Once we have specified the system of transformations, then in a model for an
experiment (Ω,F ,T) on H, the probability that the outcome of chance ω lies in
the set A ∈ F is given by

P(ω ∈ A) = T γβ
′

γα′ (A) wα′
β′/w

γ
γ . (5)

If Aω denotes the smallest element of F containing the outcome of chance ω,
and if P(ω ∈ Aω) 6= 0, then the state transformation associated with ω is

wα
β →

T αβ
′

βα′ (Aω)wα′
β′

T γβ
′

γα′ (Aω)wα′
β′

. (6)
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The usual projective measurements (with or without selection) in quantum
mechanics take this form, and so do discrete POVM measurements.

For example, in the “unrefined” experiment corresponding to a non-selective
projective measurement we have F = {Ω, ∅}.

In that case, the outcome of the measurement is trivial in the sense that we
have P(ω ∈ Ω) = 1 and P(ω ∈ ∅) = 0. Nevertheless, the state transformation
will in general be non-trivial.

Continuous measurements

In the continuous case, the probability of any particular outcome of chance is
zero. In that situation we model the state transformations as follows.

We suppose that there exists a measure µ(dω) on Ω and a transformation

density tαβ
′

βα′(ω) with the property that for any A ∈ F we have

T αβ
′

βα′ (A) =

∫
Ω

1{ω ∈ A}tαβ
′

βα′(ω) µ(dω) .
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Then the probability distribution for the outcome of chance is

P(ω ∈ dω) = tγβ
′

γα′(ω) wα′
β′/w

γ
γ µ(dω) ,

and the state transformation is given by

wα
β →

tαβ
′

βα′(ω)wα′
β′

tγβ
′

γα′(ω)wα′
β′

.

In what follows, we shall be concerned with the continuous situation, where we
have a finite dimensional Hilbert space and the outcome space Ω has the
structure of a manifold on which a natural candidate for the measure µ(dω) on
Ω is available.

In particular, we consider how to model the associated transformation tensor

density function tαβ
′

βα′(ω).
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UQMs

We consider the case where the measurable space Ω representing the possible
outcomes of chance is the manifold CPn−1, the space of pure states associated
with the given Hilbert space Hα. This is a rather natural choice to consider since
it does not involve introducing any additional structure on the quantum system.

Let Γ := CPn−1, let x denote a typical point in Γ , and let Zα(x) denote a
representative vector in H lying on the fibre above the point x ∈ Γ.

Then we can construct a system of transformations T by setting

T αβ
′

βα′ (A) = n

∫
x∈Γ

1{x ∈ A}Z
α(x)Zβ′(x)Z̄β(x)Z̄α′(x)

(Zγ(x)Z̄γ(x))2
µ(dx).

Here

µ(dx) =
DZ(x)∫

x∈Γ DZ(x)

where

DZ = εαβ···γZ
αdZβ · · · dZγ εαβ···γZ̄αdZ̄β · · · dZ̄γ / [Zγ(x)Z̄γ(x)]n.

We see that µ(dx) defines the uniform distribution on Γ = CPn−1.
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The transformation tensor density is given by

tαβ
′

βα′(ω) = n
Zα(x)Zβ′(x)Z̄β(x)Z̄α′(x)

(Zγ(x)Z̄γ(x))2
.

One sees that the outcome of chance in such a measurement is a pure state.

The probability that the outcome lies in a region A ⊂ CPn−1 is given by

P(ω ∈ A) = Eα
β (A)wβ

α,

where

Eα
β (A) = n

∫
x∈Γ

1{x ∈ A}Z
α(x)Z̄β(x)

Zγ(x)Z̄γ(x)
µ(dx).

Clearly we have Eα
β (Γ ) = δαβ .

It follows in particular that

ρ(x) := n
Zα(x)Z̄β(x)wβ

α

Zγ(x)Z̄γ(x)

is the probability density for the outcome

P(ω ∈ dω) = ρ(x) µ(dx).

L. P. Hughston - 10 - Fields Institute, Toronto



Universal Tomographic Measurements 20 February 2013

If we make a large number of measurements, and analyze the statistics of the
measurements, then we can determine ρ(x), and hence determine the state wα

β .

The ensemble of outcomes has density ρ(x), and therefore the state of the
ensemble representing the outcomes of a large number of measurements is

rαβ =

∫
Γ

ρ(x)
Zα(x)Z̄β(x)

Zγ(x)Z̄γ(x)
µ(dx). (7)

The integral can be worked out explicitly by use of the following formula:∫
Γ

Zα(x)Zβ′(x)Z̄β(x)Z̄α′(x)

(Zγ(x)Z̄γ(x))2
µ(dx)

=
1

n(n + 1)

(
δαβδ

β′

α′ + δαα′δ
β
β′
)
. (8)

A calculation then shows that

rαβ =
1

n + 1

(
δαβ + wα

β

)
. (9)

We see that the original state wα
β is “diluted” as a consequence of the

measurement operation.

L. P. Hughston - 11 - Fields Institute, Toronto



Universal Tomographic Measurements 20 February 2013

Nevertheless, we can determine the original state since

wα
β = (n + 1)rαβ − δαβ . (10)

We call such experiments “universal tomographic measurements” (UQM) since
they can be applied to any finite-dimensional quantum system, and allow for .

No additional structure (such as the specification of an observable or a
measurable space) is required apart from what is already implicit in the original
specification of the system Hα.

Direction of spin

UQMs can form elements of other measurements.

In that case, we introduce more structure on the Hilbert, but typically not
involving the choice of specific observables. The idea is to keep the picture as
geometrical as possible.

An example is as follows.
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Consider a three-dimensional Hilbert space, for which the space of pure states
has the structure of the complex projective space CP2 endowed with the
Fubini-Study metric.

Let C be a real conic curve in CP2.

By “real” we mean the following: we require that for any point x in C the
complex conjugate line (representing the states orthogonal to x) is tangent to C.

Such a setup is equivalent to representing Hα as a space of symmetric spinors
HAB, with a typical element zAB (where A = 1, 2) so zAB = zBA.

The conic is given by
εAB εCD z

ACzBD = 0 . (11)

Here εAB = −εBA . Thus the conic is given by projective Hilbert space elements
of the form

zAB = φAφB. (12)

The complex conjugate line consists of all states xAB such that

φ̄Aφ̄Bx
AB = 0. (13)
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Thus the pure states orthogonal to the point zAB = φAφB on the conic are of
the form

xAB = φ̄(AαB) (14)

But any such state lies on a line tangent to C, the tangent point being φ̄Aφ̄B.

We can use C as the outcome space of a class of measurements.

For any spin-one initial state wAB
CD the outcome of the measurement is a point of

the conic C, that is to say, a pure spin state with a definite direction for the axis
of spin.

Thus, for the state transformation we have

wAB
CD → φAφBφ̄Cφ̄D / (φEφ̄E)2 . (15)

The probability that the outcome lies in a given region A ⊂ C is given by

P(ω ∈ A) = 3

∫
A

wAB
CD φCφDφ̄Aφ̄B(φEφ̄E)−2 Dφ , (16)

where Dφ is the volume element on the conic C induced by the embedding of
CP1 in CP2 as a rational curve (the Veronese embedding).
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Such an experiment on a spin-one system can be regarded as a “measurement of
the direction of the axis of the spin” of the particle.

The result of the experiment is an answer to the question “what is the direction
of the spin axis of the particle?”.

The state then transforms from the original state to a pure state, which is the
unique state that has that axis of spin.

Similar formulae apply in the case of higher spins, in which case the defining
structure involves a rational curve of degree 2s in CP2s (twisted cubic, rational
quartic, etc.).

Applications: disentangling measurements

As another example we can consider the Hilbert space of a pair of qubits.

In that case the Hilbert space has dimension four, and the associated pure state
space is CP3.
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The space of disentangled pure states is a quadric surface in CP3.

The quadric is a doubly ruled surface, given by the product of two CP1s.

Each of the CP1s is endowed with the Fubini-Study measure, so as a
consequence the quadric has a natural measure on it, given by the product
measure.

This gives rise to a class of UQMs that we can call “disentangling
measurements”. Starting with a general state of the two-qubit system, the
outcome of a disentangling measurement is a point on the quadric.

The transformation density is given by the product of the transformation
densities associated with the UQMs attached to each of the individual qubits.

Similar constructions apply in the case of entangled states of many particle
systems, in which case the relevant outcome space is given by the Segre
embedding of the product space of the pure state spaces associated with the
various individual systems.
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Conclusions

We are able to introduce certain rather general classes of operations in quantum
mechanics that one can regard as “universal quantum measurements” (UQMs)
in the sense that they are applicable to all quantum systems and involve the
specification of only a minimal amount of structure on the system.

The first class of UQM that we have considered involves the Hilbert space of the
system together with the specification of the state of the system—no further
structure is brought into play.

We can call operations of this type “universal tomographic measurements”,
since given the statistics of the outcomes of such measurements it is possible to
reconstruct the state of the system.

We are then able to consider the large class of UQMs that can be constructed
when the universal tomographic measurements on one or more quantum systems
are lifted, through appropriate embeddings, to induce certain associated
operations on the embedding space.
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As an example, one can make a measurement of the direction in space along
which the spin of a spin-s particle is oriented (s = 1

2, 1, . . . ). In this case the
additional structure involves the embedding of CP 1 as a rational curve of degree
2s in CP 2s.

As another example, we have indicated how one can construct a universal
disentangling measurement, the outcome of which, when applied to a mixed
state of an entangled compose system, is a disentangled product of pure
constituent states.
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