Omitting types in infinitary [0, 1]-valued logic

Chris Eagle

March 8, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- $1. \ \mbox{Background}$ the first-order case
- 2. Infinitary logic for metric structures and omitting types

3. Applications

Background

L - countable first-order language, ${\cal T}$ an L-theory. We want to study countable models of ${\cal T}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Background

L - countable first-order language, T an L-theory. We want to study countable models of T.

Example $\langle \overline{\mathbb{Q}}, +, -, \cdot, 0, 1 \rangle \preceq \langle \overline{\mathbb{Q}(\pi)}, +, -, \cdot, 0, 1 \rangle$, but $\langle \overline{\mathbb{Q}}, +, -, \cdot, 0, 1 \rangle \ncong \langle \overline{\mathbb{Q}(\pi)}, +, -, \cdot, 0, 1 \rangle$

Background

L - countable first-order language, T an L-theory. We want to study countable models of T.

Example

$$\langle \overline{\mathbb{Q}}, +, -, \cdot, 0, 1
angle \preceq \langle \overline{\mathbb{Q}(\pi)}, +, -, \cdot, 0, 1
angle$$
, but
 $\langle \overline{\mathbb{Q}}, +, -, \cdot, 0, 1
angle \ncong \langle \overline{\mathbb{Q}(\pi)}, +, -, \cdot, 0, 1
angle$

No formula, even with parameters from $\overline{\mathbb{Q}}$, can distinguish these structures.

Definition

Let $\Sigma(x_1, \ldots, x_n)$ be a set of *L*-formulas. If \mathcal{M} is an *L*-structure such that there are $a_1, \ldots, a_n \in \mathcal{M}$ such that $\mathcal{M} \models \phi(a_1, \ldots, a_n)$ for all $\phi(x_1, \ldots, x_n) \in \Sigma$, we say \mathcal{M} realizes Σ . Otherwise \mathcal{M} omits Σ .

Definition

Let $\Sigma(x_1, \ldots, x_n)$ be a set of *L*-formulas. If \mathcal{M} is an *L*-structure such that there are $a_1, \ldots, a_n \in \mathcal{M}$ such that $\mathcal{M} \models \phi(a_1, \ldots, a_n)$ for all $\phi(x_1, \ldots, x_n) \in \Sigma$, we say \mathcal{M} realizes Σ . Otherwise \mathcal{M} omits Σ .

If T is an *L*-theory and there is $\mathcal{M} \models T$ such that \mathcal{M} realizes Σ , then we say Σ is a **type of** T.

Example Let $\Sigma(x) = \{a_0 + a_1x + \dots + a_nx^n \neq 0 : n \in \omega, a_i \in \mathbb{Z}\}.$ Then π realizes Σ in $\overline{\mathbb{Q}(\pi)}$, but $\overline{\mathbb{Q}}$ omits Σ .

Example Let $\Sigma(x) = \{a_0 + a_1x + \dots + a_nx^n \neq 0 : n \in \omega, a_i \in \mathbb{Z}\}.$

Then π realizes Σ in $\overline{\mathbb{Q}(\pi)}$, but $\overline{\mathbb{Q}}$ omits Σ .

Types increase expressive power.

Example

Let T be the theory of abelian groups, and

$$\Sigma(x) = \{x \neq 0, x + x \neq 0, x + x + x \neq 0, \ldots\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then $\mathcal{M} \models T$ omits Σ if and only if \mathcal{M} is a torsion group.

Example

Let T be the theory of abelian groups, and

$$\Sigma(x) = \{x \neq 0, x + x \neq 0, x + x + x \neq 0, \ldots\}.$$

Then $\mathcal{M} \models T$ omits Σ if and only if \mathcal{M} is a torsion group.

Example

Let T = PA, and

$$\Sigma(x) = \{x \neq 0, x \neq S0, x \neq SS0, \ldots\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then $\mathcal{M} \models T$ omits Σ if and only if \mathcal{M} is standard.

Definition A type $\Sigma(\overline{x})$ is **principal** over T if there is $\phi(\overline{x})$ such that $T \cup \{\phi(\overline{x})\} \models \Sigma(\overline{x}).$

Definition A type $\Sigma(\overline{x})$ is **principal** over T if there is $\phi(\overline{x})$ such that $T \cup \{\phi(\overline{x})\} \models \Sigma(\overline{x}).$

Theorem (Henkin-Orey 1957)

For each n, let Σ_n be a type of T which is non-principal. Then there is a (countable) $\mathcal{M} \models T$ which omits every Σ_n .

Corollary Prime models realize only principal types.

Corollary

Prime models realize only principal types.

Corollary

Suppose \mathcal{M} is an ordered field, and that for every ϕ if $\mathcal{M} \models \exists x \phi(x)$ then there is a finite $a \in \mathcal{M}$ such that $\mathcal{M} \models \phi(a)$. Then \mathcal{M} is elementarily equivalent to an Archimedean field.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Corollary

Prime models realize only principal types.

Corollary

Suppose \mathcal{M} is an ordered field, and that for every ϕ if $\mathcal{M} \models \exists x \phi(x)$ then there is a finite $a \in \mathcal{M}$ such that $\mathcal{M} \models \phi(a)$. Then \mathcal{M} is elementarily equivalent to an Archimedean field.

Corollary

If $\mathcal{M} \models PA$ (or $\mathcal{M} \models ZF$) is countable then there exists a countable end-extension \mathcal{N} of \mathcal{M} such that $\mathcal{M} \preceq \mathcal{N}$.

Theorem (Keisler 1973)

Let L be a countable fragment of $\mathcal{L}_{\omega_1,\omega}$, and let T be an L-theory. For each n, let Σ_n be a type of T which is non-principal. Then there is a (countable) $\mathcal{M} \models T$ which omits every Σ_n .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

[0, 1]-valued Model Theory

Signatures: Function symbols, predicate symbols each have moduli of uniform continuity.

Signatures: Function symbols, predicate symbols each have moduli of uniform continuity.

Structures: Metric spaces of diameter ≤ 1 . Interpretations of symbols respect the moduli of continuity from the signature.

Fix a signature S. The formulas of $\mathcal{L}_{\omega_1,\omega}(S)$ are: **Atomic Formulas:** d(x, y), $R(x_1, \ldots, x_n)$, constants for each $r \in \mathbb{Q} \cap (0, 1)$.

Fix a signature S. The formulas of $\mathcal{L}_{\omega_1,\omega}(S)$ are: **Atomic Formulas:** d(x, y), $R(x_1, \ldots, x_n)$, constants for each $r \in \mathbb{Q} \cap (0, 1)$.

$$\bullet \phi \to \psi \quad (= \min \left\{ 1 - \phi + \psi, 1 \right\})$$

Fix a signature S. The formulas of $\mathcal{L}_{\omega_1,\omega}(S)$ are: **Atomic Formulas:** d(x, y), $R(x_1, \ldots, x_n)$, constants for each $r \in \mathbb{Q} \cap (0, 1)$.

$$\phi \to \psi \quad (=\min\{1-\phi+\psi,1\})$$

$$\neg \phi \quad (=1-\phi)$$

Fix a signature S. The formulas of $\mathcal{L}_{\omega_1,\omega}(S)$ are: **Atomic Formulas:** d(x, y), $R(x_1, \ldots, x_n)$, constants for each $r \in \mathbb{Q} \cap (0, 1)$.

$$\blacktriangleright \phi \to \psi \quad (= \min \{1 - \phi + \psi, 1\})$$

•
$$\neg \phi$$
 (= 1 - ϕ)

•
$$\phi \land \psi$$
 (= min { ϕ, ψ })

•
$$\phi \lor \psi$$
 (= max { ϕ, ψ })

Fix a signature S. The formulas of $\mathcal{L}_{\omega_1,\omega}(S)$ are: **Atomic Formulas:** d(x, y), $R(x_1, \ldots, x_n)$, constants for each $r \in \mathbb{Q} \cap (0, 1)$.

$$\blacktriangleright \phi \to \psi \quad (= \min \{1 - \phi + \psi, 1\})$$

- $\neg \phi$ (= 1 ϕ)
- $\phi \land \psi$ (= min { ϕ, ψ })
- $\phi \lor \psi$ (= max { ϕ, ψ })

•
$$\sup_x \phi$$

Fix a signature S. The formulas of $\mathcal{L}_{\omega_1,\omega}(S)$ are: **Atomic Formulas:** d(x, y), $R(x_1, \ldots, x_n)$, constants for each $r \in \mathbb{Q} \cap (0, 1)$.

$$\blacktriangleright \phi \rightarrow \psi \quad (= \min \{1 - \phi + \psi, 1\})$$

- $\neg \phi$ (= 1 ϕ)
- $\phi \land \psi$ (= min { ϕ, ψ })
- $\phi \lor \psi$ (= max { ϕ, ψ })
- $\sup_x \phi$
- ► $\sup_{n \in \omega} \phi_n$

We can recover other connectives as limits. Starting with:

$$\frac{1}{2}x = \lim_{n \to \infty} \bigvee_{i=1}^n \left(\frac{i}{n} \land \neg (x \to \frac{i}{n})\right).$$

By Stone-Weierstrass, combinations of our connectives uniformly approximate any continuous $F : [0, 1]^n \rightarrow [0, 1]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Truth values: $\phi^{\mathcal{M}} \in [0, 1]$. $\mathcal{M} \models \phi$ means $\phi^{\mathcal{M}} = 1$.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへぐ

Truth values: $\phi^{\mathcal{M}} \in [0, 1]$. $\mathcal{M} \models \phi$ means $\phi^{\mathcal{M}} = 1$.

Example

In the signature of Banach algebras, let $\phi(x)$ be the formula $1 - ||x \cdot x||$. Then $\mathcal{M} \models \phi(a)$ if and only if $a^2 = 0$ in \mathcal{M} .

Truth values: $\phi^{\mathcal{M}} \in [0, 1]$. $\mathcal{M} \models \phi$ means $\phi^{\mathcal{M}} = 1$.

Example

In the signature of Banach algebras, let $\phi(x)$ be the formula $1 - ||x \cdot x||$. Then $\mathcal{M} \models \phi(a)$ if and only if $a^2 = 0$ in \mathcal{M} .

Note: $\mathcal{M} \models \phi \rightarrow \psi$ if and only if $\phi^{\mathcal{M}} \leq \psi^{\mathcal{M}}$.

 Classes axiomatizable in finitary continuous logic (L^p(µ) spaces, C(K) spaces, some classes of Nakano spaces, ...),

 Classes axiomatizable in finitary continuous logic (L^p(µ) spaces, C(K) spaces, some classes of Nakano spaces, ...),

uniformly convex spaces,

 Classes axiomatizable in finitary continuous logic (L^p(µ) spaces, C(K) spaces, some classes of Nakano spaces, ...),

- uniformly convex spaces,
- spaces which are not super-reflexive,

 Classes axiomatizable in finitary continuous logic (L^p(µ) spaces, C(K) spaces, some classes of Nakano spaces, ...),

- uniformly convex spaces,
- spaces which are not super-reflexive,
- spaces which are not hereditarily indecomposible,

- Classes axiomatizable in finitary continuous logic (L^p(µ) spaces, C(K) spaces, some classes of Nakano spaces, ...),
- uniformly convex spaces,
- spaces which are not super-reflexive,
- spaces which are not hereditarily indecomposible,
- spaces which are unstable (in the sense of Krivine-Maurey).

A fragment of $\mathcal{L}_{\omega_1,\omega}(S)$ is a set of formulas L such that:

- L contains every atomic formula
- *L* is closed under \rightarrow , \neg , \land , \lor , sup_{*x*}
- L is closed under substituting terms for free variables

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

L is closed under subformulas

A **fragment** of $\mathcal{L}_{\omega_1,\omega}(S)$ is a set of formulas *L* such that:

- L contains every atomic formula
- *L* is closed under \rightarrow , \neg , \land , \lor , sup_{*x*}
- L is closed under substituting terms for free variables
- L is closed under subformulas

From now on, *L* is a fixed countable fragment of $\mathcal{L}_{\omega_1,\omega}(S)$, *S* has no function symbols. For *C* a set of new constant symbols, L_C is the least fragment of $\mathcal{L}_{\omega_1,\omega}(S \cup C)$ containing *L*.

Definition

Let T be an *L*-theory. A type $\Sigma(\overline{x})$ is **principal** over T if there is a formula $\phi(\overline{x})$ consistent with T such that for some $r \in \mathbb{Q} \cap (0, 1)$, $T \cup \{\phi(\overline{x}) \ge r\} \models \Sigma(\overline{x})$.

Definition

Let T be an *L*-theory. A type $\Sigma(\overline{x})$ is **principal** over T if there is a formula $\phi(\overline{x})$ consistent with T such that for some $r \in \mathbb{Q} \cap (0, 1)$, $T \cup \{\phi(\overline{x}) \ge r\} \models \Sigma(\overline{x})$.

Theorem

Let T be an L-theory, and let $\{\Sigma_n(\overline{x}_n) : n \in \omega\}$ be a collection of non-principal types of T. Then there is a (countable) $\mathcal{M} \models T$ omitting each Σ_n .

$Str_L(S)$ is the class of all S-structures.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Topology

 $Str_L(S)$ is the class of all S-structures.

Closed classes: $Mod(T) = \{M \in Str(S) : M \models T\}$, T is an *L*-theory.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Topology

 $Str_L(S)$ is the class of all S-structures.

Closed classes: $Mod(T) = \{M \in Str(S) : M \models T\}$, T is an *L*-theory.

Note \mathcal{M}, \mathcal{N} are indistinguishable if and only if $\mathcal{M} \equiv_L \mathcal{N}$, so the space is not T_0 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof. For any $\phi, \psi, \mathcal{M} \models \phi \rightarrow \psi$ if and only if $\phi^M \leq \psi^M$.

Proof. For any ϕ, ψ , $\mathcal{M} \models \phi \rightarrow \psi$ if and only if $\phi^{M} \leq \psi^{M}$.

Say $\mathcal{M} \notin Mod(T)$, so some ϕ is such that $\phi^M < 1$.

Proof. For any $\phi, \psi, \mathcal{M} \models \phi \rightarrow \psi$ if and only if $\phi^{M} \leq \psi^{M}$.

Say $\mathcal{M} \notin Mod(T)$, so some ϕ is such that $\phi^M < 1$.

Note $\phi^{-1}([a, b]) = \{\mathcal{N} : a \le \phi^{\mathcal{N}} \le b\} = Mod(a \le \phi \land \phi \le b)$ is closed, so ϕ is continuous.

 $\Sigma(\overline{x})$ is principal if and only if $Mod_{L_{\overline{x}}}(T \cup \Sigma(\overline{x}))$ has nonempty interior in $Mod_{L_{\overline{x}}}(T)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\Sigma(\overline{x})$ is principal if and only if $Mod_{L_{\overline{x}}}(T \cup \Sigma(\overline{x}))$ has nonempty interior in $Mod_{L_{\overline{x}}}(T)$.

Proof.

If $\Sigma(\overline{x})$ is principal, there is ϕ, r such that $T \cup \{\phi(\overline{x}) \ge r\} \models \Sigma(\overline{x})$.

 $\Sigma(\overline{x})$ is principal if and only if $Mod_{L_{\overline{x}}}(T \cup \Sigma(\overline{x}))$ has nonempty interior in $Mod_{L_{\overline{x}}}(T)$.

Proof.

If $\Sigma(\overline{x})$ is principal, there is ϕ, r such that $T \cup \{\phi(\overline{x}) \ge r\} \models \Sigma(\overline{x})$. Then for any $r' \in (r, 1)$ we have

$$M_{L_{\overline{x}}}(T) \cap M_{L_{\overline{x}}}(\phi(\overline{x}) > r')$$

is a non-empty open subset of $Mod_{L_{\overline{x}}}(T \cup \Sigma(\overline{x}))$.

Proof (con't).

Conversely, there is $\phi(\overline{x})$ such that

$$M_{L_{\overline{x}}} od(T) \cap M_{L_{\overline{x}}} od(\phi(\overline{x}) > 0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a non-empty open subset of $Mod_{L_{\overline{x}}}(T \cup \Sigma(x))$.

Proof (con't).

Conversely, there is $\phi(\overline{x})$ such that

$$M_{L_{\overline{x}}} od(T) \cap M_{L_{\overline{x}}} od(\phi(\overline{x}) > 0)$$

is a non-empty open subset of $Mod_{L_{\overline{x}}}(T \cup \Sigma(x))$.

So there is $r \in \mathbb{Q} \cap (0,1)$ such that $T \cup \{\phi(\overline{x}) \ge r\}$ is satisfiable.

Proof (con't).

Conversely, there is $\phi(\overline{x})$ such that

$$M_{L_{\overline{x}}} od(T) \cap M_{L_{\overline{x}}} od(\phi(\overline{x}) > 0)$$

is a non-empty open subset of $Mod_{L_{\overline{x}}}(T \cup \Sigma(x))$.

So there is $r \in \mathbb{Q} \cap (0,1)$ such that $T \cup \{\phi(\overline{x}) \ge r\}$ is satisfiable.

Let $\psi(\overline{x})$ be the formula $\phi(\overline{x}) \ge r$. Then ψ , 1 - s witness principality for any $s \in \mathbb{Q} \cap (0, r)$.

We add countably many new constants $C = \{c_n : n \in \omega\}$ to S. We work in $W \subseteq Str(L_C)$ where satisfaction of $\sup_x \phi$ is witnessed in the constant symbols.

We add countably many new constants $C = \{c_n : n \in \omega\}$ to S. We work in $W \subseteq Str(L_C)$ where satisfaction of $\sup_x \phi$ is witnessed in the constant symbols.

Lemma

For any $\mathbf{i} = i_0, \ldots, i_{n-1}$, the natural map $R_{\mathbf{i}} : \mathcal{W} \cap Mod(T) \rightarrow Mod_{L_{\mathbf{i}}}(T)$ is open, continuous, and surjective.

We add countably many new constants $C = \{c_n : n \in \omega\}$ to S. We work in $W \subseteq Str(L_C)$ where satisfaction of $\sup_x \phi$ is witnessed in the constant symbols.

Lemma

For any $\mathbf{i} = i_0, \ldots, i_{n-1}$, the natural map $R_{\mathbf{i}} : \mathcal{W} \cap Mod(T) \rightarrow Mod_{L_{\mathbf{i}}}(T)$ is open, continuous, and surjective.

Proposition

Let $\Sigma(x_0, \ldots, x_{n-1})$ be a nonprincipal type of T. Then for each $\mathbf{i} \in \omega^n$, $R_{\mathbf{i}}^{-1}(Mod(T \cup \Sigma(c_{\mathbf{i}})))$ is closed nowhere dense in $\mathcal{W} \cap Mod(T)$.

Suppose there is $\langle \mathcal{M}, \overline{a} \rangle \in \mathcal{W} \cap \textit{Mod}(T) \setminus \bigcup_{n \in \omega} \bigcup_{i \in \omega^n} R_i^{-1}(T \cup \Sigma_n(c_i)).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose there is $\langle \mathcal{M}, \overline{a} \rangle \in \mathcal{W} \cap Mod(T) \setminus \bigcup_{n \in \omega} \bigcup_{i \in \omega^n} R_i^{-1}(T \cup \Sigma_n(c_i)).$

Since $\langle \mathcal{M}, \overline{a} \rangle \in \mathcal{W}$, $\overline{a} \leq \mathcal{M}$, and our choice ensures no subset of \overline{a} realizes any Σ_n , so $\overline{a} \models T$ and omits each Σ_n .

Suppose there is $\langle \mathcal{M}, \overline{a} \rangle \in \mathcal{W} \cap Mod(\mathcal{T}) \setminus \bigcup_{n \in \omega} \bigcup_{i \in \omega^n} R_i^{-1}(\mathcal{T} \cup \Sigma_n(c_i)).$

Since $\langle \mathcal{M}, \overline{a} \rangle \in \mathcal{W}$, $\overline{a} \leq \mathcal{M}$, and our choice ensures no subset of \overline{a} realizes any Σ_n , so $\overline{a} \models T$ and omits each Σ_n .

It therefore suffices to show that $W \cap Mod(T)$ is **Baire**, i.e., the countable union of closed nowhere dense sets is codense.

Definition

Let X be a completely regular space. A **complete sequence of open covers** of X is a sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers such that if \mathcal{F} is a centred family of closed sets such that for each $n \in \omega$ there is $F_n \in \mathcal{F}$ and $U_n \in \mathcal{U}_n$ such that $F_n \subseteq U_n$, then $\bigcap \mathcal{F} \neq \emptyset$.

Definition

Let X be a completely regular space. A **complete sequence of open covers** of X is a sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers such that if \mathcal{F} is a centred family of closed sets such that for each $n \in \omega$ there is $F_n \in \mathcal{F}$ and $U_n \in \mathcal{U}_n$ such that $F_n \subseteq U_n$, then $\bigcap \mathcal{F} \neq \emptyset$.

Definition

A completely regular space X is **Čech-complete** if it has a complete sequence of open covers.

Fact If X is $T_{3\frac{1}{2}}$ then X is Čech-complete if and only if X is a G_{δ} in βX .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fact

If X is $T_{3\frac{1}{2}}$ then X is Čech-complete if and only if X is a G_{δ} in βX .

Fact

If X is completely metrizable or locally compact Hausdorff, then X is Čech-complete.

Let X be completely regular and Čech-complete. Then:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- X is Baire.
- Every closed subspace of X is Čech-complete.

Theorem *W* is Čech-complete.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• The sets in U_n prescribe ranges for the first *n* sentences.

- The sets in U_n prescribe ranges for the first *n* sentences.
 - ▶ i.e., if $U \in U_n$ then for each $m \le n$ there is $I_m \subseteq [0, 1]$ such that for all $\mathcal{M} \in U$, $\sigma_m^{\mathcal{M}} \in I_m$.

- The sets in U_n prescribe ranges for the first *n* sentences.
 - ▶ i.e., if $U \in U_n$ then for each $m \le n$ there is $I_m \subseteq [0, 1]$ such that for all $\mathcal{M} \in U$, $\sigma_m^{\mathcal{M}} \in I_m$.

► The sets in U_{n+1} prescribe ranges for the first n sentences that refine the ranges from sets in U_n.

- The sets in U_n prescribe ranges for the first *n* sentences.
 - ▶ i.e., if $U \in U_n$ then for each $m \le n$ there is $I_m \subseteq [0, 1]$ such that for all $\mathcal{M} \in U$, $\sigma_m^{\mathcal{M}} \in I_m$.
- ► The sets in U_{n+1} prescribe ranges for the first n sentences that refine the ranges from sets in U_n.
- When a set prescribes a range for sup_n φ_n it also picks an n and specifies that φ_n be in the same range.

- The sets in U_n prescribe ranges for the first *n* sentences.
 - i.e., if U ∈ U_n then for each m ≤ n there is I_m ⊆ [0, 1] such that for all M ∈ U, σ^M_m ∈ I_m.
- ► The sets in U_{n+1} prescribe ranges for the first *n* sentences that refine the ranges from sets in U_n.
- When a set prescribes a range for sup_n φ_n it also picks an n and specifies that φ_n be in the same range.
- When a set prescribes a range for sup_x φ it also picks an n and specifies that φ(c_n) be in the same range.

Lemma $\bigcap \mathcal{F} = \bigcap_{n \in \omega} F_n.$

Lemma $\bigcap \mathcal{F} = \bigcap_{n \in \omega} F_n.$

Proof.

If $\mathcal{M} \notin \bigcap \mathcal{F}$ then there is some $F \in \mathcal{F}$ and some $\sigma \in T_F$ such that $\mathcal{M} \not\models \sigma$, i.e., $\sigma^{\mathcal{M}} < 1$.

Lemma

 $\bigcap \mathcal{F} = \bigcap_{n \in \omega} F_n.$

Proof.

If $\mathcal{M} \notin \bigcap \mathcal{F}$ then there is some $F \in \mathcal{F}$ and some $\sigma \in T_F$ such that $\mathcal{M} \not\models \sigma$, i.e., $\sigma^{\mathcal{M}} < 1$.

If $\mathcal{M} \in \bigcap_{n \in \omega} F_n$ then there is $n \in \omega$ large enough for U_n to specify that $\sigma < 1$. So $F_n \models \sigma < 1$.

Let \mathcal{F} be a centred family of closed sets. For each n, pick $F_n \in \mathcal{F}$, $U_n \in \mathcal{U}$ such that $F_n \subseteq U_n$. For $F \in \mathcal{F}$, let T_F be a theory such that $F = Mod(T_F)$.

Lemma

 $\bigcap \mathcal{F} = \bigcap_{n \in \omega} F_n.$

Proof.

If $\mathcal{M} \notin \bigcap \mathcal{F}$ then there is some $F \in \mathcal{F}$ and some $\sigma \in T_F$ such that $\mathcal{M} \not\models \sigma$, i.e., $\sigma^{\mathcal{M}} < 1$.

If $\mathcal{M} \in \bigcap_{n \in \omega} F_n$ then there is $n \in \omega$ large enough for U_n to specify that $\sigma < 1$. So $F_n \models \sigma < 1$.

So $F \cap F_n = \emptyset$, contradiction.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Lemma

For each L_C -sentence σ , $\sigma^{\mathcal{M}} = \lim_{n \to \mathcal{D}} \sigma^{\mathcal{M}_n}$.

Proof.

By induction on the complexity of $\sigma.$ Clear from the definition for σ atomic, and continuous connectives by definition of limits.

Lemma

For each L_C -sentence σ , $\sigma^{\mathcal{M}} = \lim_{n \to \mathcal{D}} \sigma^{\mathcal{M}_n}$.

Proof.

By induction on the complexity of σ . Clear from the definition for σ atomic, and continuous connectives by definition of limits.

Say
$$\sigma = \sup_{n \in \omega} \theta_n$$
.

Lemma

For each L_C -sentence σ , $\sigma^{\mathcal{M}} = \lim_{n \to \mathcal{D}} \sigma^{\mathcal{M}_n}$.

Proof.

By induction on the complexity of $\sigma.$ Clear from the definition for σ atomic, and continuous connectives by definition of limits.

Say
$$\sigma = \sup_{n \in \omega} \theta_n$$
.
If $a < \sigma^M$ then there is $m^* \in \omega$, $a < \theta_{m^*}^M$.

Lemma

For each L_C -sentence σ , $\sigma^{\mathcal{M}} = \lim_{n \to \mathcal{D}} \sigma^{\mathcal{M}_n}$.

Proof.

By induction on the complexity of σ . Clear from the definition for σ atomic, and continuous connectives by definition of limits.

Say
$$\sigma = \sup_{n \in \omega} \theta_n$$
.

If $a < \sigma^{\mathcal{M}}$ then there is $m^* \in \omega$, $a < \theta_{m^*}^{\mathcal{M}}$. By induction hypothesis, $\{n \in \omega : \theta_{m^*} > a\} \in \mathcal{D}$.

Lemma

For each L_C -sentence σ , $\sigma^{\mathcal{M}} = \lim_{n \to \mathcal{D}} \sigma^{\mathcal{M}_n}$.

Proof.

By induction on the complexity of σ . Clear from the definition for σ atomic, and continuous connectives by definition of limits.

Say
$$\sigma = \sup_{n \in \omega} \theta_n$$
.
If $a < \sigma^{\mathcal{M}}$ then there is $m^* \in \omega$, $a < \theta_{m^*}^{\mathcal{M}}$. By induction
hypothesis, $\{n \in \omega : \theta_{m^*} > a\} \in \mathcal{D}$. Hence
 $\{n \in \omega : \sigma^{\mathcal{M}_n} > a\} \in \mathcal{D}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Find k large enough to specify that $\sigma > a$. Then there is m^* such that k also specifies $\theta_{m^*} > a$.

Find k large enough to specify that $\sigma > a$. Then there is m^* such that k also specifies $\theta_{m^*} > a$.

So cofinitely many
$$\mathcal{M}_n \models \theta_{m^*} > a$$
, so $\left\{ n \in \omega : \theta_{m^*}^{\mathcal{M}_n} > a \right\} \in \mathcal{D}$.

Find k large enough to specify that $\sigma > a$. Then there is m^* such that k also specifies $\theta_{m^*} > a$.

So cofinitely many $\mathcal{M}_n \models \theta_{m^*} > a$, so $\left\{ n \in \omega : \theta_{m^*}^{\mathcal{M}_n} > a \right\} \in \mathcal{D}$.

Similar proof for $\sigma = \sup_{x} \phi$.

It follows that $\mathcal{M} \in \bigcap_{n \in \omega} F_n = \bigcap \mathcal{F} \neq \emptyset$. So \mathcal{W} is Čech-complete.

Let T be an L-theory, and let $\{\Sigma_n(\overline{x}) : n \in \omega\}$ be a collection of non-principal types of T. Then there is $\mathcal{M} \models T$ omitting each Σ_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let T be an L-theory, and let $\{\Sigma_n(\overline{x}) : n \in \omega\}$ be a collection of non-principal types of T. Then there is $\mathcal{M} \models T$ omitting each Σ_n .

What if we wanted \mathcal{M} to be based on a *complete* metric space?

Let T be an L-theory, and let $\{\Sigma_n(\overline{x}) : n \in \omega\}$ be a collection of non-principal types of T. Then there is $\mathcal{M} \models T$ omitting each Σ_n .

What if we wanted \mathcal{M} to be based on a *complete* metric space?

Example

If $(c_i)_{i\in\omega}$ are constant symbols and T is a theory which implies that (c_i) is a Cauchy sequence, then the type $\Sigma(x)$ expressing that $x = \lim_{i\to\infty} c_i$ can be omitted in a metric structure, but not in a complete metric structure.

Definition For $\Sigma(x_1, \ldots, x_n)$ a type, and $\delta \in \mathbb{Q} \cap (0, 1)$,

$$\Sigma^{\delta} = \left\{ \sup_{y_1} \ldots \sup_{y_n} \left(\bigwedge_{k \leq n} d(x_k, y_k) \leq \delta \wedge \sigma(y_1, \ldots, y_n) \right) : \sigma \in \Sigma \right\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition For $\Sigma(x_1, ..., x_n)$ a type, and $\delta \in \mathbb{Q} \cap (0, 1)$, $\Sigma^{\delta} = \left\{ \sup_{y_1} ... \sup_{y_n} \left(\bigwedge_{k < n} d(x_k, y_k) \le \delta \land \sigma(y_1, ..., y_n) \right) : \sigma \in \Sigma \right\}.$

Definition

A type $\Sigma(\overline{x})$ of T is **metrically principal** over T if for every $\delta > 0$ the type $\Sigma^{\delta}(\overline{x})$ is principal over T.

Definition For $\Sigma(x_1, ..., x_n)$ a type, and $\delta \in \mathbb{Q} \cap (0, 1)$, $\Sigma^{\delta} = \begin{cases} \sup_{x_1, \dots, x_n} & \sup_{x_n} \left(\bigwedge_{x_1, \dots, x_n} d(x_1, x_n) \leq \delta \wedge \sigma(x_1, \dots, x_n) \right) : \sigma \in \Sigma \end{cases}$

$$\Sigma^{\delta} = \left\{ \sup_{y_1} \ldots \sup_{y_n} \left(\bigwedge_{k \leq n} d(x_k, y_k) \leq \delta \wedge \sigma(y_1, \ldots, y_n) \right) : \sigma \in \Sigma \right\}$$

Definition

A type $\Sigma(\overline{x})$ of T is **metrically principal** over T if for every $\delta > 0$ the type $\Sigma^{\delta}(\overline{x})$ is principal over T.

Theorem

Let T be an L-theory, and let $\{\Sigma_n(\overline{x}) : n \in \omega\}$ be a collection of types of T which are not metrically principal. Then there is $\mathcal{M} \models T$ such that $\overline{\mathcal{M}}$ omits each Σ_n .

Let T be an L-theory, and let $\{\Sigma_n(\overline{x}) : n \in \omega\}$ be a collection of types of T which are not metrically principal. Then there is $\mathcal{M} \models T$ such that $\overline{\mathcal{M}}$ omits each Σ_n .

Let T be an L-theory, and let $\{\Sigma_n(\overline{x}) : n \in \omega\}$ be a collection of types of T which are not metrically principal. Then there is $\mathcal{M} \models T$ such that $\overline{\mathcal{M}}$ omits each Σ_n .

But is $\mathcal{M} \equiv_L \overline{\mathcal{M}}$?

Let T be an L-theory, and let $\{\Sigma_n(\overline{x}) : n \in \omega\}$ be a collection of types of T which are not metrically principal. Then there is $\mathcal{M} \models T$ such that $\overline{\mathcal{M}}$ omits each Σ_n .

But is $\mathcal{M} \equiv_L \overline{\mathcal{M}}$?

Definition

A fragment *L* of $\mathcal{L}_{\omega_1,\omega}$ is **continuous** if every formula $\phi(x_1, \ldots, x_n) \in L$ defines a *continuous* function $\phi : \mathcal{M}^n \to [0, 1]$ for every *L*-structure \mathcal{M} .

Let T be an L-theory, where L is a countable continuous fragment, and let $\{\Sigma_n(\overline{x}) : n \in \omega\}$ be a collection of types of T which are not metrically principal. Then there is a complete $\mathcal{M} \models T$ omitting each Σ_n .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let T be an L-theory, where L is a countable continuous fragment, and let $\{\Sigma_n(\overline{x}) : n \in \omega\}$ be a collection of types of T which are not metrically principal. Then there is a complete $\mathcal{M} \models T$ omitting each Σ_n .

 If L is first-order continuous logic, this is Henson's Omitting Types Theorem.

Let T be an L-theory, where L is a countable continuous fragment, and let $\{\Sigma_n(\overline{x}) : n \in \omega\}$ be a collection of types of T which are not metrically principal. Then there is a complete $\mathcal{M} \models T$ omitting each Σ_n .

- If L is first-order continuous logic, this is Henson's Omitting Types Theorem.
- Restricted to discrete structures, this is Keisler's Omitting Types Theorem.

Let T be an L-theory, where L is a countable continuous fragment, and let $\{\Sigma_n(\overline{x}) : n \in \omega\}$ be a collection of types of T which are not metrically principal. Then there is a complete $\mathcal{M} \models T$ omitting each Σ_n .

- If L is first-order continuous logic, this is Henson's Omitting Types Theorem.
- Restricted to discrete structures, this is Keisler's Omitting Types Theorem.
- If L is first-order and we restrict to discrete structures, this is the classical Omitting Types Theorem.

Application - Separable Quotients

Question

Let X be a Banach space. Is there a subspace $Y \subseteq X$ such that X/Y is separable?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Application - Separable Quotients

Question

Let X be a Banach space. Is there a subspace $Y \subseteq X$ such that X/Y is separable?

Equivalently,

Question

Let X be a non-separable Banach space. Is there a separable Banach space Y and a surjective bounded linear operator $T : X \rightarrow Y$?

Let X, Y be Banach spaces with density(X) > density(Y), and let $T: X \rightarrow Y$ be a surjective bounded linear map.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let X, Y be Banach spaces with density(X) > density(Y), and let $T: X \to Y$ be a surjective bounded linear map. Let L be a continuous countable fragment of $\mathcal{L}_{\omega_1,\omega}$. Then there are X', Y', T' such that:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let X, Y be Banach spaces with density(X) > density(Y), and let $T: X \to Y$ be a surjective bounded linear map. Let L be a continuous countable fragment of $\mathcal{L}_{\omega_1,\omega}$. Then there are X', Y', T' such that:

 X', Y' are Banach spaces, T' : X' → Y' is a surjective bounded linear map,

Let X, Y be Banach spaces with density(X) > density(Y), and let $T: X \to Y$ be a surjective bounded linear map. Let L be a continuous countable fragment of $\mathcal{L}_{\omega_1,\omega}$. Then there are X', Y', T' such that:

- X', Y' are Banach spaces, T' : X' → Y' is a surjective bounded linear map,
- X' has density \aleph_1 ,

Let X, Y be Banach spaces with density(X) > density(Y), and let $T: X \to Y$ be a surjective bounded linear map. Let L be a continuous countable fragment of $\mathcal{L}_{\omega_1,\omega}$. Then there are X', Y', T' such that:

- X', Y' are Banach spaces, T' : X' → Y' is a surjective bounded linear map,
- X' has density \aleph_1 ,
- Y' is separable,

Let X, Y be Banach spaces with density(X) > density(Y), and let $T: X \to Y$ be a surjective bounded linear map. Let L be a continuous countable fragment of $\mathcal{L}_{\omega_1,\omega}$. Then there are X', Y', T' such that:

- X', Y' are Banach spaces, T' : X' → Y' is a surjective bounded linear map,
- X' has density \aleph_1 ,
- Y' is separable,

$$\blacktriangleright (X, Y, T) \equiv_L (X', Y', T').$$

Proof (Outline).

By Downward Löwenheim-Skolem, we may assume $|X| = \kappa^+$, $|Y| = \kappa$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Proof (Outline).

By Downward Löwenheim-Skolem, we may assume $|X| = \kappa^+$, $|Y| = \kappa$.

Attach a (discrete) copy of the order (κ^+, \leq) , a constant for κ , and a function f so that $f|\kappa$ enumerates Y and $f|[\kappa, \kappa^+)$ enumerates X, to (X, Y, T) to form \mathcal{M} .

Proof (Outline).

By Downward Löwenheim-Skolem, we may assume $|X| = \kappa^+$, $|Y| = \kappa$.

Attach a (discrete) copy of the order (κ^+, \leq) , a constant for κ , and a function f so that $f|\kappa$ enumerates Y and $f|[\kappa, \kappa^+)$ enumerates X, to (X, Y, T) to form \mathcal{M} .

Using Downward Löwenheim-Skolem, let $\langle X_0, Y_0, T_0, L_0, c, \leq_0, f_0 \rangle = \mathcal{M}_0 \preceq \mathcal{M}$ be countable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $T = diag_{el}(\mathcal{M}_0) \cup \{d_I \leq_0 d^* : I \in L_0\}.$

Let
$$T = diag_{el}(\mathcal{M}_0) \cup \{d_l \leq_0 d^* : l \in L_0\}.$$

Define $\Sigma(x) = \{x \in L\} \cup \{f_0(x) \in Y_0\} \cup \{d(x, d_l) = 1 : l \leq_0 c\}.$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let
$$T = diag_{el}(\mathcal{M}_0) \cup \{d_l \leq_0 d^* : l \in L_0\}.$$

Define $\Sigma(x) = \{x \in L\} \cup \{f_0(x) \in Y_0\} \cup \{d(x, d_l) = 1 : l \leq_0 c\}.$

Then Σ is non-principal over T.

Then $\mathcal{M}_0 \preceq \mathcal{M}_1$, and \mathcal{M}_1 has no new elements of *L* above *c*. So Y_0 is dense in Y_1 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Then $\mathcal{M}_0 \preceq \mathcal{M}_1$, and \mathcal{M}_1 has no new elements of *L* above *c*. So Y_0 is dense in Y_1 .

Repeat ω_1 times, and take the union of the elementary chain to get $\mathcal{M}_{\omega_1} = \langle X_{\omega_1}, Y_{\omega_1}, T_{\omega_1}, \ldots \rangle$.

(日) (日) (日) (日) (日) (日) (日) (日)

Then $\mathcal{M}_0 \preceq \mathcal{M}_1$, and \mathcal{M}_1 has no new elements of *L* above *c*. So Y_0 is dense in Y_1 .

Repeat ω_1 times, and take the union of the elementary chain to get $\mathcal{M}_{\omega_1} = \langle X_{\omega_1}, Y_{\omega_1}, T_{\omega_1}, \ldots \rangle$.

Take $\langle X', Y', T' \rangle$ to be the completion of $\langle X_{\omega_1}, Y_{\omega_1}, T_{\omega_1} \rangle$

Suppose $T : X \to Y$ is bounded, linear, surjective, where density(X) > density(Y). Then there are X', Y' and $T' : X' \to Y'$, with $density(X') = \aleph_1$ and Y' separable, such that:

Suppose $T : X \to Y$ is bounded, linear, surjective, where density(X) > density(Y). Then there are X', Y' and $T' : X' \to Y'$, with $density(X') = \aleph_1$ and Y' separable, such that:

► X and X' have isometric ultrapowers,

Suppose $T : X \to Y$ is bounded, linear, surjective, where density(X) > density(Y). Then there are X', Y' and $T' : X' \to Y'$, with $density(X') = \aleph_1$ and Y' separable, such that:

- ► X and X' have isometric ultrapowers,
- ▶ Y and Y' have isometric ultrapowers,

Suppose $T : X \to Y$ is bounded, linear, surjective, where density(X) > density(Y). Then there are X', Y' and $T' : X' \to Y'$, with $density(X') = \aleph_1$ and Y' separable, such that:

- ► X and X' have isometric ultrapowers,
- ▶ Y and Y' have isometric ultrapowers,
- if X is uniformly convex then so is X',

Suppose $T : X \to Y$ is bounded, linear, surjective, where density(X) > density(Y). Then there are X', Y' and $T' : X' \to Y'$, with $density(X') = \aleph_1$ and Y' separable, such that:

- ► X and X' have isometric ultrapowers,
- ▶ Y and Y' have isometric ultrapowers,
- ▶ if X is uniformly convex then so is X',
- if X is not hereditarily indecomposible then neither is X',

Suppose $T : X \to Y$ is bounded, linear, surjective, where density(X) > density(Y). Then there are X', Y' and $T' : X' \to Y'$, with $density(X') = \aleph_1$ and Y' separable, such that:

- ► X and X' have isometric ultrapowers,
- ▶ Y and Y' have isometric ultrapowers,
- ▶ if X is uniformly convex then so is X',
- if X is not hereditarily indecomposible then neither is X',

▶ if X is not super-reflexive then neither is X',

Suppose $T : X \to Y$ is bounded, linear, surjective, where density(X) > density(Y). Then there are X', Y' and $T' : X' \to Y'$, with $density(X') = \aleph_1$ and Y' separable, such that:

- ► X and X' have isometric ultrapowers,
- ▶ Y and Y' have isometric ultrapowers,
- ▶ if X is uniformly convex then so is X',
- if X is not hereditarily indecomposible then neither is X',

- ▶ if X is not super-reflexive then neither is X',
- all the above, with Y instead of X,

Suppose $T : X \to Y$ is bounded, linear, surjective, where density(X) > density(Y). Then there are X', Y' and $T' : X' \to Y'$, with $density(X') = \aleph_1$ and Y' separable, such that:

- ► X and X' have isometric ultrapowers,
- ▶ Y and Y' have isometric ultrapowers,
- ▶ if X is uniformly convex then so is X',
- if X is not hereditarily indecomposible then neither is X',

- ▶ if X is not super-reflexive then neither is X',
- all the above, with Y instead of X,

Thank you!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>