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Background

L - countable first-order language, T an L-theory. We want to
study countable models of T .

Example

〈Q,+,−, ·, 0, 1〉 � 〈Q(π),+,−, ·, 0, 1〉, but
〈Q,+,−, ·, 0, 1〉 6∼= 〈Q(π),+,−, ·, 0, 1〉
No formula, even with parameters from Q, can distinguish these
structures.
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Definition
Let Σ(x1, . . . , xn) be a set of L-formulas. If M is an L-structure
such that there are a1, . . . , an ∈M such that M |= φ(a1, . . . , an)
for all φ(x1, . . . , xn) ∈ Σ, we say M realizes Σ. Otherwise M
omits Σ.

If T is an L-theory and there is M |= T such that M realizes Σ,
then we say Σ is a type of T .
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Let Σ(x) = {a0 + a1x + · · ·+ anxn 6= 0 : n ∈ ω, ai ∈ Z}.

Then π realizes Σ in Q(π), but Q omits Σ.

Types increase expressive power.
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Let T be the theory of abelian groups, and

Σ(x) = {x 6= 0, x + x 6= 0, x + x + x 6= 0, . . .} .

Then M |= T omits Σ if and only if M is a torsion group.

Example

Let T = PA, and

Σ(x) = {x 6= 0, x 6= S0, x 6= SS0, . . .} .

Then M |= T omits Σ if and only if M is standard.
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Definition
A type Σ(x) is principal over T if there is φ(x) such that
T ∪ {φ(x)} |= Σ(x).

Theorem (Henkin-Orey 1957)

For each n, let Σn be a type of T which is non-principal. Then
there is a (countable) M |= T which omits every Σn.
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Corollary

Prime models realize only principal types.

Corollary

Suppose M is an ordered field, and that for every φ if
M |= ∃xφ(x) then there is a finite a ∈M such that M |= φ(a).
Then M is elementarily equivalent to an Archimedean field.

Corollary

If M |= PA (or M |= ZF ) is countable then there exists a
countable end-extension N of M such that M� N .
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Theorem (Keisler 1973)

Let L be a countable fragment of Lω1,ω, and let T be an L-theory.
For each n, let Σn be a type of T which is non-principal. Then
there is a (countable) M |= T which omits every Σn.



[0, 1]-valued Model Theory

Signatures: Function symbols, predicate symbols each have
moduli of uniform continuity.

Structures: Metric spaces of diameter ≤ 1. Interpretations of
symbols respect the moduli of continuity from the signature.
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[0, 1]-valued Lω1,ω

Fix a signature S . The formulas of Lω1,ω(S) are:
Atomic Formulas: d(x , y), R(x1, . . . , xn), constants for each
r ∈ Q ∩ (0, 1).

Formulas:

I φ→ ψ (= min {1− φ+ ψ, 1})
I ¬φ (= 1− φ)

I φ ∧ ψ (= min {φ, ψ})
I φ ∨ ψ (= max {φ, ψ})
I supx φ

I supn∈ω φn
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We can recover other connectives as limits. Starting with:

1

2
x = lim

n→∞

n∨
i=1

(
i

n
∧ ¬(x → i

n
)

)
.

By Stone-Weierstrass, combinations of our connectives uniformly
approximate any continuous F : [0, 1]n → [0, 1].



Truth values: φM ∈ [0, 1]. M |= φ means φM = 1.

Example

In the signature of Banach algebras, let φ(x) be
the formula 1−‖x · x‖. ThenM |= φ(a) if and only if a2 = 0 inM.

Note: M |= φ→ ψ if and only if φM ≤ ψM.
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Examples of classes of Banach spaces axiomatizable in Lω1,ω:

I Classes axiomatizable in finitary continuous logic (Lp(µ)
spaces, C (K ) spaces, some classes of Nakano spaces, . . .),

I uniformly convex spaces,

I spaces which are not super-reflexive,

I spaces which are not hereditarily indecomposible,

I spaces which are unstable (in the sense of Krivine-Maurey).
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A fragment of Lω1,ω(S) is a set of formulas L such that:

I L contains every atomic formula

I L is closed under →,¬,∧,∨, supx

I L is closed under substituting terms for free variables

I L is closed under subformulas

From now on, L is a fixed countable fragment of Lω1,ω(S), S has
no function symbols. For C a set of new constant symbols, LC is
the least fragment of Lω1,ω(S ∪ C ) containing L.
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Let T be an L-theory. A type Σ(x) is principal over T if there is a
formula φ(x) consistent with T such that for some r ∈ Q ∩ (0, 1),
T ∪ {φ(x) ≥ r} |= Σ(x).

Theorem
Let T be an L-theory, and let {Σn(xn) : n ∈ ω} be a collection of
non-principal types of T . Then there is a (countable) M |= T
omitting each Σn.
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Topology

StrL(S) is the class of all S-structures.

Closed classes: Mod(T ) = {M ∈ Str(S) :M |= T}, T is an
L-theory.

Note M,N are indistinguishable if and only if M≡L N , so the
space is not T0.
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The space StrL(S) is completely regular.

Proof.
For any φ, ψ, M |= φ→ ψ if and only if φM ≤ ψM .

Say M 6∈ Mod(T ), so some φ is such that φM < 1.

Note φ−1([a, b]) =
{
N : a ≤ φN ≤ b

}
= Mod(a ≤ φ ∧ φ ≤ b) is

closed, so φ is continuous.
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Proposition

Σ(x) is principal if and only if ModLx (T ∪ Σ(x)) has nonempty
interior in ModLx (T ).

Proof.
If Σ(x) is principal, there is φ, r such that T ∪ {φ(x) ≥ r} |= Σ(x).
Then for any r ′ ∈ (r , 1) we have

Mod
Lx

(T ) ∩Mod
Lx

(φ(x) > r ′)

is a non-empty open subset of ModLx (T ∪ Σ(x)).
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Proof (con’t).

Conversely, there is φ(x) such that

Mod
Lx

(T ) ∩Mod
Lx

(φ(x) > 0)

is a non-empty open subset of ModLx (T ∪ Σ(x)).

So there is r ∈ Q ∩ (0, 1) such that T ∪ {φ(x) ≥ r} is satisfiable.

Let ψ(x) be the formula φ(x) ≥ r . Then ψ, 1− s witness
principality for any s ∈ Q ∩ (0, r).
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We add countably many new constants C = {cn : n ∈ ω} to S .
We work in W ⊆ Str(LC ) where satisfaction of supx φ is witnessed
in the constant symbols.

Lemma
For any i = i0, . . . , in−1, the natural map
Ri :W ∩Mod(T )→ ModLci

(T ) is open, continuous, and
surjective.

Proposition

Let Σ(x0, . . . , xn−1) be a nonprincipal type of T . Then for each
i ∈ ωn, R−1i (Mod(T ∪ Σ(ci)) is closed nowhere dense in
W ∩Mod(T ).
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Suppose there is
〈M, a〉 ∈ W ∩Mod(T ) \

⋃
n∈ω

⋃
i∈ωn R−1i (T ∪ Σn(ci)).

Since 〈M, a〉 ∈ W, a �M, and our choice ensures no subset of a
realizes any Σn, so a |= T and omits each Σn.

It therefore suffices to show that W ∩Mod(T ) is Baire, i.e., the
countable union of closed nowhere dense sets is codense.
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Definition
Let X be a completely regular space. A complete sequence of
open covers of X is a sequence 〈Un : n ∈ ω〉 of open covers such
that if F is a centred family of closed sets such that for each n ∈ ω
there is Fn ∈ F and Un ∈ Un such that Fn ⊆ Un, then

⋂
F 6= ∅.

Definition
A completely regular space X is Čech-complete if it has a
complete sequence of open covers.
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complete sequence of open covers.



Fact
If X is T3 1

2
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Proposition

Let X be completely regular and Čech-complete. Then:

I X is Baire.

I Every closed subspace of X is Čech-complete.



Theorem
W is Čech-complete.



Proof: Recursively build a sequence of open covers such that:
I The sets in Un prescribe ranges for the first n sentences.

I i.e., if U ∈ Un then for each m ≤ n there is Im ⊆ [0, 1] such
that for all M∈ U, σM

m ∈ Im.

I The sets in Un+1 prescribe ranges for the first n sentences
that refine the ranges from sets in Un.

I When a set prescribes a range for supn φn it also picks an n
and specifies that φn be in the same range.

I When a set prescribes a range for supx φ it also picks an n
and specifies that φ(cn) be in the same range.
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Let F be a centred family of closed sets. For each n, pick Fn ∈ F ,
Un ∈ U such that Fn ⊆ Un. For F ∈ F , let TF be a theory such
that F = Mod(TF ).

Lemma⋂
F =

⋂
n∈ω Fn.

Proof.
If M 6∈

⋂
F then there is some F ∈ F and some σ ∈ TF such that

M 6|= σ, i.e., σM < 1.

If M∈
⋂

n∈ω Fn then there is n ∈ ω large enough for Un to specify
that σ < 1. So Fn |= σ < 1.

So F ∩ Fn = ∅, contradiction.
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For each n, pick Mn ∈ F0 ∩ · · · ∩ Fn. Pick an ultrafilter D on ω.
Let M =

∏
DMn.

Lemma
For each LC -sentence σ, σM = limn→D σ

Mn .

Proof.
By induction on the complexity of σ. Clear from the definition for
σ atomic, and continuous connectives by definition of limits.

Say σ = supn∈ω θn.

If a < σM then there is m∗ ∈ ω, a < θMm∗ . By induction
hypothesis, {n ∈ ω : θm∗ > a} ∈ D. Hence

{n ∈ ω : σMn > a} ∈ D.
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{
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It follows that M∈
⋂

n∈ω Fn =
⋂
F 6= ∅. So W is Čech-complete.



Theorem
Let T be an L-theory, and let {Σn(x) : n ∈ ω} be a collection of
non-principal types of T . Then there is M |= T omitting each Σn.

What if we wanted M to be based on a complete metric space?

Example

If (ci )i∈ω are constant symbols and T is a theory which implies
that (ci ) is a Cauchy sequence, then the type Σ(x) expressing that
x = limi→∞ ci can be omitted in a metric structure, but not in a
complete metric structure.
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Definition
For Σ(x1, . . . , xn) a type, and δ ∈ Q ∩ (0, 1),

Σδ =

sup
y1
. . . sup

yn

∧
k≤n

d(xk , yk) ≤ δ ∧ σ(y1, . . . , yn)

 : σ ∈ Σ

 .

Definition
A type Σ(x) of T is metrically principal over T if for every δ > 0
the type Σδ(x) is principal over T .

Theorem
Let T be an L-theory, and let {Σn(x) : n ∈ ω} be a collection of
types of T which are not metrically principal. Then there is
M |= T such that M omits each Σn.
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φ(x1, . . . , xn) ∈ L defines a continuous function φ :Mn → [0, 1] for
every L-structure M.
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Theorem
Let T be an L-theory, where L is a countable continuous fragment,
and let {Σn(x) : n ∈ ω} be a collection of types of T which are
not metrically principal. Then there is a complete M |= T
omitting each Σn.

I If L is first-order continuous logic, this is Henson’s Omitting
Types Theorem.

I Restricted to discrete structures, this is Keisler’s Omitting
Types Theorem.

I If L is first-order and we restrict to discrete structures, this is
the classical Omitting Types Theorem.



Theorem
Let T be an L-theory, where L is a countable continuous fragment,
and let {Σn(x) : n ∈ ω} be a collection of types of T which are
not metrically principal. Then there is a complete M |= T
omitting each Σn.

I If L is first-order continuous logic, this is Henson’s Omitting
Types Theorem.

I Restricted to discrete structures, this is Keisler’s Omitting
Types Theorem.

I If L is first-order and we restrict to discrete structures, this is
the classical Omitting Types Theorem.



Theorem
Let T be an L-theory, where L is a countable continuous fragment,
and let {Σn(x) : n ∈ ω} be a collection of types of T which are
not metrically principal. Then there is a complete M |= T
omitting each Σn.

I If L is first-order continuous logic, this is Henson’s Omitting
Types Theorem.

I Restricted to discrete structures, this is Keisler’s Omitting
Types Theorem.

I If L is first-order and we restrict to discrete structures, this is
the classical Omitting Types Theorem.



Theorem
Let T be an L-theory, where L is a countable continuous fragment,
and let {Σn(x) : n ∈ ω} be a collection of types of T which are
not metrically principal. Then there is a complete M |= T
omitting each Σn.

I If L is first-order continuous logic, this is Henson’s Omitting
Types Theorem.

I Restricted to discrete structures, this is Keisler’s Omitting
Types Theorem.

I If L is first-order and we restrict to discrete structures, this is
the classical Omitting Types Theorem.



Application - Separable Quotients

Question
Let X be a Banach space. Is there a subspace Y ⊆ X such that
X/Y is separable?

Equivalently,

Question
Let X be a non-separable Banach space. Is there a separable
Banach space Y and a surjective bounded linear operator
T : X → Y ?
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Theorem
Let X ,Y be Banach spaces with density(X ) > density(Y ), and let
T : X → Y be a surjective bounded linear map.

Let L be a
continuous countable fragment of Lω1,ω. Then there are X ′,Y ′,T ′

such that:

I X ′, Y ′ are Banach spaces, T ′ : X ′ → Y ′ is a surjective
bounded linear map,

I X ′ has density ℵ1,

I Y ′ is separable,

I (X ,Y ,T ) ≡L (X ′,Y ′,T ′).
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Proof (Outline).

By Downward Löwenheim-Skolem, we may assume |X | = κ+,
|Y | = κ.

Attach a (discrete) copy of the order (κ+,≤), a constant for κ,
and a function f so that f |κ enumerates Y and f |[κ, κ+)
enumerates X , to (X ,Y ,T ) to form M.

Using Downward Löwenheim-Skolem, let
〈X0,Y0,T0, L0, c ,E0, f0〉 =M0 �M be countable.
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Add countably many constant symbols (dl)l∈L, and another
constant d∗.

Let T = diag el(M0) ∪ {dl E0 d∗ : l ∈ L0}.

Define Σ(x) = {x ∈ L} ∪ {f0(x) ∈ Y0} ∪ {d(x , dl) = 1 : l E0 c}.

Then Σ is non-principal over T .
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By Omitting Types there is a countable M1 |= T which omits Σ.

Then M0 �M1, and M1 has no new elements of L above c . So
Y0 is dense in Y1.

Repeat ω1 times, and take the union of the elementary chain to
get Mω1 = 〈Xω1 ,Yω1 ,Tω1 , . . .〉.

Take 〈X ′,Y ′,T ′〉 to be the completion of 〈Xω1 ,Yω1 ,Tω1〉
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Example

Suppose T : X → Y is bounded, linear, surjective, where
density(X ) > density(Y ). Then there are X ′,Y ′ and
T ′ : X ′ → Y ′, with density(X ′) = ℵ1 and Y ′ separable, such that:

I X and X ′ have isometric ultrapowers,

I Y and Y ′ have isometric ultrapowers,

I if X is uniformly convex then so is X ′,

I if X is not hereditarily indecomposible then neither is X ′,

I if X is not super-reflexive then neither is X ′,

I all the above, with Y instead of X ,

I
...
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I if X is not hereditarily indecomposible then neither is X ′,

I if X is not super-reflexive then neither is X ′,

I all the above, with Y instead of X ,

I
...
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Thank you!


