Antichain catching at ω_1 versus antichain catching at ω_2

Sean Cox (joint with Martin Zeman)

December 7, 2012

1 Ideals and generic ultrapowers

2 Antichain Catching

3 Modifications of Kunen-Magidor arguments

Assume

- κ regular uncountable
- $\bullet \ \mathcal{I} \ \text{normal} \ \text{ideal}$

Then

$$\mathbb{B}_{\mathcal{I}} := (\wp(\kappa)/\mathcal{I}, \leq_{\mathcal{I}})$$

is a κ^+ -complete boolean algebra EX:

- $\kappa = \omega_1$
- $\mathcal{I} = NS_{\omega_1}$

G generic for $\mathbb{B}_{\mathcal{I}} \implies G$ "is" a V-normal ultrafilter on $\wp(\kappa) \cap V$ In V[G] define

 $j_G: V \rightarrow_G ult(V, G)$

${\mathcal I}$ is

9 precipitous iff $\Vdash_{\mathbb{B}_{\mathcal{I}}}$ "*ult*(*V*, \dot{G}) is wellfounded"

- e strong iff
 - ${\mathcal I}$ is precipitous AND

•
$$\Vdash_{\mathbb{B}_{\mathcal{I}}} j(\kappa) = \kappa^{+V}$$
 (NOTE: \supseteq always holds)

3 saturated iff $\mathbb{B}_{\mathcal{I}}$ has κ^+ -cc

We'll consider a property called $StatCatch(\mathcal{I})$

A boolean algebra ${\mathbb B}$ is stationarily layered iff

$$\{\mathbb{C} \in [\mathbb{B}]^{<|\mathbb{B}|} \mid \mathbb{C} \text{ is a regular subalgebra of } \mathbb{B}\}$$
 (1)

is stationary in $[\mathbb{B}]^{<|\mathbb{B}|}$.

Lemma

 $\mathbb B$ stat-layered $\implies \mathbb B$ has the $|\mathbb B|\text{-}cc$

A boolean algebra ${\mathbb B}$ is stationarily layered iff

$$\{\mathbb{C} \in [\mathbb{B}]^{<|\mathbb{B}|} \mid \mathbb{C} \text{ is a regular subalgebra of } \mathbb{B}\}$$
(1)

is stationary in $[\mathbb{B}]^{<|\mathbb{B}|}$.

Lemma

 $\mathbb B$ stat-layered $\implies \mathbb B$ has the $|\mathbb B|\text{-}cc$

Can also consider

- "club-layered"
- "cofinally layered"

 $\mathcal{I} \text{ is layered}: \Longleftrightarrow \ \mathbb{B}_{\mathcal{I}} \text{ is layered}.$

Corollary (to previous lemma)

 \mathcal{I} stat-layered $\implies \mathcal{I}$ is saturated.

Theorem (Shelah)

If \mathcal{I} is (club-)layered then it has the lifting property

(by a theorem of Kunen-Szymanski-Tall, the latter implies existence of Baire irresolvable space of size κ)

Ideals and generic ultrapowers

3 Modifications of Kunen-Magidor arguments

Assume $\theta >> \kappa$ and

•
$$M \prec (H_{\theta}, \in, \{\kappa\}...)$$

- $\alpha_M := M \cap \kappa \in \kappa$
- $\sigma_M : H_M \to M \prec H_\theta$ inverse of Most. collapse

Note $\alpha_M = crit(\sigma_M)$. Define

$$\mathcal{U}_{M} := \{A \in \wp(\alpha_{M}) \cap H_{M} \mid \alpha_{M} \in \sigma_{M}(A)\}$$

Then

- \mathcal{U}_M is a H_M -normal ultrafilter on $\mathcal{P}^{H_M}(\alpha_M)$
- for any normal ideal $\mathcal{I} \in M$ on κ : if M is \mathcal{I} -good then letting $\mathcal{I}_M := \sigma^{-1}(\mathcal{I})$ then \mathcal{U}_M "is" a $(H_M, \mathbb{B}_{\mathcal{I}_M})$ -normal ultrafilter

Then

- \mathcal{U}_M is a H_M -normal ultrafilter on $\mathcal{P}^{H_M}(\alpha_M)$
- for any normal ideal $\mathcal{I} \in M$ on κ : if M is \mathcal{I} -good then letting $\mathcal{I}_M := \sigma^{-1}(\mathcal{I})$ then \mathcal{U}_M "is" a $(H_M, \mathbb{B}_{\mathcal{I}_M})$ -normal ultrafilter

Is \mathcal{U}_M generic for $\mathbb{B}_{\mathcal{I}_M}$ over H_M ?

- If U_M is generic then in particular $ult(H_M, U_M)$ has the same ordinal height as H_M .
- Also $ult(H_M, U_M)$ collapses α_M .
- So they cannot both be levels of L.

M is called \mathcal{I} -self-generic iff \mathcal{U}_M is $(H_M, \mathbb{B}_{\mathcal{I}_M})$ -generic.

$$S_{\mathcal{I}}^{\mathsf{SelfGen}} := \{ M \in P_{\kappa}(H_{\theta}) \mid M \text{ is } \mathcal{I}\text{-self generic} \}$$
 (2)
 $\theta \ge (2^{\kappa})^+)$

Theorem (Foreman)

Let \mathcal{I} be a normal ideal on any regular uncountable κ . TFAE:

- *I* is saturated
- The set $S_{\mathcal{I}}^{SelfGen}$ is "club" in $P_{\kappa}(H_{\theta})$. (for all $\theta \geq (2^{\kappa})^+$)

M is called \mathcal{I} -self-generic iff \mathcal{U}_M is $(H_M, \mathbb{B}_{\mathcal{I}_M})$ -generic.

$$S_{\mathcal{I}}^{\mathsf{SelfGen}} := \{ M \in P_{\kappa}(H_{\theta}) \mid M \text{ is } \mathcal{I}\text{-self generic} \}$$
 (2)
 $(\theta \ge (2^{\kappa})^+)$

Theorem (Foreman)

Let \mathcal{I} be a normal ideal on any regular uncountable κ . TFAE:

- $\mathcal I$ is saturated
- The set $S_{\mathcal{I}}^{SelfGen}$ is "club" in $P_{\kappa}(H_{\theta})$. (for all $\theta \geq (2^{\kappa})^+$)

Question

What if we weaken "club" to, e.g., "stationary"?

Given ${\mathcal I}$ on regular uncountable $\kappa,$ define:

$$\begin{aligned} ClubCatch(\mathcal{I}) &: \iff S_{\mathcal{I}}^{SelfGen} \text{ is club} \end{aligned} \tag{3a} \\ ProjectiveCatch(\mathcal{I}) &: \iff S_{\mathcal{I}}^{SelfGen} \text{ is } \mathcal{I}\text{-projective} \end{aligned} \tag{3b} \\ StatCatch(\mathcal{I}) &: \iff S_{\mathcal{I}}^{SelfGen} \text{ is stationary} \end{aligned} \tag{3c}$$

Given ${\mathcal I}$ on regular uncountable $\kappa,$ define:

$$\begin{aligned} ClubCatch(\mathcal{I}) &: \iff S_{\mathcal{I}}^{SelfGen} \text{ is club} \end{aligned} \tag{3a} \\ ProjectiveCatch(\mathcal{I}) &: \iff S_{\mathcal{I}}^{SelfGen} \text{ is } \mathcal{I}\text{-projective} \end{aligned} \tag{3b} \\ StatCatch(\mathcal{I}) &: \iff S_{\mathcal{I}}^{SelfGen} \text{ is stationary} \end{aligned} \tag{3c} \end{aligned}$$

Recall: $ClubCatch(\mathcal{I})$ is equivalent to saturation of \mathcal{I} . What about the others?

Theorem (Folklore)

Let \mathcal{I} be on a regular uncountable κ . Then

 $StatCatch(\mathcal{I}) \implies \mathcal{I} \text{ is somewhere precipitous}$ (4) $ProjectiveCatch(\mathcal{I}) \implies \mathcal{I} \text{ is precipitous}$ (5)

Theorem (Schindler; Ketchersid-Larson-Zapletal)

If $\kappa = \omega_1$ then the converses also hold.

Corollary

TFAE:

- NS_{ω_1} is precipitous
- $S_{NS_{\omega_1}}^{SelfGen}$ is projective stationary in the sense of Feng-Jech

(equiconsistent with a measurable cardinal)

Sketch: precipitousness implies $StatCatch(\mathcal{I})$ when $\kappa = \omega_1$

Let
$$\mathcal{A} = (\mathcal{H}_{\theta}, \in, ...)$$
. Let $\mathcal{I} := \mathcal{NS}_{\omega_1}$.

Need to find some countable $M \prec A$ which is \mathcal{I} -self-generic.

Let G be $(V, \mathbb{B}_{\mathcal{I}})$ -generic and $j : V \to_G N$ the ultrapower.

Set $\mu := \omega_1^V$. There is a tree T_μ of height ω —defined inside N—such that T_μ has a cofinal branch iff there is a $j(\mathcal{I})$ -self generic structure whose intersection with $j(\mu)$ is μ .

V[G] believes:

•
$$j[H_{\theta}^{V}] \prec j(\mathcal{A})$$

• $j[H_{\theta}^{V}]$ is $j(\mathcal{I})$ -self-generic

•
$$j[H_{\theta}^V] \cap j(\mu) = \mu$$

So V[G] believes T_{μ} has a cofinal branch; by wellfoundedness of N, N believes this too and thus

$$N \models (\exists M)(M \prec j(A) \text{ and } M \text{ is } j(\mathcal{I})\text{-self generic})$$
 (6)

Theorem (Cox-Zeman)

Suppose \mathcal{I} is a normal ideal on ω_2 such that:

- $cof(\omega_1) \in Dual(\mathcal{I})$
- StatCatch*(\mathcal{I}) holds

Then there is an inner model with a Woodin cardinal.

Theorem (Cox-Zeman)

Suppose \mathcal{I} is a normal ideal on ω_2 such that:

- $cof(\omega_1) \in Dual(\mathcal{I})$
- StatCatch*(I) holds

Then there is an inner model with a Woodin cardinal.

The proof is very different from:

Theorem (Claverie-Schindler)

If there is a strong ideal (on any regular uncountable successor cardinal κ) then there is inner model with a Woodin.

Question

Is our theorem just a special case of Claverie-Schindler's? No.

2 Antichain Catching

3 Modifications of Kunen-Magidor arguments

Theorem (C.-Zeman)

Suppose κ is δ -supercompact and that δ is the **least** inaccessible cardinal above κ .

Then in $V^{Col(\omega_1,<\kappa)*Col(\kappa,<\delta)}$ there is a normal ideal \mathcal{I} whose dual concentrates on $\omega_2 \cap cof(\omega_1)$ such that:

- StatCatch*(I) holds (in fact ProjectiveCatch*(I))
- *I* is not strong; i.e.

$$\Vdash_{\mathbb{B}_{\mathcal{I}}} j(\omega_2) > \omega_3^V$$

(in particular $\mathbb{B}_{\mathcal{I}}$ collapses ω_3)

Remark

If $\kappa = \omega_2$ then

$$StatCatch(\mathcal{I}) \implies FA_{\omega_1}(\mathbb{B}_{\mathcal{I}})$$
 (7)

 $FA_{\omega_1}(\mathbb{B}_{\mathcal{I}})$ is much easier to obtain, and only requires a measurable cardinal.

Let $\kappa < \delta$ be inaccessibles. A sequence $\vec{U} = \langle \mathcal{U}_{\lambda} \mid \lambda < \delta \rangle$ is a (supercompact) tower iff for all $\lambda < \lambda' < \delta$:

- \mathcal{U}_{λ} is a normal measure on $P_{\kappa}(\lambda)$
- \mathcal{U}_{λ} is the projection of $\mathcal{U}_{\lambda'}$ to $P_{\kappa}(\lambda)$.

EXAMPLES:

- Project a normal measure on $P_{\kappa}(\delta)$ downwards.
- Almost huge embeddings

 $\vec{U} = \langle U_\lambda \mid \lambda < \delta \rangle$ gives rise to directed system of ultrapowers and a direct limit map

$$j_{\vec{U}}: V \to_{\vec{U}} N_{\vec{U}}$$

Facts:

Theorem (Magidor, building on work of Kunen)

Suppose \vec{U} is an **almost huge** tower of height δ and critical point κ . Then for any regular $\mu < \kappa$ there is a μ -closed \mathbb{P} such that

 $V^{\mathbb{P}*Col^{V^{\mathbb{P}}}(\kappa,<\delta)}\models ext{ there is a saturated ideal on }\kappa=\mu^+$

Theorem (Magidor, building on work of Kunen)

Suppose \vec{U} is an **almost huge** tower of height δ and critical point κ . Then for any regular $\mu < \kappa$ there is a μ -closed \mathbb{P} such that

$$V^{\mathbb{P}*Col^{V^{\mathbb{P}}}(\kappa,<\delta)}\models ext{ there is a saturated ideal on }\kappa=\mu^+$$

If δ is Mahlo then the ideal is also **layered** (Foreman-Magidor-Shelah)

These are essentially the only known ways to obtain saturated ideals on ω_2 .

Only a Woodin cardinal is needed to get saturated ideals on ω_1 (Shelah; RCS iteration)

Question

How much of Magidor's argument can be salvaged if \vec{U} is **not** almost huge?

Answer: a lot.

(To separate *StatCatch* from strongness using a Magidor-style argument, you **cannot** start with an almost huge embedding.)

Separating *StatCatch* from strongness, cont.

MAIN IDEA: Start with a tower \vec{U} and use it to define an ideal \mathcal{I} in $V^{\mathbb{P}*Col(\kappa,<\delta)}$

- **(**) Assume \vec{U} is **not** almost huge, so that \mathcal{I} will **not** be strong
 - Requires generalizing Magidor argument to non-almost-huge setting
- Assume *U* is the projection of a normal measure on P_κ(δ) (or a taller tower); somehow use the measure at the top to arrange StatCatch(*I*)

Separating *StatCatch* from strongness, cont.

- If $\vec{U} \upharpoonright \delta$ is **not** almost huge then k behaves badly.
 - **Cannot** lift k to the relevant generic extensions

Problem: Critical point of k when tower is not almost huge

 $N_{U_{\delta}}$ computes δ^+ correctly, whereas $N_{\vec{U}|\delta}$ does not. So only 2 possibilities:

•
$$crit(k) = \delta$$

•
$$crit(k) = \delta^{+N_{\vec{U} \upharpoonright \delta}}$$

Problem: Critical point of k when tower is not almost huge

 $N_{U_{\delta}}$ computes δ^+ correctly, whereas $N_{\vec{U}|\delta}$ does not. So only 2 possibilities:

•
$$crit(k) = \delta$$

•
$$crit(k) = \delta^{+N_{\vec{U} \upharpoonright \delta}}$$

In either case, non-almost-hugeness of \vec{U} implies $crit(k) < j_{\vec{U}}(\kappa)$. But then crit(k) is not even a cardinal in $(N_{\vec{U}\restriction\delta})^{j_{\vec{U}\restriction\delta}(\mathbb{P})}$

Interpolation between $j_{\vec{U}\restriction\delta}(\mathbb{P})$ and $j_{U_{\delta}}(\mathbb{P})$

Key point: **if** $crit(k) > \delta$ then the following two ideals—both defined in $V^{\mathbb{P}*Col(\kappa, <\delta)}$ —are exactly the same:

- **1** The ideal on κ derived from liftings of $j_{\vec{U} \upharpoonright \delta}$
- 2 The ideal on κ derived from liftings of $j_{U_{\delta}}$.

Then letting \mathcal{I} be this ideal:

- Characterization 1, along with non-almost-hugeness of U
 , tells us I is not strong
- Characterization 2 tells us $StatCatch(\mathcal{I})$ holds.

Theorem (C.)

Suppose κ is supercompact up to δ where δ is the least inaccessible limit of inaccessibles above κ . Then in $V^{Col(\mu,<\kappa)*Col(\kappa,<\delta)}$: there is an ideal \mathcal{I} on μ^+ such that $\mathbb{B} := \mathbb{B}_{\mathcal{I}}$ is:

- **()** a μ^{++} -complete b.a.
- **2** forcing equivalent to $Col(\mu, \mu^{++})$
- cofinally layered
 - i.e. for every Z ⊂ B of size < μ⁺⁺ there is a < μ⁺⁺-sized regular subalgebra containing Z.

Question

Does existence of a \mathbb{B} satisfying 1 through 3 have any large cardinal strength?

Famous open problem: Can $NS \upharpoonright S_1^2$ be saturated?

Question

Can StatCatch(NS $\upharpoonright S_1^2$) hold?

Shelah: $NS \upharpoonright S_0^2$ cannot be saturated.

Question

Can StatCatch($NS \upharpoonright S_0^2$) hold?

Question

Any other examples of a cofinally-layered, μ^{++} -complete \mathbb{B} such that $\mathbb{B} \sim Col(\mu, \mu^{++})$? Does existence of such a \mathbb{B} have large cardinal strength?

(Proof of harder direction of Foreman's theorem) For simplicity assume $\mathcal{I} = NS_{\omega_1}$. Suppose there is some $\mathcal{B} = (H_{\theta}, \in, ...)$ such that every ctble elementary substructure of \mathcal{B} is \mathcal{I} -self-generic. Let A be a maximal antichain for NS_{ω_1} . Let C^A be a club of $\alpha < \omega_1$ such that $Sk^{\mathcal{B}^{\frown}(\{A\})}(\alpha) \cap \omega_1 = \alpha$ for all $\alpha \in C^A$. $A \in Sk^{\mathcal{B}^{\frown}(\{A\})}(\alpha)$ for each $\alpha \in C^A$, so by self-genericity there is a (unique) $T_{\alpha} \in A \cap Sk^{\mathcal{B}^{\frown}(\{A\})}(\alpha)$ such that $\alpha \in T_{\alpha}$. **CLAIM:** $A = \{T_{\alpha} \mid \alpha \in C^A\}$ (note the RHS has size ω_1). **PROOF:** Let $S \in A$; we need to show there is some α such that $S \cap T_{\alpha}$ is stationary (then $S = T_{\alpha}$ b/c they're both in the antichain).

The map $\alpha \mapsto T_{\alpha}$ is essentially regressive (by considering the Skolem term that yields T_{α}). So there is a fixed T^* such that for stationarily many $\alpha \in S \cap C^A$: $T^* = T_{\alpha}$. So there are stationarily many $\alpha \in S \cap C^A$ such that $\alpha \in T^*$ (because $\alpha \in T_{\alpha}$ for all $\alpha \in C^A$). In particular $S \cap T^*$ is stationary.