Partial Word Representation

F. Blanchet-Sadri

Fields Institute Workshop

This material is based upon work supported by the National Science Foundation under Grant No. DMS–1060775.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Partial words and compatibility

A partial word is a sequence that may have undefined positions, called holes and denoted by ◊'s, that match any letter of the alphabet A over which it is defined (a full word is a partial word without holes); we also say that ◊ is compatible with each a ∈ A.

 $a \diamond b \diamond aab$ is a partial word with two holes over $\{a, b\}$

Two partial words w and w' of equal length are compatible, denoted by w ↑ w', if w[i] = w'[i] whenever w[i], w'[i] ∈ A.

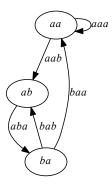
	а	\diamond	b	\diamond	а		а	\diamond	b	\diamond	а	
\uparrow						\uparrow						
	\diamond	\diamond	b	а	а		\diamond	\diamond	а	а	а	

(日) (日) (日) (日) (日) (日) (日)

A partial word u is a factor of the partial word w if u is a block of consecutive symbols of w.

A full word u is a subword of the partial word w if it is compatible with a factor of w.

aaa, aab, baa, bab are the subwords of *aa*⇔*a*⇔*b* corresponding to the factor *⇒a*⇔


(ロ) (同) (三) (三) (三) (○) (○)

Some computational problems

- We define REP, or the problem of deciding whether a set S of words of length n is representable, i.e., whether S = sub_w(n) for some integer n and partial word w.
- If h is a non-negative integer, we also define h-REP, or the problem of deciding whether S is h-representable, i.e., whether S = sub_w(n) for some integer n and partial word w with exactly h holes.

(日) (日) (日) (日) (日) (日) (日)

Rauzy graph of $S = \{aaa, aab, aba, baa, bab\}$

S is 0-representable by w = aaababaa

・ コット (雪) (小田) (コット 日)

Why partial words? (Compression of representations)

 $S = \{aaa, aab, aba, baa, bab\}$

is representable by

aaababaa

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Why partial words? (Compression of representations)

 $S = \{aaa, aab, aba, baa, bab\}$

is representable by

⊳aabab

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Why partial words? (Compression of representations)

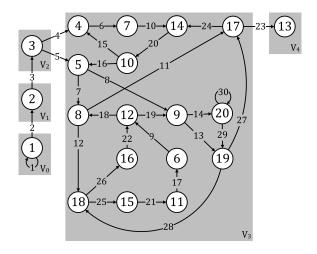
 $S = \{aaa, aab, aba, baa, bab\}$

is representable by

a⇔a⇔

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

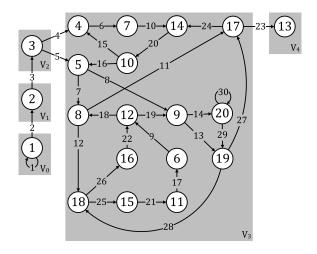
Why partial words? (Representation of non-0-representable sets)


Set S of 30 words of length six:

1	aaaaaa	6	aabbaa	11	abbbaa	16	baabbb	21	bbabab	26	bbbabb
2	aaaaab	7	aabbba	12	abbbab	17	bababb	22	bbabbb	27	bbbbaa
3	aaaabb	8	aabbbb	13	abbbba	18	babbba	23	bbbaaa	28	bbbbab
4	aaabba	9	ababbb	14	abbbbb	19	babbbb	24	bbbaab	29	bbbbba
5	aaabbb	10	abbaab	15	baabba	20	bbaabb	25	bbbaba	30	bbbbbb

Rauzy graph (V, E) of S, where E = S and V = sub_S(5) consists of 20 words of length five:

1	aaaaa	5	aabbb	9	abbbb	13	bbaaa	17	bbbaa
2	aaaab	6	ababb	10	baabb	14	bbaab	18	bbbab
3	aaabb	7	abbaa	11	babab	15	bbaba	19	bbbba
4	aabba	8	abbba	12	babbb	16	bbabb	20	bbbbb


◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

ヘロト 人間 とく ヨン 人 ヨン

æ

ヘロト 人間 とく ヨン 人 ヨン

æ

Membership of h-REP in \mathcal{P}

Theorem h-REP is in \mathcal{P} for any fixed non-negative integer h.

F. Blanchet-Sadri and S. Simmons, Deciding representability of sets of words of equal length. *Theoretical Computer Science* **475** (2013) 34–46

Membership of REP in \mathcal{P}

Theorem REP is in \mathcal{P} .

F. Blanchet-Sadri and S. Munteanu, Deciding representability of sets of words of equal length in polynomial time. Submitted

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Open problems

- Characterize the sets of words that are representable.
- Characterize minimal representing partial words (can they be constructed efficiently?)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ