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1. Introduction

I Cassaigne conjectured in 1994 that any pattern with m
distinct variables of length at least 3(2m−1) is avoidable
over 2 letters, and any pattern with m distinct variables of
length at least 2m is avoidable over 3 letters.

I Building upon the work of Rampersad and the power
series techniques of Bell and Goh, we obtain both of these
suggested strict bounds.

I Similar bounds are also obtained for pattern avoidance in
partial words, sequences where some characters are
unknown.



Let Σ be an alphabet of letters, denoted by a,b, c, . . ., and ∆ be
an alphabet of variables, denoted by A,B,C, . . ..

I A pattern p is a word over ∆.
I A word w over Σ is an instance of p if there exists a

non-erasing morphism ϕ : ∆∗ → Σ∗ such that ϕ(p) = w .
I A word w is said to avoid p if no factor of w is an instance

of p.

aa b aa c contains an instance of ABA while abaca avoids AA



Avoidability and k -avoidability

I A pattern p is avoidable if there exist infinitely many words
w over a finite alphabet such that w avoids p, or
equivalently, if there exists an infinite word that avoids p.

I If p is avoided by infinitely many words over k letters, p is
k -avoidable.

I If p is avoidable, the minimum k such that p is k -avoidable
is called the avoidability index of p.

ABA is unavoidable while AA has avoidability index 3



I If a pattern p occurs in a pattern q, we say p divides q.
p = ABA divides q = ABC BB ABC A, since we can map A

to ABC and B to BB and this maps p to a factor of q

I If p divides q and p is k -avoidable, there exists an infinite
word w over k letters that avoids p; w must also avoid q,
thus q is necessarily k -avoidable. It follows that

the avoidability index of q ≤ the avoidability index of p



I It is not known if it is generally decidable, given a pattern p
and integer k , whether p is k -avoidable.

I Thus various authors compute avoidability indices and try
to find bounds on them.

I Cassaigne’s 1994 Ph.D. Thesis listed avoidability indices
for unary, binary, and most ternary patterns (Ochem 2006
determined the remaining few avoidability indices for
ternary patterns).

I Based on this data, Cassaigne conjectured in his thesis:
I Any pattern with m distinct variables of length at least

3(2m−1) is avoidable over 2 letters;
I Any pattern with m distinct variables of length at least 2m is

avoidable over 3 letters.
I Our main result is the affirmative answer to this

long-standing conjecture of Cassaigne.



2. Two sequences of unavoidable patterns

Both bounds suggested by Cassaigne are strict.

Proposition
Let p be a k-unavoidable pattern over ∆ and A ∈ ∆ be a
variable that does not occur in p. Then the pattern pAp is
k-unavoidable.



Sequences of patterns that meet the bounds

Let A1,A2, . . . be distinct variables in ∆.
I Z0 = ε and for all m ≥ 0, Zm+1 = ZmAm+1Zm

Since ε is k -unavoidable for every positive integer k , the
previous proposition implies Zm is k -unavoidable for all
m ∈ N by induction on m. Thus Zm is a 3-unavoidable
pattern over m variables with length 2m − 1 for all m ∈ N.

I R1 = A1A1 and for all m ≥ 1, Rm+1 = RmAm+1Rm
Since A1A1 is 2-unavoidable, the previous proposition
implies Rm is 2-unavoidable for all m ∈ N by induction on
m. Thus Rm is a 2-unavoidable pattern over m variables
with length 3(2m−1)− 1 for all m ∈ N.



3. The power series approach

Theorem
Let S be a set of words over k letters with each word of length
at least two. Suppose that for each i ≥ 2, the set S contains at
most ci words of length i. If the power series expansion of

B(x) :=
(

1− kx +
∑

i≥2 cix i
)−1

has non-negative coefficients, then there are at least [xn]B(x)
words of length n over k letters that have no factors in S.

To count the number of words of length n avoiding a pattern p,
we let S consist of all instances of p.

Rampersad, N.: Further applications of a power series method
for pattern avoidance. The Electronic Journal of Combinatorics
18 (2011) P134



Bell and Goh’s lemma (a useful upper bound)

Let m ≥ 1 be an integer and p be a pattern over an alphabet
∆ = {A1, . . . ,Am}. Suppose that for 1 ≤ i ≤ m, the variable Ai
occurs di ≥ 1 times in p. Let k ≥ 2 be an integer and let Σ be a
k -letter alphabet. Then for n ≥ 1, the number of words of length
n over Σ that are instances of the pattern p is no more than
[xn]C(x), where

C(x) :=
∑

i1≥1 · · ·
∑

im≥1 k i1+···+imxd1i1+···+dm im

Note that this approach for counting instances of a pattern is
based on the frequencies of each variable in the pattern, so it
will not distinguish AABB and ABAB, for example.

Bell, J., Goh, T.L.: Exponential lower bounds for the number of
words of uniform length avoiding a pattern. Information and
Computation 205 (2007) 1295–1306



4. Derivation of the strict bounds

Lemma
Suppose k ≥ 2 and m ≥ 1 are integers and λ >

√
k. For any

integer P and integers dj for 1 ≤ j ≤ m such that dj ≥ 2 and
P = d1 + · · ·+ dm,∏m

i=1
1

λdi−k
≤
(

1
λ2−k

)m−1 (
1

λP−2(m−1)−k

)



Proof

The proof is by induction on m.
I For m = 1, d1 = P and the inequality is trivially satisfied.
I Suppose the inequality holds for m and

d1 + d2 + · · ·+ dm+1 = P with dj ≥ 2 for 1 ≤ j ≤ m + 1.
I Letting P ′ = P − dm+1 = d1 + · · ·+ dm, the inductive

hypothesis implies∏m
i=1

1
λdi−k

≤
(

1
λ2−k

)m−1 (
1

λP′−2(m−1)−k

)



Proof continued

I Let c1 = P ′ − 2(m − 1) and c2 = dm+1.
I Since λ >

√
k and c1, c2 ≥ 2,

(λc1−1 − λ)(λc2−1 − λ) ≥ 0,

λc1+c2−2 + λ2 ≥ λc1 + λc2 ,

−k(λc1 + λc2) ≥ −k(λc1+c2−2 + λ2),

(λc1 − k)(λc2 − k) ≥ (λc1+c2−2 − k)(λ2 − k),

1
(λc1 − k)(λc2 − k)

≤ 1
(λc1+c2−2 − k)(λ2 − k)



Proof continued
I Substituting the ci ’s,

1
(λP′−2(m−1) − k)(λdm+1 − k)

≤ 1
(λP′−2m+dm+1 − k)(λ2 − k)

I Multiplying the inductive hypothesis by 1
λdm+1−k

,

m+1∏
i=1

1
λdi − k

≤
(

1
λ2 − k

)m−1( 1
λP′−2(m−1) − k

)
1

λdm+1 − k

I Substituting the above inequality,
m+1∏
i=1

1
λdi − k

≤
(

1
λ2 − k

)m ( 1
λP′+dm+1−2m − k

)

=

(
1

λ2 − k

)(m+1)−1( 1
λP−2((m+1)−1) − k

)
2



The remaining arguments are based on those of Rampersad’s,
but add additional analysis to obtain the optimal bounds.

Lemma
Let m be an integer and p be a pattern over ∆ = {A1, . . . ,Am}.
Suppose that for 1 ≤ i ≤ m, Ai occurs di ≥ 2 times in p.

1. If m ≥ 3 and |p| ≥ 4m, then for n ≥ 0, there are at least
(1.92)n words of length n over 2 letters that avoid p.

2. If m ≥ 2 and |p| ≥ 12, then for n ≥ 0, there are at least
(2.92)n words of length n over 3 letters that avoid p.



Proof

I Define S to be the set of all words over an alphabet Σ of
size k ∈ {2,3} that are instances of the pattern p.

I By Bell and Goh’s lemma, the number of words of length n
in S is at most [xn]C(x), where

C(x) :=
∑
i1≥1

· · ·
∑
im≥1

k i1+···+imxd1i1+···+dm im

I Define B(x) :=
∑

i≥0 bix i = (1− kx + C(x))−1

Set λ = k − 0.08. Clearly b0 = 1 and b1 = k . We show that
bn ≥ λbn−1 for all n ≥ 1, hence bn ≥ λn for all n ≥ 0.

I Then all coefficients of B are non-negative, thus
Rampersad’s theorem implies there are at least bn ≥ λn

words of length n having no factors in S, thus avoiding p.



Proof continued (bn ≥ λbn−1 for all n ≥ 1)

I By induction on n, suppose bj ≥ λbj−1 for all 1 ≤ j < n.
I Expanding the left hand side of B(x)(1− kx + C(x)) = 1,∑

i≥0

bix i

1− kx +
∑
i1≥1

· · ·
∑
im≥1

k i1+···+imxd1i1+···+dm im


I Hence for n ≥ 1, [xn]B(x)(1− kx + C(x)) = 0, i.e.,

bn − kbn−1 +
∑
i1≥1

· · ·
∑
im≥1

k i1+···+imbn−(d1i1+···+dm im) = 0

I Complete the induction by showing the major equation

(k − λ)bn−1 −
∑

i1≥1 · · ·
∑

im≥1 k i1+···+imbn−(d1i1+···+dm im) ≥ 0



Proof continued
I Because bj ≥ λbj−1 for 1 ≤ j < n, bn−i ≤ bn−1/λ

i−1 for
1 ≤ i ≤ n. Therefore,∑

i1≥1

· · ·
∑
im≥1

k i1+···+imbn−(d1i1+···+dm im)

≤ λbn−1
∑
i1≥1

k i1

λd1i1
· · ·
∑
im≥1

k im

λdm im

I Since dj ≥ 2 for 1 ≤ j ≤ m, k ≤ 3, and λ >
√

3,

k
λdj
≤ 3
λ2 < 1

thus all the geometric series converge.
I Computing the result, for 1 ≤ j ≤ m,∑

ij≥1

k ij

λdj ij
=

k/λdj

1− k/λdj
=

k
λdj − k



Proof continued
I Thus∑

i1≥1

· · ·
∑
im≥1

k i1+···+imbn−(d1i1+···+dm im) ≤ kmλbn−1

m∏
i=1

1
λdi − k

I Applying our previous lemma to P = |p|, the key step is∑
i1≥1

· · ·
∑
im≥1

k i1+···+imbn−(d1i1+···+dm im)

≤ kmλbn−1

(
1

λ2 − k

)m−1( 1
λ|p|−2(m−1) − k

)

I It thus suffices to show the final inequality

(k − λ) ≥ λkm
(

1
λ2−k

)m−1 (
1

λ|p|−2(m−1)−k

)
since multiplying this by bn−1 and using the key step
derives the major equation.



Proof continued (Statement 1)
I The right hand side of the final inequality decreases as |p|

increases, thus it suffices to verify the case |p| = 4m. The
final inequality is easily verified for m = 3 and |p| = 12.

I Now consider an arbitrary m′ ≥ 3 and p′ with |p′| = 4m′.
Substituting λ = 1.92 and k = 2, it follows that

c :=

(
k

λ2 − k

)m′−m
(
λ|p|−2(m−1) − k
λ|p′|−2(m′−1) − k

)

≤ (1.19)m′−m
(

1
λ2(m′−m)

)
< 1

I Thus we conclude

k − λ ≥ cλkm
(

1
λ2 − k

)m−1( 1
λ|p|−2(m−1) − k

)
= λkm′

(
1

λ2 − k

)m′−1( 1
λ|p′|−2(m′−1) − k

)



Proof continued (Statement 2)

For m ≥ 2, it suffices to verify the final inequality for
|p| = max{12,2m}.

I For m = 2 through m = 5 and |p| = 12, the equation is
easily verified.

I For m ≥ 6, |p| = 2m and

λkm
(

1
λ2−k

)m−1 (
1

λ|p|−2(m−1)−k

)
= 2.92

(
3

(2.92)2−3

)m

≤ 2.92(0.5429)m

≤ 2.92(0.5429)6

= 0.07476 · · ·
< 0.08 = k − λ

2



Main results (strict bounds)

Both bounds below are strict in the sense that for every positive
integer m, there exists a 2-unavoidable pattern with m distinct
variables and length 3(2m−1)− 1 as well as a 3-unavoidable
pattern with m distinct variables and length 2m − 1.

Theorem
Let p be a pattern with m distinct variables.

1. If |p| ≥ 3(2m−1), then p is 2-avoidable.
2. If |p| ≥ 2m, then p is 3-avoidable.



Proof (Statement 1)

We show by induction on m that if p is 2-unavoidable,
|p| < 3(2m−1).

I For m = 1, note that A3 is 2-avoidable, hence A` is
2-avoidable for all ` ≥ 3. Thus if a unary pattern p is
2-unavoidable, |p| < 3 = 3(21−1).

I For m = 2, it is known that all binary patterns of length 6
are 2-avoidable (Roth 1992), hence all binary patterns of
length at least 6 are also 2-avoidable. Thus if a binary
pattern p is 2-unavoidable, |p| < 6 = 3(22−1).

I Now assume the statement holds for m ≥ 2 and suppose p
is a 2-unavoidable pattern with m + 1 distinct variables. For
the sake of contradiction, assume that |p| ≥ 3(2m).



Proof continued (Statement 1)

I Suppose p has a variable A that occurs exactly once. Let
p = p1Ap2, where p1 and p2 are patterns with at most m
variables. Without loss of generality, suppose |p1| ≥ |p2|.
Since |p| ≥ 3(2m),

|p1| ≥
⌈
|p| − 1

2

⌉
≥
⌈

3(2m)− 1
2

⌉
= 3(2m−1)

By the contrapositive of the inductive hypothesis, p1 is
2-avoidable. But p1 divides p, hence p is 2-avoidable, a
contradiction.

I Suppose every variable in p occurs at least twice. Since
|p| ≥ 3(2m) ≥ 4(m + 1) for m ≥ 2, the previous lemma
indicates there are infinitely many words over 2 letters that
avoid p, thus p is 2-avoidable, a contradiction.

2



5. Extension to partial words

I We apply the power series approach to obtain similar
bounds for avoidability in partial words, sequences that
may contain some unknown characters or holes, denoted
by �’s, which are compatible or match any letter in the
alphabet.

a � b � a a � b � a
↑ 6↑
� � b a a � � a a a

I The modifications include that now we must avoid all
partial words compatible with instances of the pattern. Lots
of additional work with inequalities is necessary.



Partial word avoidability

I A partial word w over Σ is an instance of a pattern p over
∆ if there exists a non-erasing morphism ϕ : ∆∗ → Σ∗

such that ϕ(p) ↑ w ; the partial word w avoids p if none of
its factors is an instance of p.
aa b a� c contains an instance of ABA while it avoids AAA

I A pattern p is called k -avoidable in partial words if for every
h ∈ N there is a partial word with h holes over k letters
avoiding p, or, equivalently, if there is a partial word over k
letters with infinitely many holes which avoids p.

I The avoidability index for partial words is defined
analogously to that of full words.



An upper bound

Lemma
Let m ≥ 1 be an integer and p be a pattern over an alphabet
∆ = {A1, . . . ,Am}. Suppose that for 1 ≤ i ≤ m, the variable Ai
occurs di ≥ 1 times in p. Let k ≥ 2 be an integer and let Σ be a
k-letter alphabet. Then for n ≥ 1, the number of partial words of
length n over Σ that are compatible with instances of the
pattern p is no more than [xn]C(x), where

C(x) :=
∑

i1≥1 · · ·
∑

im≥1

(∏m
j=1
(
k(2dj − 1) + 1

)ij
)

xd1i1+···+dm im



A technical inequality

Lemma
Suppose (k , λ) ∈ {(2,2.97), (3,3.88)} and m ≥ 1 is an integer.
For any integer P and integers dj for 1 ≤ j ≤ m such that dj ≥ 2
and P = d1 + · · ·+ dm,∏m

i=1
k(2di−1)+1

λdi−(k(2di−1)+1)
≤
(

3k+1
λ2−(3k+1)

)m−1
(

k
(λ2 )

P−2(m−1)−k

)



Exponential lower bounds

Lemma
Let m ≥ 4 be an integer and p be a pattern over an alphabet
∆ = {A1, . . . ,Am}. Suppose that for 1 ≤ i ≤ m, Ai occurs
di ≥ 2 times in p.

1. If |p| ≥ 15(2m−3), then for n ≥ 0, there are at least (2.97)n

partial words of length n over 2 letters that avoid p.
2. If |p| ≥ 2m, then for n ≥ 0, there are at least (3.88)n partial

words of length n over 3 letters that avoid p.



Arbitrarily many holes lemma

Thus for certain patterns, there exist λn partial words of length
n that avoid the pattern, for some λ. It is not immediately clear
that this is enough to prove the patterns are avoidable in partial
words. The next lemma asserts this count is so large that it
must include partial words with arbitrarily many holes, thus the
patterns are 2-avoidable or 3-avoidable in partial words.

Lemma
Suppose k ≥ 2 is an integer, k < λ < k + 1, Σ is an alphabet of
size k, and S is a set of partial words over Σ with at least λn

words of length n for each n > 0. For all integers h ≥ 0, S
contains a partial word with at least h holes.



I Unfortunately, the pattern A2BA2CA2 of length 8 = 23 is
unavoidable in partial words (since some a� must occur
infinitely often), thus to obtain the 2m bound for avoidability
as in the full word case, we require information about
quaternary patterns of length 16 = 24.

I Fortunately, for certain patterns, constructions can be
made from full words avoiding a pattern to partial words
avoiding a pattern that provide upper bounds on
avoidability indices.



Bounds for partial words

Theorem
Let p be a pattern with m distinct variables.

1. If m ≥ 3 and |p| ≥ 15(2m−3), then p is 2-avoidable in
partial words.

2. If m ≥ 3 and |p| ≥ 5(2m−2), then p is 3-avoidable in partial
words.

3. If m ≥ 4 and |p| ≥ 2m, then p is 4-avoidable in partial
words.

3 gives a strict bound for 4-avoidability in partial words



Proof (Statement 3)

We show by induction on m that if p is 4-unavoidable, |p| < 2m.
I We first establish the base case m = 4 by showing that

every pattern p of length 16 = 24 is 4-avoidable.
I Using the data in Blanchet-Sadri, Lohr and Scott 2012, the

ternary patterns of length at least 7 which have avoidability
index greater than 4 are

A2BA2CA2, of length 8
A2BA2CA, A2BACA2, A2BCA2B, . . . of length 7

(up to reversal and renaming of variables).

Blanchet-Sadri, F., Lohr, A., Scott, S.: Computing the partial
word avoidability indices of ternary patterns. In Arumugam, S.,
Smyth, B., eds.: IWOCA 2012, 23rd Int’l Workshop on
Combinatorial Algorithms. Vol. 7643 of LNCS, Berlin,
Heidelberg, Springer-Verlag (2012) 206–218



Proof continued (Statement 3)

I If every variable in p occurs at least twice, our exponential
lower bounds imply there exists a set S with at least
(3.88)n ternary partial words of length n that avoid p for
each n ≥ 0. Applying our arbitrarily many holes lemma to
S, for each h ≥ 0, there exists a ternary partial word with at
least h holes that avoids p. Thus p is 3-avoidable.

I Otherwise, p contains a variable α that occurs exactly once
and p = p1αp2 for patterns p1 and p2 with at most 3
distinct variables. Note that |p1|+ |p2| = 15.

I If p1 has length at least 9, then p1 is 4-avoidable, hence p
is 4-avoidable by divisibility (likewise for p2).

I Thus the only remaining case is when |p1| = 8 and |p2| = 7
(or vice versa).



Proof continued (Statement 3)

I If p1 or p2 is not in the list of ternary patterns mentioned
before, it is 4-avoidable, hence p is 4-avoidable.

I Otherwise p1 = A2BA2CA2 up to a renaming of the
variables. Note that p1 contains a factor of the form A2BA
and all of the possible values of p2 are on three variables,
so they must contain B. This fits the form of a result of
Blanchet-Sadri et al. which implies p is 4-avoidable.

I For m ≥ 5, our exponential lower bounds and our arbitrarily
many holes lemma imply that every pattern with length at
least 2m in which each variable appears at least twice is
3-avoidable.

I If p has a variable that occurs exactly once, we reason as
in the proof of our main results to complete the induction.

2



6. Conclusion

I Building upon the work of Rampersad 2011 and the power
series techniques of Bell and Goh 2007, we have proved
Cassaigne’s 1994 conjecture that any pattern p with m
distinct variables such that |p| ≥ 3(2m−1) is 2-avoidable,
and any pattern p with m distinct variables such that
|p| ≥ 2m is 3-avoidable.

I Using in addition results and data about partial word
avoidability of patterns from Blanchet-Sadri, Lohr and Scott
2012, we have also obtained exponential lower bounds for
2, 3 and 4-avoidability in partial words, the latter bound
being strict.

I We do not know if our bounds for 2 and 3-avoidability in
partial words are strict.



Thank you!


